
A Comprehensive Test Compression Scheme based on Precomputed Test Sets

Zhijian Tian, Fayong Zhao
School of Physics and Electronic Science

Fuyang Normal College
 Fuyang, 236037, China

fytzj1999@ 163.com

Abstract—To cope with increasingly rigorous challenges that
large scale digital integrated circuit testing is confronted with,
a comprehensive compression scheme consisting of test-bit
rearrangement algorithm, run-length assignment strategy and
symmetrical code is proposed. The presented test-bit
rearrangement algorithm can fasten don’t-care bits, 0s or 1s in
every test pattern on one of its end to the greatest extent so as
to lengthen end-run blocks and decrease number of short run-
lengths. A dynamical don’t-care assignment strategy based on
run-lengths can be used to specify the remaining don’t-care
bits after the test-bit rearrangement, which can decrease run-
length splitting and maximize length of run-lengths. The
symmetrical code benefits from long run-lengths and only uses
2 4-bit short code words to identify end-run blocks almost as
long as a test pattern, and hence the utilization ratio of code
words can be heightened. The presented experiment results
show that the proposed comprehensive scheme can obtain very
higher data compression ratios than other compression ones
published up to now, especially for large scale digital
integrated circuits, and considerably decrease test power
dissipations.

Keywords-Terms—Run-length code, run-length assignment
symmetrical code, test data compression.

I. INTRODUCTION

All manuscripts must be in English. These guidelines
include complete descriptions of the fonts, spacing, and
related information for producing your proceedings
manuscripts. Please follow them and if you have any
questions, direct them to the production editor in charge of
your proceedings at Conference Publishing Services (CPS):
Phone +1 (714) 821-8380 or Fax +1 (714) 761-1784.

with the continuous improvement of semiconductor
manufacturing technologies and the rapid development of
integrated circuits (ICs) design, the density and functional
complexity of ICs are further heightened, which increase
failure probability and naturally enhance amount of test data
and difficulty of testing them. To solve a series of testing
questions such as data storage, test pattern exertion and
response analysis, researchers have proposed combinational
logic testing, sequential logic testing and design for
testability, and so on, where the design for testability
becomes one main research focus and is divided into
boundary-scan test, self-test and test resource partitioning
and so on [1]. For test resource partitioning, a precomputed
test set is compressed using code techniques and is stored in

automatic test equipments (ATEs). Decode circuit in chip
decompresses the compressed data from the ATE and applies
them to ICs during testing. In recent years, there have been
many classical test resource partition schemes, such as single
run-length coding [1]- [4], dual run-length coding [5], [6]
and blocking coding [7]- [14].

References [1]-[4] describe a type of code schemes for
run- lengths of 0, which obtain certain compression ratios.
References [5] and [6] encode not only run-lengths of 0 but
also run-lengths of 1, and hence they obtain higher
compression effect. Blocking code schemes mainly divide
test data into blocks and compress them in different code
techniques [7]- [14], several of which [13], [14] emerging
recently increase compression effect, even exceed [1]-[6].

In order to improve compression effects of [1]- [4],
researchers propose an algorithm of pattern difference
optimizing [1]- [4], which looks for a pattern sorting order so
as to make sum of different bits between all adjacent test
patterns littler. It does help to improve compression ratios of
[1]- [4], and make them beyond those of [5]- [14]. However,
its implementation brings sharp increase at the cost of
decompression hardware, without any positive effect for test
power reduction [1]- [4].

The algorithm does very well in compression ratio for
single run-length code compression schemes, but it does not
fit for others. Mehla et al. [15] also proposes a treatment
technique for test set, which further improves compression
ratio of run-length code. However, these test set processing
programs can not fundamentally solve the contradiction
between test power and compression ratio.

To fully take advantage of don’t-care bits and high-
quality double-length compression techniques to reduce
amount of test data, additional hardware overhead, test
power consumption and so on, it is necessary to probe a
novel treatment algorithm of test set and a corresponding
compression technique. This paper proposes a
comprehensive compression scheme consisting of test-bit-
rearrangement algorithm, run- length assignment strategy
and symmetrical code.

Firstly, the test-bit-rearrangement algorithm can fasten as
many bits of certain deterministic value and don’t-care in
every pattern as possible on one of its ends so as to increase
length of end-run blocks (an end-run block is a part of
continuous same value on one end of a test pattern) and
decrease number of short run-lengths. The test set after
treatment is more fitted for dual run-length code schemes.
Secondly, the run-length assignment strategy introduced can

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0907

dynamically specify remaining don’t-care bits after test-bit-
rearrangement so as to further reduce short run-lengths and
lengthen long run-lengths. Finally, symmetrical code
technique proposed benefits from the test set treatment,
which can get twice the result with half the effort. One
reason is that long run-lengths get longer and more, short
run-lengths less. The other is that bit number of end-run
block is considerably larger, and even close to that of a test
pattern. For example, end-run blocks of circuit s35932 from
ISCAS’89 benchmarks may attain 1762 bits after test set
treating, 1 bit less compared with bit number of its test
pattern. Symmetrical code technique only uses a 4-bit code
word to directly identify end-run blocks without considering
bit number of end-run blocks. Therefore, symmetrical code
technique can effectively save number of code words.

The proposed comprehensive compression scheme has
several advantages as follows: 1) Test data compression
ratios are farther improved, which are not only higher than
those of similar test compression schemes, but also higher
than those of other types; 2) Transition numbers of test bits
and test power dissipations are reduced, since a large number
of same level test bits are put together; 3) The
comprehensive compression scheme has universal
applicability, particularly suitable for large scale integrated
circuit testing.

II. TEST-BIT-REARRANGEMENT ALGORITHM AND
ANALYSIS

A. Description of Test-Bit-Rearrangement Algorithm

Corresponding test bits in others must be synchronously
changed when some test bits in one of test patterns are
moved, since a test set contains a few of test patterns, each
containing a large number of test bits, and corresponding test
bits between different test patterns share common inputs or
outputs. Thus, when some deterministic bits in a test pattern
are moved to reduce amount of run-lengths and to lengthen
end-run block, it may increase amount of run-lengths in other
patterns in return. For this, an algorithm need be studied to
ensure that new short run-lengths are not increased while a
large number of test bits are concentrated. Taking into
account the characteristics of test set and the test process, the
proposed algorithm adopts fastening a large number of same
deterministic and don’t-care bits on the right ends of test
patterns (Suppose that each test pattern displays horizontally).
Basic idea of the algorithm is as follows.

As illustrated in procedure 1. First, set a boundary
position signal (e.g. division) to record number of test bits
on the left of boundary position, which do not be counted
and shifted after every cyclic operation. Then, count number
of 0s and 1s on the right of the boundary position in other
test patterns except benchmark patterns, and record
minimum bit amounts between 0s or 1s (indicated by
‘number’), their types (indicated by ‘flag’) and sums of 0s
and 1s (indicated by ‘sum_number’), respectively. Next,
look for a pattern as benchmark one in view of two
conditions as below: 1) Select a pattern whose number value
is the minimum. 2) Select a pattern whose sum_number
value is the maximum when the number values of several

patterns are equal. After that, for the benchmark pattern,
those deterministic bits equal to the flag value on the right
of the boundary position are bit by bit moved in circles to its
boundary position according to the number value, and
corresponding bits in other test patterns are synchronously
moved. Then replace the number value with the
number+division value, and fill don’t-care bits on the right
of boundary position of the benchmark pattern with inverse
code of the flag value. Finally, label the benchmark pattern.
So the cycle continues, until all patterns are labeled.

Procedure 1: Test-Bit Rearrangement

Begin
readfile(n, m); // Read n m-bit test patterns.
division=0; // Let division= 0.
for(h=0; h<n-1; h++) // Set cycle time with variable

h.
{

counter(division); // Count and store numbers of
0s and

// 1s in unmarked patterns
// respectively, and store their

types.
compare(s); // Select benchmark pattern,

and
// store its order in variable s.

shift(s); // Move test bits of all
patterns

// according to parameters of
// benchmark pattern.

filling(s, division); //Amend division value in
view of

// number value. Fill don’t-
care bits
// on the right of its boundary
// position, and label the
benchmark // pattern.

}
End

Table I is used to describe basic idea of the algorithm,

where there are 3 test patterns, each with 32 test bits. The
first - fifth columns list order, original test pattern, result
after rearrangement, boundary position and bit number of
end-run block (i.e. bold font in the third column),
respectively. In addition, ‘Number’ row marks position
changing of every test bit before and after rearrangement,
‘Total’ row total number of bits.
First, let division = 0, and count numbers of 0s and 1s in all
patterns. For example, the first test pattern has 8 0s and 14 1s,
and then, number = 8, sum_number = 22 and flag = 0.
Similarly, corresponding values for the second and third test
patterns are 7, 20 and 0,7,18 and 1, respectively. Note that
the number values of the second and third patterns are equal,
and smaller than that of the first, whereas the sum_number
value of the second is largest, so the second pattern is chosen
as a benchmark pattern. After that, the values from the first
to sixth positions in the benchmark pattern are rightwards

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0908

moved 1 bit in cycle, and so do synchronously corresponding
bits in other patterns until 7 0s in the benchmark pattern are
all moved close to the boundary position. At last, division=0
+7 = 7, and don’t-care bits on the right of the seventh bit in
the benchmark pattern are all replaced by inverse code of the
flag value, i.e. ‘1’. At the same time, the benchmark pattern
is labeled so that 0s and 1s in it are not counted during later
cycles. The division=7 during the second cycle. Number,
sum_number and flag of the first and the third patterns on the
right of the seventh bit are 4, 15 and 0, 2, 11 and 1,
respectively. It is obvious that the third pattern is benchmark
one. 2 1s on the right of the seventh bit of the benchmark
pattern are cyclically shifted to the eighth and ninth positions,
and corresponding bits in other 2 patterns are synchronously
moved. Amend division=7+2=9, replace don’t-care bits by
‘0’, and label the benchmark pattern. Treat the last cycle in
the same method.

As illustrated in Table I: 1) For each test pattern, number
of short run-lengths is reduced, long run- lengths lengthened,
and total number of run-lengths is lowered. For example, the
second pattern has 7 run-lengths before rearrangement, but
it has only 2 run-lengths after rearrangement. 2) Bit number
of end-run block gets higher. For example, end-run block of
the second pattern has 1 ‘0’ before rearrangement, but does
25 ‘1’ after rearrangement, close to 32 bits. 3) The test set
has 96 bits, however, end-run blocks owns 68 bits and
exceeds half of the total test bits. All the facts show that the
proposed algorithm should be effective.

The ‘number’ row in table I shows that every test bit
could change after the test-bit rearrangement. Therefore, in
order to apply test patterns to circuits under test(CUT) with
design for testability, scan chain structure must be
constructed in view of the test bit order after the
rearrangement, which does not remarkably increase test
hardware overhead.

B. Analysis of Effectiveness

The test-bit-rearrangement algorithm is mainly fitted for
dual run-length code schemes, and hence it must be
effective as long as average length of run-lengths is
increased after test-bit rearrangement.

Taking into account arbitrary assignment of don’t-care
bits, let a memoryless test pattern has m bits, with s 0s,
where the probability of 0 is p = s / m, the probability of 1 1-
p = (m-s) / m. Thus, the average length of run-lengths is


−

==

−+=
sm

i

i
s

i

i piip
11

)1(λ (1)

Allow for the s and m-s to be very large. For example, a
pattern of circuit s13207 in ISCAS89 benchmark has 700
bits. Hence (1) is amended as follows:

22

2

22)1(

3311

)1(pp

pp

p

p

p

p

−
+−=−+

−
=λ (2)

Without loss of generality, suppose d 0s are moved to one
end, since a large number of 0s or 1s are moved to one end
of test patterns after test-bit rearrangement. At this time, the
original test data apart from end-run block has s-d 0s, where
the probability of 0 is p0=(s-d)/(m-d), the probability of 1

p1=1-p0 = (m-s) / (m-d). So, average length of run-lengths
after the rearrangement is given by:


−

=

−

=

−+=
sm

i

i
ds

i

i piip
1

0
1

0)1(λ (3)

The s-d may be very large still, although the d is large.
This is because m is considerably large. Equation (3) is
approximately written into:

2
0

2
0

2
00

2
0

0
2

0

0

)1(

3311

)1(pp

pp

p

p

p

p

−
+−=−+

−
=λ (4)

Although (2) and (4) are the same in the form,
probabilities of 1 or 0 are different before and after
rearrangement. Numbers of 0s and 1s in original test set are
approximately equal. Without loss of generality, suppose p
is close to 0.5. A large number of test bits are moved to one
end after rearrangement, i.e., d is very larger. So p0=(s-
d)/(m-d)< p, may be less than 0.1, even close to 0.0.
Relation curve of average length of run-lengths and
probability of 0 is plotted in Fig. 1.

Figure 1. Relation between probability and average length of run-length

The average length of run-lengths sharply increases,

while probability of 0 lowers from 0.5 to 0.0. For example,
p = 0.5, thus λ = 4. p0 = 0.1, thus λ = 90, which shows
average length of run-lengths is increased by 22 times. For
the case that d 1s are moved to one end, likewise, average
length of run-lengths is sharply heightened, while p0 >p ≥
0.5. In short, it is effective, since the proposed algorithm can
sharply heighten average length of run-lengths.

Table II lists numbers of run-lengths of 7 circuits in
ISCAS89 benchmark before and after rearrangement.
Principle of filling don’t-care bits is as follows [5], [6]: Let
‘1’ replace don’t-care bits bounded by 1s from both sides in
test data stream, otherwise let ‘0’ replace them. Table II
shows that numbers of runs of 0s and runs of 1s, and the
total of run-lengths all drop sharply after the rearrangement.
The last row shows that total of run-lengths is reduced to
7736, which occupies 21.32% of run-lengths before
rearrangement. This result also indicates that the test-bit-
rearrangement algorithm is able to lengthen long run-lengths,
reduce total of run-lengths, and hence it is a very effective
pretreatment method of test set.

A
ve

ra
ge

 le
ng

th
 λ

Probability p of 0
0.2 0.4 0.6 0.8

50

100

150

200

250

300

350

0

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0909

TABLE II. COMPARISON FOR RUN-LENGTH

Circuit
Test

Set(bit)

Before Test-bit
Rearrangement[5]

After Test-bit
Rearrangement

Runs
of 0

Runs
of 1

Sum of run-
Length

Runs
of 0

Runs
of 1

Sum of run-
Length

s13207 165200 2581 1210 3791 1636 950 2586
s15850 76986 2644 1202 3846 1631 1086 2717
s35932 28208 235 346 581 189 207 396
s38417 164736 5773 4834 10607 4926 3445 8371
s38584 199104 7585 4074 11659 6043 3689 9732
s5378 23754 1237 1001 2238 1115 886 2001
s9234 39273 2347 1212 3559 1623 1119 2742
Total 36281 28545

III. RUN-LENGTH ASSIGNMENT STRATEGY

For the remaining don’t-care bits after test-bit
rearrangement, some effective assignment strategies may
still be exploited to lengthen long run-lengths and to
decrease number of short run-lengths. There are three
assignment techniques [1]- [6]. 1) Fill all of don’t-care bits
with ‘0’ or ‘1’ [1]- [4]. For example, if fill don’t-care bits
with ‘0’, ‘0X011X10X110’ is changed into ‘000110100110’,
which has 5 run-lengths. Else, ‘0X011X10X110’ is changed
into ‘010111101110’, which has 4 run-lengths. 2) Let ‘1’
replace don’t-care bits bounded by 1s from both sides,
otherwise let ‘0’ replace them[5], [6]. For example,
‘0X011X10X110’ is changed into ‘000111100110’, which
has 4 run-lengths. 3) If beginning bit in a test data stream is
a don’t-care bit, all of don’t-care bits before the first
deterministic bit emerging are replaced by value of the
deterministic bit, otherwise don’t-care bits are filled with
value of deterministic bit before them. For example,
‘0X011X10X110’ is changed into ‘000111100110’, which
has 4 run- lengths.

The above three assignment strategies of don’t-care bits
are not ideal. In order to improve compression effect of dual
run-length code schemes, a new assignment strategy of
don’t-care bits is given, which can dynamically fill don’t-
care bits based on requirement of run-lengths in data stream.
If the first bit is a deterministic value during constructing a
run-length, all of don’t-care bits between it and the first
dissimilar determinate bit emerging after it are replaced with
it, otherwise, all of don’t-care bits before the first dissimilar
determinate bit emerging after the first determinate bit are
filled with the first determinate value. For example, test
pattern ‘0X011X10X110’ is changed into ‘000111101110’
according to the proposed assignment strategy, which has 3
run-lengths. The first and the second Xs are filled based on
their previous determinate values, whereas the third X must
be filled with value of the first determinate bit after it since
it is the beginning bit of a new run-length.

As seen above, the proposed strategy can reduce number
of short run-lengths, in particular, for 1 bit run-length.
Naturally the strategy is superior to the three ones
introduced above.

IV. PROPOSED CODE TECHNIQUE AND ITS
DECOMPRESSION CIRCUIT

A. Symmetrical Code

Test set after test-bit rearrangement and run-length
assignment can well be fitted for dual run-length codes,
however, the existing dual run-length code schemes do not
fully take advantage of the characteristic of test set, i.e.,
longer end-run blocks. For this, a symmetrical code is
proposed, and shown in table Ⅲ.

TABLE III SYMMETRY CODE

Group
Length of

Run-
length

Prefix
Tail

Code Word

Runs of 0s Runs of 1s Runs of
0s Runs of 1s

End-run
Block Uncertain

01 10

00 0100 1000

A1
1 01 0101 1001
2 10 0110 1010
3 11 0111 1011

A2
4

001 110
000 001000 110000

… … … …

11 111 001111 110111
…

‘0100’ and ‘1000’ on the first row of the first group in

table Ⅲ are used to represent end-run blocks of 0s and 1s,
respectively, whereas other elements identify different run-
lengths. For example, ‘0101’ indicates 1-bit run-length of 0,
‘110001’ 5-bit run-length of 1. The proposed technique is
named as symmetric code because of the symmetries of the
code words and types of run-lengths.

The third test pattern in table I is used to show encoding
process of the proposed scheme. As illustrated in table IV,
results of EFDR code[5] and the proposed code are given on
the second and third rows, respectively. For the symmetry
code, the first run-length ‘111110’ is encoded with code
word ‘110001’, ‘01’ with code word ‘0101’, ‘10’ with code
word ‘1001’, the remaining run block of 0s with code word
‘0100’.

TABLE IV CODE AND COMPARISON

Pattern after
Rearrangement 11111001100000000000000000000000 32

EFDR Code 11010000100011100111 20
Symmetry Code 110001010110010100 18

As described above, the proposed technique only uses a

4-bit code word to identify end-run blocks without
considering their bit number, and hence it can decrease
amounts of code words. For example, 22 bits of end-run
block (except the tail of previous run-length) in table Ⅳ
need 9-bit code word with EFDR code, whereas only do 4
bits with the symmetrical code. Table Ⅳ shows that the test
pattern is reduced to 20 bits with EFDR code, whereas
leaves 18 bits with symmetric code, saving 2 bits. Therefore,
symmetric code can reduce amount of code words and
heighten their utilization.

B. Decompression Circuit

Decompression circuit of symmetry code includes a finite
state machine (FSM), three counters and a D-flipflop,
shown in Fig. 2. Counter 1 is similar to a counter surplus 3,

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0910

which consists of K+2-bit flipflops (Where K is maximum
number of grouping for a test set) and is used to store tail of
code word. The signal rst1 is high level only when value of
counter 1 is 3. Counter 2 consists of log2K+1-bit flipflops,
which is used to count bit number of prefix so as to control
bit number of tail moved into counter 1. Counter 3 is a
counter module m (m is equal to bit number of a test
pattern.), which can count bit number of each test pattern so
as to determine stop of a test pattern, i.e., stop of an end-run
block. The D-flipflop is used to capture the first letter of
prefix, which can identify type of run-lengths and control
their output.

Principle and working process of counter 1 are introduced
here. For a run-length of 0s or 1s, assume it at the group k,
then its length can be expressed as l=2k+1+Nt-(100)b,
where Nt is binary number of tail of code word. Counter 1
decreases by 1 when the first bit of prefix is received, and
then it does by 1 too and surplus 1 when end signal of the
prefix arrivals. Next, the tails are shifted bitwise into it.
When the tail finishes, its value is 2k+1+Nt. Subsequently,
counter 1 further reduces by 1. If its value is 3 at the time,
rst1 = 1, which indicates beginning of an end-run block.
Otherwise, if it is more than 3, rst1 = 0, which shows
beginning of a run-length.
As illustrated in Fig. 2 and Fig. 3, the decompression circuit
works as follows.

Figure 2. Diagram of decompression

Figure 3. State transition diagram of FSM

1) After initialization, value of counter 1 is 3, and
then let en = 1, the circuit into state s1.

2) Counter 2 counts bit number of prefix after plus 1.
Let counter 1 decrease by 1 and the circuit latch data on the
bit_in. The circuit goes into state s2, and continues to valid
the en.

3) If flag = 0, i.e., the input value is not end signal of
prefix, let counter 2 increase by 1 and the circuit continue
state s2. Otherwise, not only let counter 2 increase by 1, but
also make counter 1 decrease by 1, the circuit into state s3.
Next, counter 2 minus 1, the tail is moved into counter 1
until rst2 = 1. Once again let counter 1 decrease by 1, the
circuit into state s4. At the time, the state order is
determined according to value of the rst1.

4) If rst1 = 0, the circuit enters state s5. Counter 1
minus 1, let valid = 1, contr = 0, output a run-length until
rst1 = 1. Enable the en, contr and valid again, output an
anti-code, and the circuit enters state s1, i.e., transfers to the
step (2).

5) If rst1 = 1, the circuit enters state s6. Let valid = 1,
contr = 0, output a end-run block until rst3 = 1. Enable the
en, and the circuit enters state s1, i.e., transfers to the step
(2).

V. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify compression effect of the proposed scheme,
we present experimental results on test data compression for
several larger ISCAS89 benchmark circuits, as illustrated in
table V. The first and second schemes indicate compression
results using EFDR code before and after test-bit
rearrangement, respectively [5]. The third and forth schemes
show compression effects using the symmetry code before
and after run-length assignment after test-bit rearrangement,
respectively. For the first and second schemes, although they
use the same compression method, the second scheme
obtains very high compression ratios because of using test-
bit rearrangement algorithm. The largest difference of their
compression ratios arrives 14.62%, the smallest also 3.54%.
As far as average value is concerned, the second scheme
raises 9.30%, reduces by 9779 bits, which occupies 30.65%
of volume of the first scheme. This indicates that the
proposed test-bit rearrangement algorithm is successful and
effective in improving compression effect of test data. For
the second and third schemes, symmetry code scheme
obtains very higher compression ratios than EFDR code for
any circuits. Symmetry code scheme raises 0.50% at average
compression ratio, reduces by 497 bits. This indicates that
the proposed Symmetry code scheme possesses higher
advantage than EFDR code. Finally, the third and forth
schemes are analyzed. Symmetry code scheme can obtain
higher compression ratios by using run-length assignment
strategy, and get 10.87% more than the first scheme, 1.57%
the second, 1.06% the third at average compression ratio.
This indicates that the run-length assignment strategy is
effective in improving compression effect of test data. In
addition, run-length assignment strategy has also an
advantage that it only affects value of don’t-care bits in test
set, without increasing test hardware dissipation.

Table VI lists compression ratios of the proposed

-1-0/00000010

flag, rst1, rst2, rst3 / en, shift, dec1, inc, dec2, cp, valid, contr

S0
----/10000000

--0-/11001000

----/10110100

1---/10110000

0---/10010000
-1-0/00000010

-1-1/10000000
S1

S4 S3

S6

S5 S2

--1-/00100000

-0--/00100010

-1--/10000011
-0--/00100010

counter 3

counter 1

counter 2

FSM

dec1 rst1

bit_in

en

rst3 dec2

flag

rst2 inc

out

valid

shft cp

>CP

D

contr
ATE

CUT

ISC

CL

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0911

comprehensive compression scheme and several
representative classic code compression ones. The second -
fourth columns present compression ratios of run-length
code schemes combinating with pattern difference
optimization algorithm (PDO)[1, 2, 5] and hamming
distance treatment (HD)[15], respectively. Besides the
circuit s5378, the proposed scheme obtains the highest
compression ratio than others, and its average value is the
highest, more than 6% of that of others. In addition, the
reason that the proposed scheme can not obtain ideal
compression effect for the circuit s5378 is that volume of its
test set is less than that of others. This fact shows that the
proposed scheme is particularly fit for testing VLSI.

TABLE VI COMPARISON OF COMPRESSION SCHEMES BASED ON TEST SET

TREATMENT(%)

Circuit

Golomb
Code FDR Code EFDR Code

SCCD
[12]

BDSM
[13]

Symmetry
Code PDO

[2]
HD
[15]

PDO
[1]

HD
[15]

PDO
[5]

HD
[15]

s13207 84.33 70.03 87.67 87.47 82.49 86.40 90.39 82.09 91.27
s15850 66.55 62.55 71.95 72.84 68.66 70.43 76.17 66.84 81.62
s38417 58.06 56.09 65.35 66.18 62.02 65.67 67.95 64.05 73.71
s38584 59.61 55.87 64.67 64.79 64.28 63.10 68.64 68.28 74.86
s5378 53.73 52.97 61.32 62.33 53.67 60.03 60.16 - 59.59
s9234 59.85 56.05 60.63 61.06 48.66 57.56 57.61 45.82 65.60

Average 63.69 58.93 68.60 69.11 63.30 67.20 70.15 76.67

Here to discuss testing power consumption of the
proposed scheme. Weighted transition metric(WTM) [2] is
used to estimate scan test power consumption, i.e., given a l-

bit test pattern ljjjj tttt ,2,1, = , where 1,jt is moved in

scan chain before 2,jt , and then,

 −

= +⊕•−= 1

1 1,,)()(
l

i ijijj ttilWTM

Let a test set contain n test patterns, i.e., nttt ,,, 21  ,

and its average and peak scan power consumptions are
estimated as follows:

n

ttil

P

n

j

l

i
ijij

avg


=

−

=
+⊕•−

= 1

1

1
1,,)()(

})()({
1

1
1,,

),,2,1{
max 

−

=
+

∈
⊕•−=

l

i
ijij

nj
peak ttilP



Table Ⅶ lists scan power consumptions of Golomb code
[2] and the proposed scheme, where the percentage
reduction in power was computed as follows:

Reduction in peak power consumption is

100×
−

peak

T
peakpeak

P

PP
.

Reduction in average power consumption is

 100×
−

avg

T
avgavg

P

PP
.

TABLE Ⅶ COMPARISON OF TEST POWER CONSUMPTION

Circuit
Golomb Code[2] Proposed Scheme

Ppeak Pavg
T
peakP

Reduction
(percent)

T
avgP

Reduction
(percent)

s5378 10127 3336 7800 22.98 1359 59.26
s9234 12994 5692 10674 17.85 1601 71.87
s13207 101127 12416 40360 60.10 1946 84.33
s15850 81832 20742 43055 47.39 4483 78.39
s38417 505295 172665 303293 39.98 49168 71.52
s38584 531321 136634 451115 15.10 46869 65.70

Average 33.90 71.85

Table Ⅶ shows that the peak and average powers of the
proposed scheme are significantly less than those of
Golomb code. On average, its peak (average) power is
33.9% (71.85%) less than Golomb code. This indicates the
proposed scheme can lower test power consumption by a
large margin, and has stronger practicability.

VI. CONCLUSION

This paper not only proposes a test set treatment algorithm,
but also gives a code method and a don’t-care bit assignment
strategy. Experimental results and analysis show that the
comprehensive compression scheme obtains higher
compression ratios than other schemes, more than 6% on
average. The proposed scheme also reduces scan test power
consumption, and reaches 71.85% at maximum scan power
reduction. In addition, the proposed scheme has higher
general applicability, especially for large scale integrated
circuits, and meets today's development trends of ICs.
Therefore, the comprehensive compression scheme would be
an ideal option for testing digital ICs with deterministic fault
sets.

REFERENCES
[1] A. Chandra, and K. Chakrabarty, “Test data compression and test

resource partitioning for system-on-a-chip using frequency- directed
run-length (FDR) codes,” IEEE Transactions on Computers, vol. 52,
no. 8, pp. 1076 -1088, Aug. 2003.

[2] A. Chandra, and K. Chakrabarty, “Low-power scan testing and test
data compression for system-on a-chip,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits & Systems, vol. 21, no.
5, pp. 597-604, May 2002.

[3] Y.H. Han, Y.J. Xu, and X.W. Li, “Co-optimization for test data
compression and testing power based on variable-tail code,” Proc. the
5th International Conference on ASIC, pp. 105 – 108, Oct. 2003.

[4] J.H. Feng, and G.L. Li. “A test data compression method for system-
on-a-chip,” Proc. the 4th IEEE International Symposium on
Electronic Design, Test and Applications, pp. 270 – 273, Jan. 2008.

[5] A. H. El-Maleh, “Test data compression for system-on-a-chip using
extended frequency-directed run-length code,” IET Computers &
Digital Techniques, vol. 2, no. 3, pp. 155 – 163, May 2008.

[6] A. Chandra, and K. Chakrabarty, “A unified approach to reduce SOC
test data volume, scan power and testing time,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on.
Vol. 22, no. 3, pp. 352 – 363, march 2003.

[7] P. T. Gonciari, and B. M. Al-Hashimi. “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems，vol. 22,
no. 6, 783- 796, June 2003.

[8] A. Jas, J. Ghosh-Dastidar, N. Mom-Eng，and N. A. Touba, “An
efficient test vector compression scheme using selective Huffman
coding,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 6, pp. 797-806, June 2003.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0912

[9] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal Selective
Huffman Coding for Test-Data Compression,” IEEE Transactions on
Computers，vol. 56, no. 8, pp. 1146 – 1152, June 2007.

[10] A. H. El-Maleh, “An efficient test vector compression technique
based on block merging,” Proc. IEEE International Symposium on
Circuits and Systems, pp. 1447-1450, May 2006.

[11] T. Kim, S. Chun, Y. Kim, M.H. Yang, and S. Kang, “An effective
hybrid test data compression method using scan chain compaction
and dictionary-based scheme,” Proc. Asian Test Symposium, pp. 151
– 156, Nov. 2008.

[12] K. Basu, and P. Mishra, “Test data compression using efficient
bitmask and dictionary selection methods,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 18, no. 9, pp. 1277
– 1286, Sept. 2009.

[13] C.Y. Lin, H.C. Lin, and H.M. Chen. “On Reducing Test Power and
Test Volume by Selective Pattern Compression Schemes,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, Vol.
18 , no. 8, pp. 1220 – 1224, Aug. 2010.

[14] M.X. Yi, H.G. Liang, L. Zhang, and W.F. Zhan, “A Novel X-ploiting
Strategy for Improving Performance of Test Data Compression,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on.Vol.
18, no. 2, pp. 324 – 329, Feb. 2010.

[15] U. S. Mehla, K. S. Dasgupta, and N. M. Devashrayee, “Hamming
distance based reordering and columnwise bit stuffing with difference
vector: A better scheme for test data compression with run length
based codes,” Pro. 23rd International Conference on VLSI Design, pp.
33 – 38, Jan. 2010.

TABLE I PROCESS OF TEST-BIT REARRANGEMENT
Order Original Test Pattern Rearrangement Result Boundary Position Bit Number of Block

1 X00X11XX11XXX0XXX101110111100110 00100111000011111111111111111111 12 20
2 X1X110XX0XXXXXXXX101110101110110 00000001111111111111111111111111 7 25
3 X1XXX0XX01XXXXXXXX10001010001001 11111001100000000000000000000000 9 23

Number abcdefghijklmnopqrstuvwxyz123456 63ywsifjb2ncadeghklmopqrtuvxz145
Sum 96 96 28 68

TABLE V COMPARISON OF COMPRESSION SCHEMES BEFORE AND AFTER TEST-BIT REARRANGEMENT,

AND UNDER RUN-LENGTH ASSIGNMENT (%)

Circuit
Test

Set(bit)

Scheme 1 Scheme 2 Scheme 3 Scheme 4
Code

Words(bits)
Com.
Ratio

Code
Words(bits)

Com.
Ratio

Code
Words(bits)

Com.
Ratio

Code
Words(bits)

Com.
Ratio

s13207 165200 28930 82.49 16853 89.80 14704 91.10 14414 91.27
s15850 76986 24127 68.66 15128 80.35 14700 80.91 14152 81.62
s35932 28208 5415 80.80 3045 89.21 2846 89.91 2808 90.05
s38417 164736 62568 62.02 45566 72.34 45366 72.46 43314 73.71
s38584 199104 71121 64.28 52782 73.49 52482 73.64 50054 74.86
s5378 23754 11006 53.67 10164 57.21 10042 57.73 9598 59.59
s9234 39273 20162 48.66 14421 63.28 14340 63.49 13508 65.60

Average 99609 31904 65.80 22566 75.10 22069 75.61 21121 76.67

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0913

