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Abstract—To cope with increasingly rigorous challenges that 
large scale digital integrated circuit testing is confronted with, 
a comprehensive compression scheme consisting of test-bit 
rearrangement algorithm, run-length assignment strategy and 
symmetrical code is proposed. The presented test-bit 
rearrangement algorithm can fasten don’t-care bits, 0s or 1s in 
every test pattern on one of its end to the greatest extent so as 
to lengthen end-run blocks and decrease number of short run-
lengths. A dynamical don’t-care assignment strategy based on 
run-lengths can be used to specify the remaining don’t-care 
bits after the test-bit rearrangement, which can decrease run-
length splitting and maximize length of run-lengths. The 
symmetrical code benefits from long run-lengths and only uses 
2 4-bit short code words to identify end-run blocks almost as 
long as a test pattern, and hence the utilization ratio of code 
words can be heightened. The presented experiment results 
show that the proposed comprehensive scheme can obtain very 
higher data compression ratios than other compression ones 
published up to now, especially for large scale digital 
integrated circuits, and considerably decrease test power 
dissipations.  

Keywords-Terms—Run-length code, run-length assignment 
symmetrical code, test data compression. 

I.  INTRODUCTION 
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with the continuous improvement of semiconductor 
manufacturing technologies and the rapid development of 
integrated circuits (ICs) design, the density and functional 
complexity of  ICs are further heightened, which increase 
failure probability and naturally enhance amount of test data 
and difficulty of testing them. To solve a series of testing 
questions such as data storage, test pattern exertion and 
response analysis, researchers have proposed combinational 
logic testing, sequential logic testing and design for 
testability, and so on, where the design for testability 
becomes one main research focus and is divided into 
boundary-scan test, self-test and test resource partitioning 
and so on [1]. For test resource partitioning, a precomputed 
test set is compressed using code techniques and is stored in 

automatic test equipments (ATEs). Decode circuit in chip 
decompresses the compressed data from the ATE and applies 
them to ICs during testing. In recent years, there have been 
many classical test resource partition schemes, such as single 
run-length coding [1]- [4], dual run-length coding [5], [6] 
and blocking coding [7]- [14]. 

References [1]-[4] describe a type of code schemes for 
run- lengths of 0, which obtain certain compression ratios. 
References [5] and [6] encode not only run-lengths of 0 but 
also run-lengths of 1, and hence they obtain higher 
compression effect. Blocking code schemes mainly divide 
test data into blocks and compress them in different code 
techniques [7]- [14], several of which [13], [14] emerging 
recently increase compression effect, even exceed [1]-[6]. 

In order to improve compression effects of [1]- [4], 
researchers propose an algorithm of pattern difference 
optimizing [1]- [4], which looks for a pattern sorting order so 
as to make sum of different bits between all adjacent test 
patterns littler. It does help to improve compression ratios of 
[1]- [4], and make them beyond those of [5]- [14]. However, 
its implementation brings sharp increase at the cost of 
decompression hardware, without any positive effect for test 
power reduction [1]- [4]. 

The algorithm does very well in compression ratio for 
single run-length code compression schemes, but it does not 
fit for others. Mehla et al. [15] also proposes a treatment 
technique for test set, which further improves compression 
ratio of run-length code. However, these test set processing 
programs can not fundamentally solve the contradiction 
between test power and compression ratio. 

To fully take advantage of don’t-care bits and high-
quality double-length compression techniques to reduce 
amount of test data, additional hardware overhead, test 
power consumption and so on, it is necessary to probe a 
novel treatment algorithm of test set and a corresponding 
compression technique. This paper proposes a 
comprehensive compression scheme consisting of test-bit-
rearrangement algorithm, run- length assignment strategy 
and symmetrical code. 

Firstly, the test-bit-rearrangement algorithm can fasten as 
many bits of certain deterministic value and don’t-care in 
every pattern as possible on one of its ends so as to increase 
length of end-run blocks (an end-run block is a part of 
continuous same value on one end of a test pattern) and 
decrease number of short run-lengths. The test set after 
treatment is more fitted for dual run-length code schemes. 
Secondly, the run-length assignment strategy introduced can 
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dynamically specify remaining don’t-care bits after test-bit-
rearrangement so as to further reduce short run-lengths and 
lengthen long run-lengths. Finally, symmetrical code 
technique proposed benefits from the test set treatment, 
which can get twice the result with half the effort. One 
reason is that long run-lengths get longer and more, short 
run-lengths less. The other is that bit number of end-run 
block is considerably larger, and even close to that of a test 
pattern. For example, end-run blocks of circuit s35932 from 
ISCAS’89 benchmarks may attain 1762 bits after test set 
treating, 1 bit less compared with bit number of its test 
pattern. Symmetrical code technique only uses a 4-bit code 
word to directly identify end-run blocks without considering 
bit number of end-run blocks. Therefore, symmetrical code 
technique can effectively save number of code words. 

The proposed comprehensive compression scheme has 
several advantages as follows: 1) Test data compression 
ratios are farther improved, which are not only higher than 
those of similar test compression schemes, but also higher 
than those of other types; 2) Transition numbers of test bits 
and test power dissipations are reduced, since a large number 
of same level test bits are put together; 3) The 
comprehensive compression scheme has universal 
applicability, particularly suitable for large scale integrated 
circuit testing. 

II. TEST-BIT-REARRANGEMENT ALGORITHM AND 
ANALYSIS 

A. Description of Test-Bit-Rearrangement Algorithm 

Corresponding test bits in others must be synchronously 
changed when some test bits in one of test patterns are 
moved, since a test set contains a few of test patterns, each 
containing a large number of test bits, and corresponding test 
bits between different test patterns share common inputs or 
outputs. Thus, when some deterministic bits in a test pattern 
are moved to reduce amount of run-lengths and to lengthen 
end-run block, it may increase amount of run-lengths in other 
patterns in return. For this, an algorithm need be studied to 
ensure that new short run-lengths are not increased while a 
large number of test bits are concentrated. Taking into 
account the characteristics of test set and the test process, the 
proposed algorithm adopts fastening a large number of same 
deterministic and don’t-care bits on the right ends of test 
patterns (Suppose that each test pattern displays horizontally). 
Basic idea of the algorithm is as follows. 

As illustrated in procedure 1. First, set a boundary 
position signal (e.g. division) to record number of test bits 
on the left of boundary position, which do not be counted 
and shifted after every cyclic operation. Then, count number 
of 0s and 1s on the right of the boundary position in other 
test patterns except benchmark patterns, and record 
minimum bit amounts between 0s or 1s (indicated by 
‘number’), their types (indicated by ‘flag’) and sums of 0s 
and 1s (indicated by ‘sum_number’), respectively. Next, 
look for a pattern as benchmark one in view of two 
conditions as below: 1) Select a pattern whose number value 
is the minimum. 2) Select a pattern whose sum_number 
value is the maximum when the number values of several 

patterns are equal. After that, for the benchmark pattern, 
those deterministic bits equal to the flag value on the right 
of the boundary position are bit by bit moved in circles to its 
boundary position according to the number value, and 
corresponding bits in other test patterns are synchronously 
moved. Then replace the number value with the 
number+division value, and fill don’t-care bits on the right 
of boundary position of the benchmark pattern with inverse 
code of the flag value. Finally, label the benchmark pattern. 
So the cycle continues, until all patterns are labeled. 

 
Procedure 1: Test-Bit Rearrangement

Begin 
readfile(n, m);            // Read n m-bit test patterns. 
division=0;                 // Let division= 0. 
for(h=0; h<n-1; h++) // Set cycle time with variable

h. 
{ 

counter(division);    // Count and store numbers of 
0s and  

// 1s in unmarked patterns  
// respectively, and store their 

types. 
compare(s);            // Select benchmark pattern, 

and  
// store its order in variable s. 

shift(s);                   // Move test bits of all 
patterns  

// according to parameters of
// benchmark pattern. 

filling(s, division);  //Amend division value in 
view of  

// number value. Fill don’t-
care bits 
// on the right of its boundary 
// position, and label the 
benchmark // pattern. 

} 
End

 
Table I is used to describe basic idea of the algorithm, 

where there are 3 test patterns, each with 32 test bits. The 
first - fifth columns list order, original test pattern, result 
after rearrangement, boundary position and bit number of 
end-run block (i.e. bold font in the third column), 
respectively. In addition, ‘Number’ row marks position 
changing of every test bit before and after rearrangement, 
‘Total’ row total number of bits. 
First, let division = 0, and count numbers of 0s and 1s in all 
patterns. For example, the first test pattern has 8 0s and 14 1s, 
and then, number = 8, sum_number = 22 and flag = 0. 
Similarly, corresponding values for the second and third test 
patterns are 7, 20 and 0,7,18 and 1, respectively. Note that 
the number values of the second and third patterns are equal, 
and smaller than that of the first, whereas the sum_number 
value of the second is largest, so the second pattern is chosen 
as a benchmark pattern. After that, the values from the first 
to sixth positions in the benchmark pattern are rightwards 
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moved 1 bit in cycle, and so do synchronously corresponding 
bits in other patterns until 7 0s in the benchmark pattern are 
all moved close to the boundary position. At last, division=0 
+7 = 7, and don’t-care bits on the right of the seventh bit in 
the benchmark pattern are all replaced by inverse code of the 
flag value, i.e. ‘1’. At the same time, the benchmark pattern 
is labeled so that 0s and 1s in it are not counted during later 
cycles. The division=7 during the second cycle. Number, 
sum_number and flag of the first and the third patterns on the 
right of the seventh bit are 4, 15 and 0, 2, 11 and 1, 
respectively. It is obvious that the third pattern is benchmark 
one. 2 1s on the right of the seventh bit of the benchmark 
pattern are cyclically shifted to the eighth and ninth positions, 
and corresponding bits in other 2 patterns are synchronously 
moved. Amend division=7+2=9, replace don’t-care bits by 
‘0’, and label the benchmark pattern. Treat the last cycle in 
the same method. 

As illustrated in Table I: 1) For each test pattern, number 
of short run-lengths is reduced, long run- lengths lengthened, 
and total number of run-lengths is lowered. For example, the 
second pattern has 7 run-lengths before rearrangement, but 
it has only 2 run-lengths after rearrangement. 2) Bit number 
of end-run block gets higher. For example, end-run block of 
the second pattern has 1 ‘0’ before rearrangement, but does 
25 ‘1’ after rearrangement, close to 32 bits. 3) The test set 
has 96 bits, however, end-run blocks owns 68 bits and 
exceeds half of the total test bits. All the facts show that the 
proposed algorithm should be effective. 

The ‘number’ row in table I shows that every test bit 
could change after the test-bit rearrangement. Therefore, in 
order to apply test patterns to circuits under test(CUT) with 
design for testability, scan chain structure must be 
constructed in view of the test bit order after the 
rearrangement, which does not remarkably increase test 
hardware overhead. 

B. Analysis of Effectiveness 

The test-bit-rearrangement algorithm is mainly fitted for 
dual run-length code schemes, and hence it must be 
effective as long as average length of run-lengths is 
increased after test-bit rearrangement. 

Taking into account arbitrary assignment of don’t-care 
bits, let a memoryless test pattern has m bits, with s 0s, 
where the probability of 0 is p = s / m, the probability of 1 1-
p = (m-s) / m. Thus, the average length of run-lengths is 
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Allow for the s and m-s to be very large. For example, a 
pattern of circuit s13207 in ISCAS89 benchmark has 700 
bits. Hence (1) is amended as follows: 
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Without loss of generality, suppose d 0s are moved to one 
end, since a large number of 0s or 1s are moved to one end 
of test patterns after test-bit rearrangement. At this time, the 
original test data apart from end-run block has s-d 0s, where 
the probability of 0 is p0=(s-d)/(m-d), the probability of 1 

p1=1-p0 = (m-s) / (m-d). So, average length of run-lengths 
after the rearrangement is given by: 
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The s-d may be very large still, although the d is large. 
This is because m is considerably large. Equation (3) is 
approximately written into: 
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Although (2) and (4) are the same in the form, 
probabilities of 1 or 0 are different before and after 
rearrangement. Numbers of 0s and 1s in original test set are 
approximately equal. Without loss of generality, suppose p 
is close to 0.5. A large number of test bits are moved to one 
end after rearrangement, i.e., d is very larger. So p0=(s-
d)/(m-d)< p, may be less than 0.1, even close to 0.0. 
Relation curve of average length of run-lengths and 
probability of 0 is plotted in Fig. 1.  

 
Figure 1.  Relation between probability and average length of run-length 

 
The average length of run-lengths sharply increases, 

while probability of 0 lowers from 0.5 to 0.0. For example, 
p = 0.5, thus λ = 4. p0 = 0.1, thus λ = 90, which shows 
average length of run-lengths is increased by 22 times. For 
the case that d 1s are moved to one end, likewise, average 
length of run-lengths is sharply heightened, while p0 >p ≥ 
0.5. In short, it is effective, since the proposed algorithm can 
sharply heighten average length of run-lengths. 

Table II lists numbers of run-lengths of 7 circuits in 
ISCAS89 benchmark before and after rearrangement. 
Principle of filling don’t-care bits is as follows [5], [6]: Let 
‘1’ replace don’t-care bits bounded by 1s from both sides in 
test data stream, otherwise let ‘0’ replace them. Table II 
shows that numbers of runs of 0s and runs of 1s, and the 
total of run-lengths all drop sharply after the rearrangement. 
The last row shows that total of run-lengths is reduced to 
7736, which occupies 21.32% of run-lengths before 
rearrangement. This result also indicates that the test-bit-
rearrangement algorithm is able to lengthen long run-lengths, 
reduce total of run-lengths, and hence it is a very effective 
pretreatment method of test set. 
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TABLE II.   COMPARISON FOR RUN-LENGTH 

Circuit 
Test 

Set(bit) 

Before Test-bit 
Rearrangement[5] 

After Test-bit 
Rearrangement 

Runs 
of 0 

Runs 
of 1 

Sum of run-
Length 

Runs 
of 0 

Runs 
of 1 

Sum of run-
Length 

s13207 165200 2581 1210 3791 1636 950 2586 
s15850 76986 2644 1202 3846 1631 1086 2717 
s35932 28208 235 346 581 189 207 396 
s38417 164736 5773 4834 10607 4926 3445 8371 
s38584 199104 7585 4074 11659 6043 3689 9732 
s5378 23754 1237 1001 2238 1115 886 2001 
s9234 39273 2347 1212 3559 1623 1119 2742 
Total    36281   28545 

III. RUN-LENGTH ASSIGNMENT STRATEGY 

For the remaining don’t-care bits after test-bit 
rearrangement, some effective assignment strategies may 
still be exploited to lengthen long run-lengths and to 
decrease number of short run-lengths. There are three 
assignment techniques [1]- [6]. 1) Fill all of don’t-care bits 
with ‘0’ or ‘1’ [1]- [4]. For example, if fill don’t-care bits 
with ‘0’, ‘0X011X10X110’ is changed into ‘000110100110’, 
which has 5 run-lengths. Else, ‘0X011X10X110’ is changed 
into ‘010111101110’, which has 4 run-lengths. 2) Let ‘1’ 
replace don’t-care bits bounded by 1s from both sides, 
otherwise let ‘0’ replace them[5], [6]. For example, 
‘0X011X10X110’ is changed into ‘000111100110’, which 
has 4 run-lengths. 3) If beginning bit in a test data stream is 
a don’t-care bit, all of don’t-care bits before the first 
deterministic bit emerging are replaced by value of the 
deterministic bit, otherwise don’t-care bits are filled with 
value of deterministic bit before them. For example, 
‘0X011X10X110’ is changed into ‘000111100110’, which 
has 4 run- lengths. 

The above three assignment strategies of don’t-care bits 
are not ideal. In order to improve compression effect of dual 
run-length code schemes, a new assignment strategy of 
don’t-care bits is given, which can dynamically fill don’t-
care bits based on requirement of run-lengths in data stream. 
If the first bit is a deterministic value during constructing a 
run-length, all of don’t-care bits between it and the first 
dissimilar determinate bit emerging after it are replaced with 
it, otherwise, all of don’t-care bits before the first dissimilar 
determinate bit emerging after the first determinate bit are 
filled with the first determinate value. For example, test 
pattern ‘0X011X10X110’ is changed into ‘000111101110’ 
according to the proposed assignment strategy, which has 3 
run-lengths. The first and the second Xs are filled based on 
their previous determinate values, whereas the third X must 
be filled with value of the first determinate bit after it since 
it is the beginning bit of a new run-length. 

As seen above, the proposed strategy can reduce number 
of short run-lengths, in particular, for 1 bit run-length. 
Naturally the strategy is superior to the three ones 
introduced above.  

IV. PROPOSED CODE TECHNIQUE AND ITS 
DECOMPRESSION CIRCUIT 

A. Symmetrical Code 

Test set after test-bit rearrangement and run-length 
assignment can well be fitted for dual run-length codes, 
however, the existing dual run-length code schemes do not 
fully take advantage of the characteristic of test set, i.e., 
longer end-run blocks. For this, a symmetrical code is 
proposed, and shown in table Ⅲ. 

TABLE III    SYMMETRY CODE 

Group 
Length of 

Run-
length 

Prefix 
Tail 

Code Word

Runs of 0s Runs of 1s Runs of 
0s Runs of 1s

End-run 
Block Uncertain

01 10 

00 0100 1000 

A1 
1 01 0101 1001
2 10 0110 1010
3 11 0111 1011 

A2 
4 

001 110 
000 001000 110000

… … … …

11 111 001111 110111
… 

 
‘0100’ and ‘1000’ on the first row of the first group in 

table Ⅲ are used to represent end-run blocks of 0s and 1s, 
respectively, whereas other elements identify different run-
lengths. For example, ‘0101’ indicates 1-bit run-length of 0, 
‘110001’ 5-bit run-length of 1. The proposed technique is 
named as symmetric code because of the symmetries of the 
code words and types of run-lengths. 

The third test pattern in table I is used to show encoding 
process of the proposed scheme. As illustrated in table IV, 
results of EFDR code[5] and the proposed code are given on 
the second and third rows, respectively. For the symmetry 
code, the first run-length ‘111110’ is encoded with code 
word ‘110001’, ‘01’ with code word ‘0101’, ‘10’ with code 
word ‘1001’, the remaining run block of 0s with code word 
‘0100’.  

TABLE IV   CODE AND COMPARISON 

Pattern after 
Rearrangement 11111001100000000000000000000000 32

EFDR Code 11010000100011100111 20
Symmetry Code 110001010110010100 18

 
As described above, the proposed technique only uses a 

4-bit code word to identify end-run blocks without 
considering their bit number, and hence it can decrease 
amounts of code words. For example, 22 bits of end-run 
block (except the tail of previous run-length) in table Ⅳ 
need 9-bit code word with EFDR code, whereas only do 4 
bits with the symmetrical code. Table Ⅳ shows that the test 
pattern is reduced to 20 bits with EFDR code, whereas 
leaves 18 bits with symmetric code, saving 2 bits. Therefore, 
symmetric code can reduce amount of code words and 
heighten their utilization. 

B. Decompression Circuit 

Decompression circuit of symmetry code includes a finite 
state machine (FSM), three counters and a D-flipflop, 
shown in Fig. 2. Counter 1 is similar to a counter surplus 3, 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0910



which consists of K+2-bit flipflops (Where K is maximum 
number of grouping for a test set) and is used to store tail of 
code word. The signal rst1 is high level only when value of 
counter 1 is 3. Counter 2 consists of log2K+1-bit flipflops, 
which is used to count bit number of prefix so as to control 
bit number of tail moved into counter 1. Counter 3 is a 
counter module m (m is equal to bit number of a test 
pattern.), which can count bit number of each test pattern so 
as to determine stop of a test pattern, i.e., stop of an end-run 
block. The D-flipflop is used to capture the first letter of 
prefix, which can identify type of run-lengths and control 
their output.  

Principle and working process of counter 1 are introduced 
here. For a run-length of 0s or 1s, assume it at the group k, 
then its length can be expressed as l=2k+1+Nt-(100)b, 
where Nt is binary number of tail of code word. Counter 1 
decreases by 1 when the first bit of prefix is received, and 
then it does by 1 too and surplus 1 when end signal of the 
prefix arrivals. Next, the tails are shifted bitwise into it. 
When the tail finishes, its value is 2k+1+Nt. Subsequently, 
counter 1 further reduces by 1. If its value is 3 at the time, 
rst1 = 1, which indicates beginning of an end-run block. 
Otherwise, if it is more than 3, rst1 = 0, which shows 
beginning of a run-length. 
As illustrated in Fig. 2 and Fig. 3, the decompression circuit 
works as follows. 

 

 
Figure 2.  Diagram of decompression 

 
Figure 3.  State transition diagram of FSM 

1) After initialization, value of counter 1 is 3, and 
then let en = 1, the circuit into state s1. 

2) Counter 2 counts bit number of prefix after plus 1. 
Let counter 1 decrease by 1 and the circuit latch data on the 
bit_in. The circuit goes into state s2, and continues to valid 
the en.  

3) If flag = 0, i.e., the input value is not end signal of 
prefix, let counter 2 increase by 1 and the circuit continue 
state s2. Otherwise, not only let counter 2 increase by 1, but 
also make counter 1 decrease by 1, the circuit into state s3. 
Next, counter 2 minus 1, the tail is moved into counter 1 
until rst2 = 1. Once again let counter 1 decrease by 1, the 
circuit into state s4. At the time, the state order is 
determined according to value of the rst1.  

4) If rst1 = 0, the circuit enters state s5. Counter 1 
minus 1, let valid = 1, contr = 0, output a run-length until 
rst1 = 1. Enable the en, contr and valid again, output an 
anti-code, and the circuit enters state s1, i.e., transfers to the 
step (2).  

5) If rst1 = 1, the circuit enters state s6. Let valid = 1, 
contr = 0, output a end-run block until rst3 = 1. Enable the 
en, and the circuit enters state s1, i.e., transfers to the step 
(2). 
 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to verify compression effect of the proposed scheme, 
we present experimental results on test data compression for 
several larger ISCAS89 benchmark circuits, as illustrated in 
table V. The first and second schemes indicate compression 
results using EFDR code before and after test-bit 
rearrangement, respectively [5]. The third and forth schemes 
show compression effects using the symmetry code before 
and after run-length assignment after test-bit rearrangement, 
respectively. For the first and second schemes, although they 
use the same compression method, the second scheme 
obtains very high compression ratios because of using test-
bit rearrangement algorithm. The largest difference of their 
compression ratios arrives 14.62%, the smallest also 3.54%. 
As far as average value is concerned, the second scheme 
raises 9.30%, reduces by 9779 bits, which occupies 30.65% 
of volume of the first scheme. This indicates that the 
proposed test-bit rearrangement algorithm is successful and 
effective in improving compression effect of test data. For 
the second and third schemes, symmetry code scheme 
obtains very higher compression ratios than EFDR code for 
any circuits. Symmetry code scheme raises 0.50% at average 
compression ratio, reduces by 497 bits. This indicates that 
the proposed Symmetry code scheme possesses higher 
advantage than EFDR code. Finally, the third and forth 
schemes are analyzed. Symmetry code scheme can obtain 
higher compression ratios by using run-length assignment 
strategy, and get 10.87% more than the first scheme, 1.57% 
the second, 1.06% the third at average compression ratio. 
This indicates that the run-length assignment strategy is 
effective in improving compression effect of test data. In 
addition, run-length assignment strategy has also an 
advantage that it only affects value of don’t-care bits in test 
set, without increasing test hardware dissipation. 

Table VI lists compression ratios of the proposed 
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comprehensive compression scheme and several 
representative classic code compression ones. The second - 
fourth columns present compression ratios of run-length 
code schemes combinating with pattern difference 
optimization algorithm (PDO)[1, 2, 5] and hamming 
distance treatment (HD)[15], respectively. Besides the 
circuit s5378, the proposed scheme obtains the highest 
compression ratio than others, and its average value is the 
highest, more than 6% of that of others. In addition, the 
reason that the proposed scheme can not obtain ideal 
compression effect for the circuit s5378 is that volume of its 
test set is less than that of others. This fact shows that the 
proposed scheme is particularly fit for testing VLSI. 

 
TABLE VI   COMPARISON OF COMPRESSION SCHEMES BASED ON TEST SET 

TREATMENT(%) 

Circuit 

Golomb 
Code FDR Code EFDR Code 

SCCD 
[12] 

BDSM
[13]

Symmetry 
Code PDO 

[2] 
HD 
[15] 

PDO 
[1] 

HD 
[15] 

PDO
[5]

HD 
[15] 

s13207 84.33 70.03 87.67 87.47 82.49 86.40 90.39 82.09 91.27
s15850 66.55 62.55 71.95 72.84 68.66 70.43 76.17 66.84 81.62
s38417 58.06 56.09 65.35 66.18 62.02 65.67 67.95 64.05 73.71
s38584 59.61 55.87 64.67 64.79 64.28 63.10 68.64 68.28 74.86
s5378 53.73 52.97 61.32 62.33 53.67 60.03 60.16 - 59.59
s9234 59.85 56.05 60.63 61.06 48.66 57.56 57.61 45.82 65.60

Average 63.69 58.93 68.60 69.11 63.30 67.20 70.15  76.67
 

Here to discuss testing power consumption of the 
proposed scheme. Weighted transition metric(WTM) [2] is 
used to estimate scan test power consumption, i.e., given a l-

bit test pattern ljjjj tttt ,2,1, = , where 1,jt is moved in 

scan chain before 2,jt , and then, 
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Let a test set contain n test patterns, i.e., nttt ,,, 21  , 

and its average and peak scan power consumptions are 
estimated as follows: 
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Table Ⅶ lists scan power consumptions of Golomb code 
[2] and the proposed scheme, where the percentage 
reduction in power was computed as follows:  

Reduction in peak power consumption is  

100×
−

peak

T
peakpeak

P

PP
. 

Reduction in average power consumption is 

 100×
−

avg

T
avgavg

P

PP
. 

 

 
TABLE Ⅶ   COMPARISON OF TEST POWER CONSUMPTION 

Circuit
Golomb Code[2] Proposed Scheme

Ppeak Pavg
T
peakP  

Reduction 
(percent) 

T
avgP  

Reduction 
(percent)

s5378 10127 3336 7800 22.98 1359 59.26
s9234 12994 5692 10674 17.85 1601 71.87
s13207 101127 12416 40360 60.10 1946 84.33
s15850 81832 20742 43055 47.39 4483 78.39
s38417 505295 172665 303293 39.98 49168 71.52
s38584 531321 136634 451115 15.10 46869 65.70

Average 33.90  71.85
 

Table Ⅶ shows that the peak and average powers of the 
proposed scheme are significantly less than those of 
Golomb code. On average, its peak (average) power is 
33.9% (71.85%) less than Golomb code. This indicates the 
proposed scheme can lower test power consumption by a 
large margin, and has stronger practicability.  

VI. CONCLUSION 

This paper not only proposes a test set treatment algorithm, 
but also gives a code method and a don’t-care bit assignment 
strategy. Experimental results and analysis show that the 
comprehensive compression scheme obtains higher 
compression ratios than other schemes, more than 6% on 
average. The proposed scheme also reduces scan test power 
consumption, and reaches 71.85% at maximum scan power 
reduction. In addition, the proposed scheme has higher 
general applicability, especially for large scale integrated 
circuits, and meets today's development trends of ICs. 
Therefore, the comprehensive compression scheme would be 
an ideal option for testing digital ICs with deterministic fault 
sets. 
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TABLE I    PROCESS OF TEST-BIT REARRANGEMENT 
Order Original Test Pattern Rearrangement Result Boundary Position Bit Number of Block

1 X00X11XX11XXX0XXX101110111100110 00100111000011111111111111111111 12 20 
2 X1X110XX0XXXXXXXX101110101110110 00000001111111111111111111111111 7 25 
3 X1XXX0XX01XXXXXXXX10001010001001 11111001100000000000000000000000 9 23 

Number abcdefghijklmnopqrstuvwxyz123456 63ywsifjb2ncadeghklmopqrtuvxz145   
Sum 96 96 28 68 

TABLE  V   COMPARISON OF COMPRESSION SCHEMES BEFORE AND AFTER TEST-BIT REARRANGEMENT,  

AND UNDER RUN-LENGTH ASSIGNMENT (%) 

Circuit 
Test 

Set(bit) 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 
Code 

Words(bits) 
Com. 
Ratio

Code 
Words(bits)

Com. 
Ratio 

Code 
Words(bits)

Com. 
Ratio 

Code 
Words(bits) 

Com. 
Ratio 

s13207 165200 28930 82.49 16853 89.80 14704 91.10 14414 91.27 
s15850 76986 24127 68.66 15128 80.35 14700 80.91 14152 81.62 
s35932 28208 5415 80.80 3045 89.21 2846 89.91 2808 90.05 
s38417 164736 62568 62.02 45566 72.34 45366 72.46 43314 73.71 
s38584 199104 71121 64.28 52782 73.49 52482 73.64 50054 74.86 
s5378 23754 11006 53.67 10164 57.21 10042 57.73 9598 59.59 
s9234 39273 20162 48.66 14421 63.28 14340 63.49 13508 65.60 

Average 99609 31904 65.80 22566 75.10 22069 75.61 21121 76.67 
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