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Abstract

For positive parameters a+ and a− the commuting difference operators exp(ia±d/dz)
+ exp(2πz/a∓), acting on meromorphic functions f(z), z = x + iy, are formally
self-adjoint on the Hilbert space H = L2(R, dx). Volkov showed that they admit
joint eigenfunctions. We prove that the joint eigenfunctions for positive eigenvalues
exp(2πp/a∓), p ∈ R, give rise to a unitary transform, thus associating commuting
self-adjoint operators on H to the analytic difference operators.
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1 Introduction

In a recent article [1] Volkov observes that the commuting analytic difference operators

A1 = e−2iπw + eτd/dw, A2 = e−2iπw/τ + ed/dw, (1.1)

admit explicit joint eigenfunctions involving a special function that is a ratio of two dou-
ble gamma functions, introduced and studied by Barnes a century ago [2]. Since the
eigenvalues are given by

E1 = e−2iπλ, E2 = e−2iπλ/τ , (1.2)

he suggests that within a suitable Hilbert space theory the above analytic difference op-
erators (henceforth A∆Os) should be related by

(A1)
1/τ = A2, (1.3)

a relation that makes direct sense only when 1/τ is a positive integer (and which can be
verified to hold true in that case). However, Volkov’s paper is mainly focused on features
of the special function for arguments that are noncommuting operators.

The pertinent special function is often called the double sine function. Independently
of the work by Barnes and later authors on the double sine, we introduced and studied
essentially the same function in [3] and [4]. We dubbed it the hyperbolic gamma function
for reasons explained in [4]. A close relative of the double sine/hyperbolic gamma was also
introduced and studied by Faddeev [5] and Woronowicz [6], who refer to their functions
as quantum dilogarithm and quantum exponential function, resp. We have collected some
features of the hyperbolic gamma function that are important for our present purposes in
Appendix A.

The parameter symmetry of the double sine and its avatars is intimately connected
to Faddeev’s notion of modular double of a quantum group [7], and to the occurrence of
this ‘modular symmetry’ in various quantum integrable models. Besides the A∆O pair
(1.1) at issue, the latter include the sine-Gordon and Liouville quantum field theories, and
the relativistic Toda and Calogero-Moser N -particle systems, cf. e.g. [8, 9, 10, 11] and
references given there.

The principal aim of this paper is to study the Hilbert space theory associated with
A∆O pairs that amount to Volkov’s A∆Os (1.1) for the special case of positive τ . This
case is excluded from consideration in [1], but it is the only case in which we are able
to give the relation (1.3) a precise meaning via the functional calculus for unbounded
self-adjoint operators [12, 13].

To put the subject matter of this paper in a wider context, we point out that to date
there exists no well-developed formalism dealing with the Hilbert space theory of A∆Os.
Important heuristic guidance is provided by the transition from classical to quantum
mechanics via the canonical quantization prescription

p→ −i~d/dx. (1.4)

Assume we start with a real-valued smooth Hamiltonian H(x, p) on R2 that has a real-
analytic dependence on x and a polynomial dependence on exp(νp) with ν real. The
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operator exp(−iν~d/dx) associated to exp(νp) can be easily interpreted as a self-adjoint
operator on the Hilbert space

H ≡ L2(R, dx) (1.5)

via Fourier transformation. The problem to find explicit eigenfunctions for H(x,−i~d/dx)
now leads to consideration of the A∆O A(z,−i~d/dz) on a suitable space of analytic
functions, the exponentials being defined by

(exp(−iν~d/dz)F )(z) = F (z − iν~). (1.6)

The main snag in using the A∆O-eigenfunctions for Hilbert space purposes is that they
are highly non-unique. For the A∆Os just defined this amounts to the following: If F (z)
satisfies the analytic difference equation (henceforth A∆E)

A(z,−i~d/dz)F (z) = λF (z), λ ∈ C, (1.7)

then clearly µ(z)F (z) also solves (1.7) for any µ(z) with period iν~. The question there-
fore arises to single out the ‘simplest’ eigenfunctions, in the hope that the corresponding
eigenfunction transform will yield the desired Hilbert space features (more specifically,
‘orthogonality and completeness’). Even though this hope is borne out by various explicit
examples (including the ones under consideration in this paper), no general theory exists
at present.

In view of this state of affairs, we proceed at first in a somewhat more general setting in
Section 2, studying a rather large class of A∆Os and their eigenfunctions, and specializing
in several steps to the A∆O pairs at issue. Along the way we prove several propositions
bearing on the existence or non-existence of joint eigenfunctions. In Prop. 2.4 we show
in particular that for generic step size parameters joint eigenfunctions do not exist when
the ‘potentials’ are multiplied by a positive coupling constant g 6= 1. We believe that the
wider perspective thus gained may be helpful in further studies of the largely unexplored
intersection of A∆E theory and Hilbert space theory.

On the other hand, for the detailed study of the Hilbert space aspects of the special
A∆O pairs undertaken in Sections 3–5, we only need to know their joint eigenfunctions for
positive eigenvalues. Using the first order A∆Es satisfied by the hyperbolic gamma func-
tion, it is a routine matter to check the joint eigenfunction property directly, so Section 2
might be skipped at first reading.

We proceed to summarize our main results for the A∆O pair

Aδ ≡ exp(ia−δd/dz) + exp(−2πz/aδ), δ = +,−. (1.8)

Here and throughout this paper we choose

a+, a− ∈ (0,∞). (1.9)

As we already described above, the A∆Os A± are at first viewed as linear operators on
the space M of meromorphic functions

f(z) = f(x+ iy), x, y ∈ R. (1.10)

Taking z = x ∈ R in the joint A±-eigenfunctions for positive eigenvalues (which follow
from Prop. 2.4) we then construct a unitary joint eigenfunction transform. It enables us to
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associate to the two commuting operators A± on M two commuting self-adjoint operators
H± on the Hilbert space H (1.5). Since the latter are unitarily equivalent to multiplication
by the functions exp(−2πp/a±) on the Hilbert space

Ĥ ≡ L2(R, dp), (1.11)

it follows in particular that they satisfy the relation

(H−)1/τ = H+, τ ≡ a+/a−, (1.12)

which gives a mathematically precise meaning to (1.3).
In fact, we consider together with the pair (1.8) a second pair, cf. (3.1)–(3.2). This

is because the joint eigenfunction transforms TR and TL associated to the two pairs turn
out to be inversely related (after the spectral representation space Ĥ (1.11) is identified
with H (1.5)). Just as in previous papers (cf. e.g. [14]) we use time-dependent scattering
theory to show isometry of TR and TL. A novel feature here is that the ‘free’ comparison
dynamics for t→ ∞ differs from the one for t→ −∞.

The groundwork for the study of the transforms is laid in Section 3. Their unitarity
and wave operator features are dealt with in Section 4, with Appendix C supplying a
key technical ingredient. Section 5 is concerned with various natural questions that arise
after having shown that the transforms are unitary, entailing that the Hamiltonians are
commuting self-adjoint operators. The main issue is to relate the Hamiltonians and their
domains to that of the sum operator defined on the intersection of the domains of the
pertinent multiplication operator and exponentiated momentum operator. In Appendix B
we collect some properties of the latter in a self-contained setting, but with an eye on their
occurrence in the main text.

2 A class of A∆Os and their eigenfunctions

A huge class of A∆Os with a well-defined action on the space M of meromorphic functions
can be defined via the building block A∆O

(TwF )(z) = F (z − w), F ∈ M, w ∈ C. (2.1)

Specifically, any A∆O of the form

M
∑

j=1

Cj(z)Twj , Cj ∈ M, wj ∈ C, j = 1, . . . ,M, (2.2)

leaves M invariant, so that its eigenvalue problem makes sense. For the A∆Os arising
in the context of integrable systems and quantum groups the translation parameters wj

are far more special, though: They are of the form kw, k ∈ Z, w ∈ C∗. For Tw to admit
a reinterpretation as a self-adjoint operator on the Hilbert space H (1.5), one needs to
require w ∈ iR∗, and so we specialize to this choice. In fact, in this section we only consider
the case of nonnegative multiples, so that we may as well start from

A =
N
∑

n=0

Cn(z)Tina, a > 0, C0, . . . , CN ∈ M. (2.3)
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We proceed to study the eigenvalue problem

AF = αF, F ∈ M, α ∈ C, (2.4)

specializing to the A∆O

Tia + exp(2πz/b), a, b > 0, (2.5)

in several steps. (Observe that the parity transforms of the A∆Os Aδ (1.8) are of the form
(2.5).) First, it should be stressed that if F solves the Nth order A∆E (2.4), then for any
µ in the space Pia, where

Pw ≡ {µ ∈ M | µ(z + w) = µ(z)}, w ∈ C∗, (2.6)

the function µ(z)F (z) solves (2.4) as well. It is therefore crucial to try and find the
‘simplest’ solutions in the infinite-dimensional solution space. In this generality, however,
very little is known about this problem.

Next, we assume that the coefficients are of the form

Cn(z) = Rn(exp(2πz/b)), n = 0, . . . ,N, b > 0, (2.7)

where Rn(w) is rational. Then the A∆O

B =

N
∑

n=0

Rn(exp(2πz/a))Tinb (2.8)

clearly commutes with A, so that one may ask for joint solutions to (2.4) and to

BF = βF, F ∈ M, β ∈ C. (2.9)

In this setting the multiplier ambiguity can be drastically reduced by requiring that the
step size parameters a and b be rationally independent. Indeed, we have

a/b /∈ Q ⇒ Pia ∩ Pib = C, (2.10)

cf. Prop. 2.1 below. Of course, this does not answer the question whether joint solutions
exist.

Clearly, the most accessible case is the one of constant coefficients. Then all exponen-
tials exp(γz), γ ∈ C, are joint solutions, but since both eigenvalues α and β depend on γ,
they cannot be freely chosen. In the simplest case

A = Tia, B = Tib, (2.11)

one obtains

α = exp(−iaγ), β = exp(−ibγ). (2.12)

In particular, A admits any eigenvalue α ∈ C∗ (the case α = 0 clearly yields F = 0). But
even for this simplest choice of A and B it is not immediate whether or not eigenvalue
pairs other than (2.12) are allowed.

To study this, let us start from the choice α = exp(−iaγ), so that all A-eigenfunctions
are of the form exp(γz)µ(z) with µ ∈ Pia. Now we ask whether there exist functions in
this infinite-dimensional solution space that solve (2.9) with β 6= exp(−ibγ). Thus we
should consider the first order A∆E

µ(z − ib)/µ(z) = d, d ∈ C∗. (2.13)
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Proposition 2.1. Let µ ∈ Pia and a/b /∈ Q. Then (2.13) admits no solutions, unless

d = exp(−2πinb/a), n ∈ Z. (2.14)

Moreover, when d is given by (2.14), the only solutions are

µ(z) = c exp(2πnz/a), c ∈ C∗. (2.15)

Proof. Assume µ solves (2.13). Let ℜz = x0 be a line on which µ(z) has no poles. Then
we can write

µ(x0 + iy) =
∑

n∈Z

cn exp(2πiny/a), y ∈ R, (2.16)

with the Fourier coefficients cn having exponential decay as |n| → ∞. From (2.13) we now
deduce

cn exp(−2πinb/a) = dcn, ∀n ∈ Z. (2.17)

Since b/a is irrational, we have

n1 6= n2 ⇒ exp(−2πin1b/a) 6= exp(−2πin2b/a), n1, n2 ∈ Z. (2.18)

Combining this with (2.17), the proposition follows. �

Note that for d = 1 this result amounts to (2.10). The proposition also makes clear
that joint solutions for the special case (2.11) exist only for non-generic eigenvalue pairs

(α, β) = (exp(−iaγ), exp(−ibγ) exp(2πikb/a)), γ ∈ C, k ∈ Z. (2.19)

In general, therefore, one should at best expect that joint solutions to (2.4) and (2.9) exist
for special eigenvalue pairs (α, β).

When the coefficients in the A∆O A (2.3) are not only non-constant, but N is also
greater than 1, very little seems to be known about solutions to the single eigenvalue
problem (2.4). In fact, we are only aware of results for quite special coefficients, which
give rise to ‘reflectionless’ solutions [15, 16]. On the other hand, the first order case
N = 1 is far more accessible, just as for linear ODEs. In particular, specializing again to
coefficients of the form (2.7), the eigenvalue problem (2.4) becomes

[R0(exp(2πz/b)) +R1(exp(2πz/b))Tia]F = αF, α ∈ C. (2.20)

As shown next, it can be solved explicitly in terms of the hyperbolic gamma function, in
this section written as

G(z) = G(a, b; z). (2.21)

(This function and related ones are the subject of Appendix A.)

Proposition 2.2. Assume R1(w) 6= 0 and R0(w) 6= α. Then all solutions to (2.20) are of
the form

F (z) = µ(z) exp[i(2n +M −N)πz2/2ab+ cz]

N
∏

k=1

G(z − δk)/

M
∏

j=1

G(z − γj), (2.22)

with µ ∈ Pia. Moreover, the numbers n ∈ Z,M,N ∈ N and δk, γj ∈ C are uniquely
determined, and c ∈ C is uniquely determined modulo 2π/a.
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Proof. We first rewrite (2.20) as

F (z − ia)

F (z)
= ρα(2πz/b), (2.23)

where

ρα(w) ≡ (α−R0(w))/R1(w) (2.24)

is rational. Thus we can factorize ρα(w) as

ρα(w) = γwn
M
∏

j=1

(w − zj)/

N
∏

k=1

(w − pk), (2.25)

where n ∈ Z,M,N ∈ N, γ, z1, . . . , zM , p1, . . . , pN ∈ C∗ are uniquely determined (provided
zj 6= pk, of course). We can now rewrite (2.23) as

F (z − ia)

F (z)
= η exp[(2n +M −N)πz/b]

∏M
j=1 2 cosh[π(z − αj)/b]

∏N
k=1 2 cosh[π(z − βk)/b]

. (2.26)

The general solution of (2.26) is therefore given by (2.22), with

γj = αj − ia/2, j = 1, . . . ,M, δk = βk − ia/2, k = 1, . . . ,N, (2.27)

cf. Appendix A. �

Using (2.22) it is straightforward to study the question whether among the solutions
to (2.20) there are solutions to the second A∆E

[R0(exp(2πz/a)) +R1(exp(2πz/a))Tib]F = βF, β ∈ C. (2.28)

Indeed, from (2.22) and the G-A∆E (A.4) we have

F (z − ib)

F (z)
=

µ(z − ib)

µ(z)
exp

[ π

2a
(2n +M −N)(2z − ib) − icb

]

×

∏M
j=1 2 cosh[π(z − γj − ib/2)/a]

∏N
k=1 2 cosh[π(z − δk − ib/2)/a]

. (2.29)

When we compare this to (2.28), we see that µ must satisfy an equation of the form

µ(z − ib)

µ(z)
= R(exp(2πz/a)), µ ∈ Pia, (2.30)

with R(w) a rational function whose dependence on α and β is suppressed.

We now focus on the solvability of equations of the form (2.30). In the special case
that R(w) is constant, we have already seen that this constant must take the values (2.14)
for a solution to exist. For non-constant R(w) the following observation is of considerable
help.



260 S N M Ruijsenaars

Proposition 2.3. Assume the function

Q(z) ≡ µ(z − ib)/µ(z), µ ∈ Pia, a/b /∈ Q, (2.31)

has a zero at z = z0. Then there exists k ∈ Z∗ such that Q(z) has a pole at z = z0 + ikb.
Also, if Q(z) has a pole at z = z0, then there exists l ∈ Z∗ such that Q(z) has a zero at
z = z0 + ilb.

Proof. The crux is that point sets of the form {z0 + ima+ inb} with m ∈ Z and n ∈ N
or n ∈ −N are dense on the line ℜz = ℜz0. Therefore µ(z) cannot have zeros or poles in
such point sets. To see how this yields the proposition, suppose Q(z) vanishes at z = z0.
Then µ(z) has a pole at z = z0 and/or a zero at z = z0 − ib.

First assume z0 is a pole of µ(z). Then z0 + ib is a pole of Q(z), unless µ(z) has a
pole at z0 + ib whose multiplicity is at least equal to that of the pole at z0. Repeating
this argument, it easily follows that Q(z) must have a pole at z0 + ikb for some k ∈ N∗.
(Indeed, if this is not the case, then µ(z) has poles at z0 + ikb + ima,∀(k,m) ∈ N∗ × Z,
yielding a contradiction.)

Next assume µ(z) vanishes at z0 − ib. Then z0 − ib is a pole of Q(z), unless µ(z) has a
zero at z0 − 2ib whose multiplicity is at least that of the zero at z0 − ib. Hence it readily
follows that Q(z) has a pole at z0 − ikb for some k ∈ N∗.

Clearly, the assumption thatQ(z) has a pole at z0 leads in the same way to the existence
of a zero at z0 + ilb for some l ∈ Z∗. �

From this proposition it follows in particular that the eigenvalue equations (2.20) and
(2.28) need not have joint solutions for any pair (α, β) ∈ C2. The point is that the function
on the rhs of (2.30) arising from (2.28) need not have pairs of zeros and poles that differ
by imb for some m ∈ Z∗ (modulo ia). This can already be seen from Prop. 2.2 and its
proof, but it is more telling to inspect some simple cases. For example, the choice

R0 = 0, R1(w) = w + 1, a/b /∈ Q, (2.32)

yields a joint eigenvalue problem not admitting any solutions, as can be easily checked by
using Prop. 2.3.

The upshot is that the joint eigenvalue problem is ‘overdetermined’: Generically it will
have no solutions, and even if joint solutions do exist, then for a given eigenvalue α one
should not expect joint solutions to exist for arbitrary β, but only for a countable set of
β’s.

We now turn to the special case

R0(w) = gw, R1(w) = 1, g ∈ (0,∞), a/b /∈ Q, (2.33)

with which the remainder of this section is concerned. For α = 0 the first eigenvalue A∆E
can be written

F (z − ia)

F (z)
= −eλ exp(2πz/b), (2.34)

where we have set

g = eλ, λ ∈ R. (2.35)
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Obviously, it has the general solution

F (z) = µ(z) exp

(

iπz2

ab
+

(

−
π

a
−
π

b
+
iλ

a

)

z

)

, µ ∈ Pia, (2.36)

which implies

F (z − ib)

F (z)
= −

µ(z − ib)

µ(z)
exp((2πz + λb)/a). (2.37)

Comparing this to the second eigenvalue A∆E

F (z − ib)

F (z)
= β − eλ exp(2πz/a), (2.38)

we deduce from Prop. 2.3 that for β 6= 0 there exist no joint solutions.

Choosing next β = 0, we should solve

µ(z − ib)

µ(z)
= exp(λ[1 − b/a]). (2.39)

Thus we get a constraint on λ, cf. (2.13)–(2.14): It must satisfy

exp(λ[1 − b/a]) = exp(2πikb/a), k ∈ Z. (2.40)

Recalling (2.35), we infer k = 0, λ = 0. Thus we need g = 1 for joint solutions to exist.
Combining this with (2.15) and (2.36), we see they are given by

F (z) = c exp

(

iπ

ab
[z2 + i(a+ b)z]

)

, g = 1, α = β = 0, c ∈ C∗. (2.41)

We proceed to consider the case α 6= 0.

Proposition 2.4. The joint eigenvalue problem

(g exp(2πz/b) + Tia)F = exp(2πp/b)F, g ∈ (0,∞), ℑp ∈ (−b/2, b/2], (2.42)

(g exp(2πz/a) + Tib)F = βF, β ∈ C, (2.43)

(with a/b irrational) has no solutions for g 6= 1. For g = 1 it has no solutions unless β is
given by

β = exp(2πpl/a), pl ≡ p− ilb, l ∈ Z, (2.44)

and in that case all solutions are of the form

F (z) = c exp

(

iπ

2ab
[z2 + i(a+ b)z + 2zpl]

)

G(−z + pl − i(a+ b)/2), c ∈ C∗. (2.45)
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Proof. Instead of (2.34) we now get

F (z − ia)

F (z)
= exp(2πp/b) − eλ exp(2πz/b). (2.46)

Rewriting this as

F (z − ia)

F (z)
= 2i cosh

(

π

b

[

z − p+
ib

2
+
λb

2π

])

exp

(

λ

2
+
πz

b
+
πp

b

)

, (2.47)

we obtain the general solution

F (z) = µ(z)
exp

(

iπ
2ab [z

2 + (ia+ ib+ λb/π + 2p)z]
)

G(z − p+ i(a+ b)/2 + λb/2π)
, µ ∈ Pia, (2.48)

to (2.42). This solution yields

F (z − ib)

F (z)
= 2i

µ(z − ib)

µ(z)
cosh

(

π

a

[

z − p+
ia

2
+
λb

2π

])

× exp

(

π

2a

[

2z +
λb

π
+ 2p

])

. (2.49)

In view of (2.43) we should also require

F (z − ib)

F (z)
= β − eλ exp(2πz/a). (2.50)

Demanding equality, we deduce from Prop. 2.3 that for β = 0 no solution µ ∈ Pia exists.
For β 6= 0 we may set

β = exp(2πq/a), (2.51)

and then µ should fulfil

µ(z − ib)

µ(z)
= exp

(

λ

2
−
λb

2a
+
π

a
(q − p)

)

sinh(π[z − q + aλ/2π]/a)

sinh(π[z − p+ bλ/2π]/a)
. (2.52)

Invoking once more Prop. 2.3, we deduce that q must be of the form

q = p−
(b− a)λ

2π
− ilb, l ∈ Z, (2.53)

yielding

µ(z − ib)

µ(z)
= exp(λ[1 − b/a]) exp(−iπlb/a)

sinh(π[z − p+ ilb+ bλ/2π]/a)

sinh(π[z − p+ bλ/2π]/a)
. (2.54)

Consider first the case l > 0. Introducing

µl(z) ≡ exp(πlz/a)/
l
∏

n=1

sinh
(π

a
[z − p+ inb+ bλ/2π]

)

, (2.55)

we get µl ∈ Pia; moreover, defining

µr(z) ≡ µ(z)/µl(z), (2.56)
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it remains to solve

µr(z − ib)

µr(z)
= exp(λ[1 − b/a]), µr ∈ Pia. (2.57)

We have already seen that this entails that λ vanishes and µr(z) is constant, cf. (2.39)–
(2.40). Hence we have q = pl. To verify that the resulting solutions are of the form (2.45),
it suffices to check

G(w + ilb+ i(a+ b)/2)

G(w + i(a+ b)/2)
= ρ

l
∏

n=1

sinh
(π

a
[w + inb]

)

, l ∈ N∗. (2.58)

This is a consequence of the G-A∆E (A.4) (yielding ρ = (2i)l), so (2.45) follows for l > 0.
The case l ≤ 0 can be handled along the same lines. �

We would like to point out that the A∆O on the lhs of (2.42) also leaves the space E of
entire functions invariant. Hence its eigenvalue problem (2.42) is well defined in E . But in
the course of the proof it becomes clear that (2.42) admits no solutions in E . Indeed, this
follows from the zero locations of the multiplier µ(z) ∈ Pia in the general solution (2.48)
to (2.42): since they are ia-periodic, they cannot cancel all of the zeros of the G-function
in (2.48), cf. (A.3).

It is also of interest to observe the relation of the solutions (2.45) to the zero-eigenvalue
solutions (2.41): provided the former are multiplied by a suitable exponential depending
only on pl, they converge to the latter for ℜp → −∞ (by virtue of the G-asymptotics
(A.11)).

To conclude this section we would like to stress that the above ‘no-go’ results hinge on
the positivity of the parameters a and b. (Recall we are requiring this so that the A∆Os
Tima, Tinb,m, n ∈ Z∗, are at least formally self-adjoint.) To explain what is involved
here, let us replace ia and ib by arbitrary numbers 2ω, 2ω′ ∈ C∗ with ω/ω′ /∈ R. Then the
intersection of P2ω and P2ω′ consists of all elliptic functions with periods 2ω and 2ω′, which
should be compared to (2.10). Moreover, using the Weierstrass σ-function σ(ω, ω′; z) it is
easy to construct for any λ ∈ C∗ a meromorphic function µλ(z) such that

µλ(z + 2ω) = µλ(z), µλ(z + 2ω′) = λµλ(z). (2.59)

From this it is easily seen that when a pair of commuting A∆Os

A1 = C1(z)T2ω, A2 = C2(z)T2ω′ , C1, C2 ∈ M, ω/ω′ /∈ R, (2.60)

has a joint eigenfunction for one eigenvalue pair (E0, E
′
0) ∈ C∗2, then there also exist joint

eigenfunctions for all (E,E′) ∈ C∗2, again in sharp contrast to the case ω/ω′ ∈ R.

3 Defining the eigenfunction transforms TR and TL

We now embark on the program of associating commuting self-adjoint operators on the
Hilbert space H (1.5) to the two pairs of A∆Os

ARδ = exp(ia−δd/dz) + exp(−2πz/aδ), δ = +,−, (3.1)
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ALδ = exp(ia−δd/dz) + exp(2πz/aδ), δ = +,−. (3.2)

Replacing the parameters a and b employed in Section 2 by a+ and a−, resp., we deduce
from Prop. 2.4 (flipping signs of z and p) that the joint eigenvalue problem

ARδF = exp(−2πp/aδ)F, p ∈ C, δ = +,−, (3.3)

is solved by functions of the form

cR(p) exp

(

iπ

2a+a−
[z2 − i(a+ + a−)z + 2zp]

)

G(z − p− i(a+ + a−)/2). (3.4)

Likewise, the joint eigenvalue problem

ALδF = exp(2πp/aδ)F, p ∈ C, δ = +,−, (3.5)

is solved by functions of the form

cL(p) exp

(

−iπ

2a+a−
[z2 − i(a+ + a−)z + 2zp]

)

G(z − p− i(a+ + a−)/2). (3.6)

(Using the G-A∆Es (A.1) and (A.4) it is quite easy to check the joint eigenfunction
property directly.)

We now normalize the p-dependence of the constants such that we obtain

(AσδEσ)(z, p) = exp(∓2πp/aδ)Eσ(z, p), p ∈ C, δ = +,−, σ =

{

R

L
, (3.7)

where

ER(z, p) ≡ (α/2π)1/2 exp(iαzp)SR(z − p), α = 2π/a+a−, (3.8)

EL(z, p) ≡ (α/2π)1/2 exp(−iαzp)SL(z − p), (3.9)

and SR and SL are defined by (A.12)–(A.13). In view of the asymptotics (A.14)–(A.15)
we have

Eσ(z, p) =
( α

2π

)1/2
e±iαzp

(

1 +O(e−ρ|ℜz|)
)

, ℜz → ±∞, σ =

{

R

L
, (3.10)

Eσ(z, p) =
( α

2π

)1/2
e±i[2χ−iαaz+α(z2+(p+ia)2)/2]

×
(

1 +O(e−ρ|ℜz|)
)

, ℜz → ∓∞, σ =

{

R

L
, (3.11)

with the bounds uniform for (a+, a−,ℑz, p) in compacts of (0,∞)2 ×R×C. In particular,
choosing p and z real, the eigenfunction ER reduces on the far right to the kernel of the
Fourier transformation

Fα : Ĥ → H, φ(p) 7→
( α

2π

)1/2
∫ ∞

−∞
dpeiαxpφ(p) (3.12)
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from momentum space to position space,

Ĥ = L2(R, dp), H = L2(R, dx), (3.13)

physically speaking. It is convenient (both from a notational and from a conceptual
viewpoint) to distinguish Ĥ and H until further notice. But it is useful to note already at
this stage that when Ĥ and H are identified in the obvious way, then the eigenfunction
EL(x, p) reduces on the far left to the kernel of F∗

α = F−1
α .

We now define the space

C ≡ C∞
0 (R), (3.14)

which may be viewed as a dense subspace of H and Ĥ, and proceed to study the functions

Iσ,φ(z) ≡

∫ ∞

−∞
dpEσ(z, p)φ(p), σ = R,L, φ ∈ C. (3.15)

Since φ has compact support, there exist r+, r− ∈ R such that

supp(φ) ⊂ [r−, r+]. (3.16)

The poles of Eσ(z, p) are located at

z = p− ika+ − ila−, k, l ∈ N, (3.17)

cf. Appendix A. Hence the integral (3.15) is well defined for z in the region

Rφ ≡ {ℑz > 0} ∪ {ℜz < r−} ∪ {ℜz > r+}. (3.18)

Moreover, the function Iσ,φ(z) is analytic in Rφ and satisfies

Iσ,φ(z + ia−δ) + e∓2πz/aδIσ,φ(z) =

∫ ∞

−∞
dpEσ(z, p)e∓2πp/aδφ(p),

z ∈ Rφ, δ = +,−, σ =

{

R

L
, (3.19)

due to the eigenfunction property (3.7) of Eσ.
Next, consider the behavior of Iσ,φ(x + iy), x, y ∈ R, for |x| → ∞. In view of (3.10),

Iσ,φ(x + iy) has Schwartz space decay as x → ∞/ −∞ for σ = R/L, resp. Using (3.11),
(3.16), (3.17) and the Schwarz inequality, we also deduce the bounds

IR,φ(x+ iy) ≤ CR‖φ‖ exp(−αx(y − a)), ∀x ≤ r− − 1, (3.20)

IL,φ(x+ iy) ≤ CL‖φ‖ exp(αx(y − a)), ∀x ≥ r+ + 1, (3.21)

where Cσ can be chosen uniformly for φ satisfying (3.16) and (a+, a−, y) in compacts of
(0,∞)2 × R.

As a final preparation for Lemma 3.1 below, we focus on the behavior for y → 0. The
pole of Eσ(z, p) at z = p is simple with residue

ρσ(p) =
i

2π
exp[±i(χ− αa2/4 + αp2)], σ =

{

R

L
, (3.22)



266 S N M Ruijsenaars

cf. (A.16). Also, letting ℑz decrease, the next pole arises for z = p− ias, cf. (3.17). Thus
the difference function

Dσ(z, p) ≡ Eσ(z, p) − ρσ(p)φ(p)(z − p)−1, p ∈ R, σ = R,L, (3.23)

is analytic for ℑz > −as. Now the comparison function

Cσ,φ(z) ≡

∫ ∞

−∞
dpρσ(p)φ(p)(z − p)−1, (3.24)

belongs to H for y = ℑz 6= 0. Indeed, it is routine to verify

(F−1
α Cσ,φ(· + iy))(p) = ∓2πiθ(±p) exp(−αyp)ψσ(p), ±y > 0, (3.25)

ψσ(p) ≡
( α

2π

)1/2
∫ ∞

−∞
dq exp(−iαpq)ρσ(q)φ(q), (3.26)

(θ denotes the Heaviside function), and the function (3.25) is manifestly in Ĥ. Moreover,
since ψσ(p) is a Schwartz space function, the limits

C±
σ,φ(x) ≡ lim

y→0±
Cσ,φ(x+ iy) (3.27)

exist pointwise and in the strong H-topology, and the resulting functions are smooth and
vanish for |x| → ∞.

Writing now

Iσ,φ(z) =

∫ ∞

−∞
dpDσ(z, p)φ(p) + Cσ,φ(z), (3.28)

the integral yields a function that is analytic in z = x+iy for y > −as. From (3.25)–(3.27)
it then follows that the y → 0± limits exist pointwise, yielding

lim
y→0±

Iσ,φ(x+ iy) =

∫ ∞

−∞
dpDσ(x, p)φ(p) + C±

σ,φ(x) ≡ I±σ,φ(x). (3.29)

Furthermore, we have

I+
σ,φ(x) − I−σ,φ(x) = C+

σ,φ(x) − C−
σ,φ(x) = −2πiρσ(x)φ(x). (3.30)

In the next lemma we collect some of the features of Iσ,φ(z) we have just derived and
obtain a few more.

Lemma 3.1. The function

x 7→ Iσ,φ(x+ iy) =

∫ ∞

−∞
dpEσ(x+ iy, p)φ(p), σ ∈ {R,L}, φ ∈ C, y > 0, (3.31)

belongs to H for all y ∈ (0, a). The limit y → 0+ exists for all x ∈ R and in the H-
topology, yielding a function I+

σ,φ(x) with the following properties. First, it is real-analytic
for x > r+ and x < r− (with (3.16) in force). Second, it has Schwartz space decay when
x→ ∞/−∞ for σ = R/L, resp., while

I+
σ,φ(x) = O(exp[±αax]), x→ ∓∞, σ =

{

R

L
. (3.32)
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Third, it is smooth. Fourth, it satisfies the bound

‖I+
σ,φ‖ < C‖φ‖, (3.33)

with C uniform for φ obeying (3.16) and for (a+, a−) in compacts of (0,∞)2. Fifth, it is
strongly continuous in a+ and a− for (a+, a−) ∈ (0,∞)2.

Proof. The first assertion is clear from the analyticity of Iσ,φ(z) in Rφ (3.18) and the
paragraph containing the bounds (3.20)–(3.21). Since I+

σ,φ(x) coincides with Iσ,φ(z) for
z ∈ (−∞, r−) and z ∈ (r+,∞), the latter paragraph also yields the first two properties of
I+
σ,φ(x) and smoothness for x /∈ [r−, r+]. We have already shown that the limit y → 0+

exists for fixed x, cf. (3.29). Its existence in L2-sense for x outside the interval [r−−1, r++1]
(say) is clear from the features of Iσ,φ(z). For x ∈ [r−−1, r+ +1] it follows by using (3.28)
and recalling the y → 0+ limit (3.27); smoothness of C+

σ,φ(x) also implies smoothness of

I+
σ,φ(x) for x ∈ [r− − 1, r+ + 1].

It remains to demonstrate the last two properties of I+
σ,φ(x). We detail the case σ = R,

the proof for the case σ = L being similar. To prove (3.33), we split up the integral of
|I+

R,φ(x)|2 over R into integrals over (−∞, r− − 1), [r− − 1, r+ + 1] and (r+ + 1,∞), and

show that each of the three integrals is majorized by C‖φ‖2, with C of the asserted form.

To bound the first integral we use (3.20) with y = 0, yielding an estimate of the
announced type. To handle the second one we use (3.29), obtaining

∫ r++1

r−−1
dx|I+

R,φ(x)|2 ≤

∫ r++1

r−−1
dx

∣

∣

∣

∣

∫ r+

r−

dpDR(x, p)φ(p)

∣

∣

∣

∣

2

+

∫ r++1

r−−1
dx|C+

R,φ(x)|2. (3.34)

The first integral on the rhs is majorized by ‖φ‖2 times the maximum of |DR(x, p)|2 for
(x, p) in the square [r− − 1, r+ + 1] × [r−, r+], which is of the required form. The second
one is bounded by ‖φ‖2, as readily follows from (3.22)–(3.27).

To handle the third integral we invoke the bound (3.10). It implies

∫ ∞

r++1
dx|I+

R,φ(x)|2 ≤

∫ ∞

r++1
dx|(Fαφ)(x)|2 +

∫ ∞

r++1
dx

∣

∣

∣

∣

∫ r+

r−

dpO(e−ρx)φ(p)

∣

∣

∣

∣

2

. (3.35)

The first integral on the rhs is bounded by ‖φ‖2, since Fα is unitary. In the second integral
the uniformity properties of the remainder function O(exp(−ρx)) in (3.10) imply a bound
C‖φ‖2 of the required form too. Hence we have now proved (3.33).

Finally, the strong continuity of I+
σ,φ(x) in a+ and a− can be deduced from the con-

tinuity of Eσ(x, p) in (a+, a−) and dominated convergence. More in detail, the pertinent
dominating function can be chosen uniformly for (a+, a−) in compacts of (0,∞)2, since
the error terms in (3.10)–(3.11) have this uniformity feature. Furthermore, when (3.10)
is invoked to handle the relevant intervals, the strong continuity of Fα (3.12) in α for
α ∈ (0,∞) should be used. �

We are now prepared to define transforms TR and TL by

Tσ : C ⊂ Ĥ → H, φ(p) 7→ I+
σ,φ(x) =

∫ ∞

−∞
dpEσ(x+ i0, p)φ(p), σ = R,L, (3.36)
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and Hamiltonians Hσ± on

Pσ ≡ TσC, (3.37)

by setting

HσδTσφ ≡ TσMσδφ, φ ∈ C, δ = +,−, (3.38)

where Mσδ denotes the multiplication operators given by

(Mσδφ)(p) ≡ exp(∓2πp/aδ)φ(p), δ = +,−, σ =

{

R

L
. (3.39)

To verify that the definition (3.38) makes sense, note first that Mσδ leaves C invariant.
Next, assume Tσφ = 0. Then we have in particular I+

σ,φ(x) = 0 in Rφ (3.18). This implies
that the lhs of (3.19) vanishes, entailing TσMσδφ = 0. Hence (3.38) indeed gives rise to
well-defined linear operators from Pσ to H.

From (3.19) we deduce

(HσδI
+
σ,φ)(x) = Iσ,φ(x+ ia−δ) + exp(∓αa−δx)I

+
σ,φ(x), σ =

{

R

L
. (3.40)

Although this shows that the Hamiltonian action corresponds to the A∆O action (recall
(3.1)–(3.2)), it should be stressed that none of the functions I+

σ,φ extends to a meromorphic
function (except when φ = 0 of course). Indeed, this is clear from (3.30).

To proceed, we point out that the two functions on the rhs of (3.40) belong to H,
provided that a+ 6= a− and the Hamiltonian with the smallest step size as is chosen.
Indeed, in that case Iσ,φ(x + ias) belongs to H by virtue of Lemma 3.1. Since the lhs of
(3.40) belongs to H, also the second function on the rhs is in H. But it is more telling to
deduce this directly from the bound (3.32).

From the latter bound it is plausible that the two functions are not in H for the
Hamiltonian with the largest step size al. (We cannot prove this in general, but from
Prop. 5.2 it follows that there do exist φ ∈ C for which the two summands are not in H.)
In view of this different behavior, it is expedient to work from now on with Hamiltonians
Hσs and Hσl corresponding to the small and large step size as and al, resp.

We are now in the position to make contact with the results in Appendix B. Indeed,
from the domain characterization in Lemma B.2 and the properties of Iσ,φ(z) established
above it is evident that we have

I+
σ,φ(x) ∈ D(E(as)), as < al, (3.41)

cf. (B.3). Moreover, as we already pointed out, the bound (3.32) entails

I+
σ,φ(x) ∈ D(M(∓αas)), as < al, σ =

{

R

L
. (3.42)

Therefore we have

Pσ ⊂ D(S(as,∓αas)), as < al, σ =

{

R

L
, (3.43)

and

Hσs = S(as,∓αas) ↾ Pσ, as < al, σ =

{

R

L
. (3.44)

It is now easy to prove the following lemma.
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Lemma 3.2. The operator Hσs is symmetric.

Proof. On account of (3.44), Hσs equals the restriction of a symmetric operator to Pσ,
provided that as < al. Thus we have

(Tσφ1,TσMσsφ2) = (TσMσsφ1,Tσφ2), ∀φ1, φ2 ∈ C. (3.45)

Now Mσsφ is strongly continuous in a+ and a−. Due to the fifth property in Lemma 3.1,
the same is true for TσMσsφ and Tσφ. Thus we can let as converge to al, obtaining (3.45)
for as = al. �

Later we will show that Hσl is symmetric too. For the moment, however, we have not
even shown that the Hamiltonians are densely defined. To prove directly that Pσ is dense
seems hard at this point. Denseness will be a corollary of our results concerning scatter-
ing theory in the next section. We conclude this section by introducing an interacting
dynamics (unitary one-parameter group on H) that will serve as the starting point for
time-dependent scattering theory.

To this end we need a property of Pσ that easily follows from the bound (3.33); specif-
ically, all vectors in Pσ are analytic vectors for Hσs. Indeed, from its definition it is clear
that Hσs leaves Pσ invariant, and we have

‖Hn
σsTσφ‖ = ‖TσM

n
σsφ‖ ≤ Ccn‖φ‖, φ ∈ C, n ∈ N, (3.46)

with C and c depending only on r− and r+, cf. (3.16).

Since Pσ consists of analytic vectors for Hσs and is left invariant, and since Hσs is
symmetric on Pσ (as shown in the previous lemma), it follows from Nelson’s analytic
vector theorem that Hσs is essentially self-adjoint on Pσ. Denoting the self-adjoint closure
again by Hσs, we obtain a unitary one-parameter group exp(−itHσs), t ∈ R, on the closure
of Pσ. Since we have not yet shown that the latter equals H, we extend Hσs provisionally
to a self-adjoint operator on H by choosing it equal to an arbitrary bounded self-adjoint
operator on the orthogonal complement of Pσ .

4 Scattering theory and unitarity of TR and TL

From the definition of the unitary one-parameter group exp(−itHσs) just given it is clear
that it satisfies the intertwining relation

exp(−itHσs)Tσφ = Tσ exp(−itMσs)φ, φ ∈ C, (4.1)

cf. (3.38)–(3.39) with aδ = al. At this point we have not yet shown that Tσ is bounded
and that Pσ is dense in H. In this section we prove in particular that these two properties
hold true. We are going to make use of time-dependent scattering theory [18]. In order
to avoid the repeated use of an identification operator, we henceforth identify Ĥ with H
in the natural way.

It is a remarkable feature of the ‘interacting’ evolution exp(−itHσs) that it resembles
two distinct ‘free’ evolutions for t → ±∞, in the sense that the corresponding wave
operators exist. The following lemma contains the key relations implying existence. It
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makes use of the self-adjoint operator M(η) introduced in Appendix B and of the unitary
multiplication operator mα defined by

(mαf)(x) ≡ exp(−iπ/4 − 2iχ+ iαx2)f(x). (4.2)

(Recall χ is given by (A.10).)

Lemma 4.1. For all φ ∈ C and c > 0 we have

lim
t→−∞

‖(TR −Fα) exp(−itM(−c))φ‖ = 0, (4.3)

lim
t→∞

‖(TR −mα) exp(−itM(−c))φ‖ = 0, (4.4)

lim
t→−∞

‖(TL −m∗
α) exp(−itM(c))φ‖ = 0, (4.5)

lim
t→∞

‖(TL −F∗
α) exp(−itM(c))φ‖ = 0. (4.6)

Proof. We only give the proofs of (4.3) and (4.4), as the limits (4.5) and (4.6) can be
handled by making suitable sign changes. We assume from now on that φ satisfies (3.16).

To prove (4.3) we introduce

J (z, p) ≡ [ER(z, p) − (α/2π)1/2 exp(iαzp)] exp(itω(p))φ(p), (4.7)

ω(p) ≡ − exp(−cp), (4.8)

and write

‖(TR −Fα)e−itM(−c)φ‖2 =

∫ ∞

−∞
dx

∣

∣

∣

∣

∫ r+

r−

dpJ (x+ i0, p)

∣

∣

∣

∣

2

. (4.9)

We now split up the x-integral into integrals over (−∞, r− − 1), [r− − 1, r+ + 1], and
(r+ + 1,∞), obtaining three summands I−, I0, and I+, resp. To estimate I− we first use

∣

∣

∣

∣

∫ r+

r−

dpJ (x, p)

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∫ r+

r−

dpER(x, p) exp(itω(p))φ(p)

∣

∣

∣

∣

2

+
α

2π

∣

∣

∣

∣

∫ r+

r−

dp exp(iαxp+ itω(p))φ(p)

∣

∣

∣

∣

2

. (4.10)

In the contribution
∫ r−−1

−∞
dx

∫ r+

r−

dp1

∫ r+

r−

dp2φ(p1)φ(p2)ER(x, p1)ER(x, p2) exp(it[ω(p1) − ω(p2)])(4.11)

of the first term to I− we now change variables

pj = −c−1 ln vj ⇒ ω(pj) = −vj, j = 1, 2. (4.12)

In view of the uniform exponential decay of ER(x, p) as x→ −∞ (cf. (3.11)), the integrand
belongs to L1(R3, dxdv1dv2). Hence the Riemann-Lebesgue lemma applies, yielding limit 0
for t→ −∞. In the second term on the rhs of (4.10) we use the stationary phase formula

exp(iαxp+ itω(p)) =
∂p exp(iαxp+ itω(p))

i(αx− ctω(p))
, (4.13)
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to deduce that its contribution to I− also yields limit 0 for t → −∞. Hence I− vanishes
for t→ −∞.

Next we invoke (3.10), the variable change (4.12) and the Riemann-Lebesgue lemma to
infer that I+ vanishes for t → −∞. Turning to I0, we employ again the estimate (4.10)
(with x → x + i0). Then we invoke once more the stationary phase formula (4.13) to
conclude that the contribution to I0 from the second term on the rhs of (4.10) vanishes
for t→ −∞. Thus we are left with

∫ r++1

r−−1
dx

∣

∣

∣

∣

∫ r+

r−

dpER(x+ i0, p) exp(itω(p))φ(p)

∣

∣

∣

∣

2

. (4.14)

To control this term we use the estimate (recall (3.23))

∣

∣

∣

∣

∫ r+

r−

dpER(x+ i0, p)eitω(p)φ(p)

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∫ r+

r−

dpDR(x, p)eitω(p)φ(p)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫ r+

r−

dp
ρR(p)

x+ i0 − p
eitω(p)φ(p)

∣

∣

∣

∣

2

. (4.15)

In the contribution to I0 from the first term we change variables using (4.12), and invoke
the Riemann-Lebesgue lemma to get limit 0 for t → −∞. To treat the contribution from
the second term we choose r such that

[r− − 1, r+ + 1] ⊂ [−r, r], (4.16)

and set ψ(x) = ρR(x)φ(x). Then the assumptions of Lemma C.1 are satisfied, so we may
use (C.34) with s replaced by −t to deduce that the second term also yields a vanishing
contribution for t→ −∞. As a result we have now proved (4.3).

The proof of (4.4) proceeds along similar lines. Thus we first write

‖(TR −mα)e−itM(−c)φ‖2 = K− +K+ +K0, (4.17)

with K−, K+ and K0 defined by

∫ r−−1

−∞
dx

∣

∣

∣

∣

∫ r+

r−

dpER(x, p) exp(itω(p))φ(p)

∣

∣

∣

∣

2

, (4.18)

∫ ∞

r++1
dx

∣

∣

∣

∣

∫ r+

r−

dpER(x, p) exp(itω(p))φ(p)

∣

∣

∣

∣

2

, (4.19)

∫ r++1

r−−1
dx

∣

∣

∣

∣

∫ r+

r−

dpER(x+ i0, p) exp(itω(p))φ(p) −mα(x) exp(itω(x))φ(x)

∣

∣

∣

∣

2

. (4.20)

respectively. Since K− is of the form (4.11), it can be treated as before, yielding limit 0
for t→ ∞. For K+ we use

∣

∣

∣

∣

∫ r+

r−

dpER(x, p)eitω(p)φ(p)

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∫ r+

r−

dp
(

ER(x, p) − (α/2π)1/2eiaxp
)

eitω(p)φ(p)

∣

∣

∣

∣

2

+
α

2π

∣

∣

∣

∣

∫ r+

r−

dpeiαxpeitω(p)φ(p)

∣

∣

∣

∣

2

. (4.21)
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Invoking (3.10) we conclude as before from the Riemann-Lebesgue lemma that the first
term yields vanishing contribution for t → ∞. To verify that the same is true for the
second term, the stationary phase formula (4.13) can again be used.

It remains to considerK0. Just as in (4.15) we use (3.23), obtaining an integral involving
DR(x, p), whose contribution vanishes for t→ ∞. The second contribution reads

∫ r++1

r−−1
dx

∣

∣

∣

∣

∫ r+

r−

dp
ρR(p)

x+ i0 − p
eitω(p)φ(p) −mα(x)eitω(x)φ(x)

∣

∣

∣

∣

2

. (4.22)

Now we see from (4.2), (A.10) and (3.22) that we have

mα(x) = −2iπρR(x). (4.23)

From (C.35) we therefore infer that the t → ∞ limit of (4.22) vanishes, concluding the
proof of (4.4). �

Our next aim is to obtain wave operators for the interacting evolutions exp(−itHσs), σ =
R,L, by using Lemma 4.1. To this end we choose c = αas in (4.3)–(4.6). Now we recall
(B.5)–(B.7) and note the relations

Fα = SαF = FS∗
α, (4.24)

cf. (3.12) and (B.10). Using also (B.13) we deduce

exp(−itE(as)) = F∗
α exp(−itM(αas))Fα, (4.25)

and the well-known relations

F2
α = F∗2

α = P (4.26)

(cf. (B.9)) yield

exp(−itE(as)) = Fα exp(−itM(−αas))F
∗
α. (4.27)

The three unitary one-parameter groups occurring in (4.25) and (4.27) now serve as the
free comparison dynamics for exp(−itHRs) and exp(−itHLs), in the precise sense specified
next.

Corollary 4.2. We have

s · lim
t→−∞

exp(itHRs) exp(−itE(as)) = TRF
∗
α, (4.28)

s · lim
t→∞

exp(itHRs) exp(−itM(−αas)) = TRm
∗
α, (4.29)

s · lim
t→−∞

exp(itHLs) exp(−itM(αas)) = TLmα, (4.30)

s · lim
t→∞

exp(itHLs) exp(−itE(as)) = TLFα, (4.31)

and the operators TR and TL are isometric.
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Proof. From (4.1) and (4.27) we have

‖(TR − eitHRse−itE(as)Fα)φ‖ = ‖(TR −Fα)e−itM(−αas)φ‖, ∀φ ∈ C. (4.32)

By (4.3) this vanishes for t→ −∞. This implies

‖TRφ‖ = lim
t→−∞

‖eitHRse−itE(as)Fαφ‖ = ‖φ‖, ∀φ ∈ C. (4.33)

Hence TR is isometric, and (4.28) also follows. Likewise, from (4.1) and (4.25) we get

‖(TL − eitHLse−itE(as)F∗
α)φ‖ = ‖(TL −F∗

α)e−itM(αas)φ‖, (4.34)

so by (4.6) we get limit 0 for t → ∞. Thus isometry of TL and (4.31) follow.
To prove (4.29) we use (4.1) once more, obtaining

‖(TRm
∗
α − eitHRse−itM(−αs))mαφ‖ = ‖(TR −mα)e−itM(−αas)φ‖. (4.35)

This has limit 0 for t→ ∞ in view of (4.4), yielding (4.29). Similarly, (4.30) follows from

‖(TLmα − eitHLse−itM(αas))m∗
αφ‖ = ‖(TL −m∗

α)e−itM(αas)φ‖, (4.36)

by using (4.5). �

Now that the isometry of the joint eigenfunction transforms TR and TL has been es-
tablished, we reconsider their kernels. Combining the definitions (3.8)–(3.9) and (A.12)–
(A.13) with the relation

G(a+, a−; z) = G(a+, a−;−z), a+, a− > 0, z ∈ C (4.37)

(which follows from (A.2)), we deduce not only the relation

ER(x, x′) = EL(x′, x), x, x′ ∈ R, x 6= x′, (4.38)

but also that for all φ,ψ ∈ C we have
∫ ∞

−∞
dxφ(x)

(
∫ ∞

−∞
dx′ER(x+ i0, x′)ψ(x′)

)

=

∫ ∞

−∞
dx′
(
∫ ∞

−∞
dxEL(x′ + i0, x)φ(x)

)−

ψ(x′). (4.39)

This can be rewritten as

(φ,TRψ) = (TLφ,ψ), ∀φ,ψ ∈ C. (4.40)

We are now prepared for the following theorem, which we view as the principal result of
this paper.

Theorem 4.3. The transforms TR and TL (defined by (3.36)) are unitary operators related
by

TL = T ∗
R . (4.41)

They are strongly continuous in a+ and a+ for (a+, a−) ∈ (0,∞)2. The Hamiltonians
Hσ± are densely defined and essentially self-adjoint on Pσ, σ = R,L. Their closures are
commuting self-adjoint operators, related by

(Hσ+)a+/a− = Hσ−, σ = R,L. (4.42)

With Hσs replaced by Hσδ and as by a−δ, the wave operator relations (4.28)–(4.31) hold
true for δ = + and for δ = −.
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Proof. Since C is dense and the transforms are isometries by Corollary 4.2, their uni-
tarity and inverse relation (4.41) easily follow from (4.40). Recalling that Tσ is strongly
continuous in (a+, a−) for all φ ∈ C (by the last assertion of Lemma 3.1), it follows that
Tσ(a+, a−) is a strongly continuous family of unitaries.

Turning to the Hamiltonians Hσδ , we first note unitarity implies that Pσ is dense in H,
and that we have

Hσδf = TσMσδT
∗

σ f, ∀f ∈ Pσ, δ = +,−, (4.43)

cf. (3.38)–(3.39). Also, since C is a core for Mσ±, it follows that Pσ is a core for the
Hamiltonians Hσ± and that their closures (denoted again Hσ+ and Hσ−) commute in the
usual sense of unbounded self-adjoint operators. Moreover, Hσ+ and Hσ− are related by
(4.42), since Mσ+ and Mσ− are manifestly related in the same fashion, cf. (3.39). Finally,
using Lemma 4.1 with c equal to αal, we readily obtain the limit relations of Corollary 4.2
for the Hamiltonians with the largest step size al too. �

5 Further developments

Even though Theorem 4.3 yields a rather complete picture of the Hilbert space status of
the transforms and Hamiltonians, it leaves some natural questions open. Furthermore, a
few conclusions of interest can be drawn from it that are not immediate. This final section
is devoted to these questions and conclusions. We should mention at the outset that in
the process we arrive at some further questions we are not able to answer.

First, now that we have Theorem 4.3 available, we should reconsider domain issues.
Throughout this section Hσδ denotes the self-adjoint closure of Hσδ as defined initially on
the dense subspace Pσ, and D(Hσδ) denotes its definition domain. Recall also that the
sum operator S(ν, η) is defined and studied in Appendix B.

Proposition 5.1. We have

D(S(aδ ,∓αaδ)) ⊂ D(Hσδ), δ = +,−, σ =

{

R

L
, (5.1)

Hσδ ↾ D(S(aδ,∓αaδ)) = S(aδ,∓αaδ), δ = +,−, σ =

{

R

L
. (5.2)

Next, assume as < al. Then Q (B.14) is a core for Hσs, and we have

D(Hσs) = D(S(as,∓αas)), Hσs = S(as,∓αas), σ =

{

R

L
. (5.3)

Proof. We only prove the assertions for σ = L, the proof for σ = R being essentially
the same. Let f ∈ Q and g ∈ PL. Then we have by (3.40)

(f,HLδg) =

∫ ∞

−∞
dxf(x)(g(x + ia−δ) + exp(αa−δx)g(x)). (5.4)
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In view of the properties of g(z) for ℑz ∈ [0, a−δ ], we can now shift contours in the first
term, which yields

∫ ∞

−∞
dx (f∗(x− ia−δ) + exp(αa−δx)f

∗(x)) g(x), f∗(z) ≡ f(z). (5.5)

Hence we obtain

(f,HLδg) = (S(a−δ, αa−δ)f, g), f ∈ Q, ∀g ∈ PL. (5.6)

Since PL is a core for HLδ, we deduce that Q belongs to D(HLδ) and that the action of
HLδ on Q coincides with the action of S(a−δ, αa−δ). In view of Lemma B.3 this implies
(5.1) and (5.2).

Now assume as < al. We have already seen that HLs coincides with S(as, αas) on PL,
cf. (3.44). From Theorem 4.3 we know that PL is a core for HLs, so that the relations (5.3)
follow from Lemma B.4. The core property of Q for HLs is then clear from Lemma B.3.
�

It should be recalled at this point that the functions in Pσ do not extend to meromorphic
functions, cf. (3.30). But of course Q consists of meromorphic (even entire) functions. In
view of (5.2) the action of the four Hamiltonians Hσδ on Q coincides with the (restriction
of the) action of the A∆Os Aσδ . This implies in particular the A∆O identities

a+/a− ∈ N∗ ⇒ (Aσ+)a+/a− = Aσ−, σ = R,L. (5.7)

(Indeed, the difference of the A∆Os occurring in this formula vanishes on Q due to (4.42),
and it is easy to see that an A∆O annihilating Q vanishes identically.) Admittedly, this
way to prove the identities (5.7) is not exactly the simplest one.

An obvious question that arises next is whether Q is also a core for the Hamiltonians
HRl and HLl. In view of (5.1)–(5.2) this is equivalent to Q being a core for S(al,±αal),
and due to Lemma B.3 this is also equivalent to essential self-adjointness of S(al,±αal)
on its domain (B.53). We leave this question unanswered for the special case as = al, just
as we leave the question open whether S(al,±αal) is closed for the special cases

exp(iπal/as) = −1, (5.8)

cf. Lemma B.4. But we do answer the core question for as < al.

Proposition 5.2. Assume as < al. Then Q is not a core for Hσl. Moreover, we have

Pσ * D(E(al)), Pσ * D(M(∓αal)), σ =

{

R

L
. (5.9)

Proof. We show this for σ = L, the proof for σ = R being similar. We first prove
that the second assertion follows from the first one. Indeed, assuming Q is not a core
for HLl, suppose PL is a subspace of D(E(al)). By (3.40) PL is then also a subspace of
D(M(αal)), hence of D(S(al, αal)). In view of (5.2) it now follows that Q is a core for
HLl, a contradiction. Likewise, if PL were a subspace of D(M(αal)), then by (3.40) it
would be a subspace of D(E(al)) as well, yielding again a contradiction.

It remains to prove that Q is not a core for HLl. Defining

v ≡ exp(2πiρ/al), ρ ∈ (0, as/2), (5.10)
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we obtain ℑv > 0. Hence we need only show that the subspace (HLl − v)Q is not dense in
H. To this end we proceed to define a nonzero vector ψv that is orthogonal to (HLl −v)Q.

Consider the function

ψv(z) ≡ µρ(z)EL(z, iρ), (5.11)

where

µρ(z) ≡ exp(2πz/al) − v ∈ Pial
. (5.12)

Recalling (3.7) we obtain

(ALlψv)(z) = vψv(z). (5.13)

Since we have as < al and µρ(z) takes out the simple pole of G(z − iρ− ia) at z = iρ, the
function ψv(z) is analytic for ℑz ∈ [0, al]. On account of (3.10)–(3.11) it also satisfies

ψv(z) = O(exp(ραℜz)), ℜz → −∞, (5.14)

ψv(z) = O(exp(α[as − a+ ℑz]ℜz)), ℜz → ∞, (5.15)

where the bounds are uniform for (a+, a−,ℑz) in compacts of (0,∞)2 × R. This implies
in particular that ψv(x) has exponential decay for x→ ±∞, so that ψv ∈ H.

Next, choosing f ∈ Q, consider

((HLl − v)f, ψv) =

∫ ∞

−∞
dx(f∗(x− ial) + exp(αalx)f

∗(x) − vf∗(x))ψv(x). (5.16)

Shifting contours in the first term, we see this equals
∫ ∞

−∞
dxf(x)(ψv(x+ ial) + exp(αalx)ψv(x) − vψv(x)). (5.17)

By (5.13) the function in brackets vanishes. Therefore ψv is orthogonal to (HLl − v)Q, as
announced. �

From this proposition we see that the operators S(al,∓αal), al > as, admit self-adjoint
extensions that differ from the self-adjoint operators Hσl, σ = R,L. It would be of interest
to obtain more information on this, but we do not pursue this here. We do add one
observation, though. Assume the deficiency index is finite. (This is very likely the case.)
Then the self-adjoint extension Hσl is the only one one that commutes with Hσs. Indeed,
it is not difficult to deduce this from the spectral characteristics of the Cayley transform
of Hσs.

Now that we have the relations (5.3) available, it is not hard to see that

Fα exp(itHRs)F
∗
α = exp(itHLs), as < al. (5.18)

Indeed, this is tantamount to

FαS(as,−αas)F
∗
α = S(as, αas), (5.19)

a relation that is clear from

FαE(as)F
∗
α = M(αas), FαM(−αas)F

∗
α = E(as), (5.20)

cf. also (4.24)–(4.25). We are now prepared to obtain a second relation between TL and
TR (in adition to the adjoint relation (4.41)).
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Proposition 5.3. We have

TL = FαTRPm
∗
α, (5.21)

where P is given by (B.9) and mα is given by (4.2).

Proof. We first assume as < al. Multiplying (4.28) and (4.29) from the left by Fα and
from the right by F∗

α, we can use (5.18), (4.27) and (4.25) to infer

s · lim
t→−∞

exp(itHLs) exp(−itM(αas)) = FαTRP, (5.22)

s · lim
t→−∞

exp(itHLs) exp(−itE(as)) = FαTRm
∗
αF

∗
α. (5.23)

Comparing this to (4.30) and (4.31), we obtain

TLmα = FαTRP, TLFα = FαTRm
∗
αF

∗
α. (5.24)

Each of these relations amounts to (5.21).

By strong continuity in (a+, a−) we can let as converge to al to obtain (5.21) for
a+ = a−. �

The relation (5.21) implies a Fourier transform formula that is of independent interest,
cf. Appendix A. To derive it, we set

φα(x) ≡ mα(x)φ(−x), φ ∈ C. (5.25)

Then we have φα ∈ C, and from (3.36) and (5.21) we obtain

I+
L,φ = FαI

+
R,φα

. (5.26)

Recalling the analyticity properties of IL,φ(z) and Lemma 3.1, this implies in particular

IL,φ(z) = (FαI
+
R,φα

)(z), ℑz ∈ [0, a). (5.27)

Consider now the integral

( α

2π

)1/2
∫ ∞

−∞
dx′eiαz(x′+is)IR,φα(x′ + is), ℑz ∈ (0, a), s ∈ (0, a−ℑz). (5.28)

Due to the decay properties of IR,φα(z) (cf. Lemma 3.1) it is well defined and independent
of s. Taking s→ 0+ we obtain the function (FαI

+
R,φα

)(z). Using (5.27) we then deduce

IL,φ(x+iy) =
( α

2π

)1/2
∫ ∞

−∞
dx′eiα(x+iy)(x′+is)

∫ ∞

−∞
dpER(x′+is,−p)mα(p)φ(p),(5.29)

where y ∈ (0, a) and s ∈ (0, a − y). The integrand is in L1(R2, dx′dp), so by Fubini’s
theorem we may write

IL,φ(z) =

∫ ∞

−∞
dpK(z, p)φ(p), ℑz ∈ (0, a), (5.30)
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where

K(z, p) ≡
( α

2π

)1/2
∫ ∞

−∞
dx′eiαz(x′+is)ER(x′ + is,−p)mα(p),

ℑz ∈ (0, a), s ∈ (0, a−ℑz). (5.31)

Now we also have

IL,φ(z) =

∫ ∞

−∞
dpEL(z, p)φ(p), ℑz ∈ (0, a), (5.32)

so a comparison to (5.30) gives

EL(z, p) = K(z, p), ℑz ∈ (0, a). (5.33)

Finally, substituting (3.8)–(3.9) and changing variables, we obtain

SL(x+ iy) = eiπ/4+2iχ
( α

2π

)1/2
∫ ∞

−∞
dueiα(x+iy)(u+iv)SR(u+ iv),

y ∈ (0, a), v ∈ (0, a − y). (5.34)

More information on this formula can be found in Appendix A, cf. (A.21).

Appendix A. The hyperbolic gamma function and its rela-
tives

In [4] we studied the hyperbolic gamma function in the framework of a general theory of
minimal solutions to first order A∆Es: It is the minimal solution of the A∆E

G(z + ia+/2)

G(z − ia+/2)
= 2 cosh(πz/a−), a+, a− ∈ (0,∞), (A.1)

rendered unique by requiring G(0) = 1. It is explicitly given by

G(a+, a−; z) = exp

(

i

∫ ∞

0

dy

y

(

sin 2yz

2 sinh(a+y) sinh(a−y)
−

z

a+a−y

))

,

|ℑz| < (a+ + a−)/2, (A.2)

and extends to a meromorphic function with zeros at

zkl ≡ i(a+ + a−)/2 + ika+ + ila−, k, l ∈ N, (A.3)

and poles at z = −zkl.
The manifest symmetry of the integrand in (A.2) under interchange of a+ and a−

implies that G(a+, a−; z) also satisfies the A∆E

G(z + ia−/2)

G(z − ia−/2)
= 2 cosh(πz/a+). (A.4)

For our present purposes we only need a few more features of G(z). (We suppress the
parameter dependence when no confusion can arise.) First, it satisfies the reflection equa-
tion

G(−z) = 1/G(z), (A.5)
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as is plain from (A.2). Secondly, the pole at z = −ia, where

a ≡ (a+ + a−)/2, (A.6)

is simple and has residue

lim
z→−ia

(z + ia)G(z) =
i

2π
(a+a−)1/2. (A.7)

(This is Eq. (3.28) in [4].)
Thirdly, we need the ℜz → ±∞ asymptotics in the strong form detailed in Appendix A

of [17], but only for a+, a− > 0. To specify it, we introduce the quantities

α ≡ 2π/a+a−, (A.8)

as ≡ min(a+, a−), al ≡ max(a+, a−), (A.9)

χ ≡
π

24

(

a+

a−
+
a−
a+

)

. (A.10)

Then we have

G(a+, a−; z) exp(±i(χ+ αz2/4)) = 1 +O
(

e−ρ|ℜz|
)

, ℜz → ±∞, ρ < αas, (A.11)

where the implied constant can be chosen uniformly for (a+, a−,ℑz) varying over compact
subsets of (0,∞)2 × R.

In this paper it is convenient to work with the two functions

SR(a+, a−; z) ≡ G(a+, a−; z − ia) exp[iχ+ iα(z − ia)2/4], (A.12)

SL(a+, a−; z) ≡ G(a+, a−; z − ia) exp[−iχ− iα(z − ia)2/4]. (A.13)

On account of (A.11) their asymptotics is given by

Sσ(z) = 1 +O
(

e−ρ|ℜz|
)

, ℜz → ±∞, σ =

{

R

L
, (A.14)

Sσ(z) = exp(±i[2χ+ α(z − ia)2/2])

×
(

1 +O
(

e−ρ|ℜz|
))

, ℜz → ∓∞, σ =

{

R

L
. (A.15)

Also, they both have simple poles at the origin with residues

lim
z→0

zSσ(z) = i exp(±i[χ− αa2/4])(a+a−)1/2/2π, σ =

{

R

L
, (A.16)

cf. (A.7).
Next we detail the relation of the special functions mentioned in the introduction to

the hyperbolic gamma function. The double sine function (used for example in [20, 21,
22, 23, 10]) is given by

S2(z | a+, a−) = G(a+, a−;−iz + ia). (A.17)
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(For a+ = a− = 1 this function was already introduced and studied in 1886 by Hölder [24].)
Woronowicz [6] works with a function Vθ(z) that can be written

Vθ(z) = G(a+, a−; z) exp(−iαz2/4 − iχ), a+ = 2π, a− = 2π/θ. (A.18)

Faddeev and collaborators [8] use a function eb(z) that satisfies

eb(z) = G(a+, a−;−z) exp(iαz2/4 + iχ), a+ = 1/b, a− = b, (A.19)

and in [1] Volkov uses a function

γ(z) = G(a+, a−; iz − ia) exp(−iα(z − a)2/4 + iχ), a+ = 1, a− = τ. (A.20)

Fourier transform formulas involving the above functions are obtained in particular
in [6, 8, 19], cf. also [10, 1]. As a corollary of the results in the main text we arrive at the
Fourier transform formula

( α

2π

)1/2
∫ ∞

−∞
eiαzwSR(w)dℜw = e−iπ/4−2iχSL(z),

ℑz,ℑw > 0, ℑz + ℑw < a, (A.21)

cf. (5.34). (The analyticity and decay properties of the integrand I(ℜw) ensure that the
integral is absolutely convergent and independent of ℑw. Specifically, letting

z = x+ iy, w = u+ iv, x, y, u, v ∈ R, (A.22)

as in (5.34), we have

I(u) = O(exp(−αyu)), u→ ∞, (A.23)

I(u) = O(exp(−α[y + v − a]u)), u→ −∞, (A.24)

cf. (A.14)–(A.15) with σ = R.)
This formula is substantially equivalent to the previous ones. Indeed, it can be extended

to complex a+ and a− by using the results on the hyperbolic gamma function collected in
Appendix A of [17], and then it amounts to the formulas in [8, 10]. Staying with the case
a+, a− ∈ (0,∞) to which we restrict attention in this paper, (A.21) has two limits in the
sense of tempered distributions that are of particular interest.

First, taking y and v to 0 we obtain

( α

2π

)1/2
∫ ∞

−∞
eiαxuSR(u+ i0)du = e−iπ/4−2iχSL(x+ i0). (A.25)

A second specialization arises by taking y to 0 and v to a. Using (A.12)–(A.13) this yields

( α

2π

)1/2
∫ ∞

−∞
eiαxuG(u)eiαu2/4du

= e−iπ/4−4iχ exp[−iα(x+ ia)2/4]G(x − ia+ i0). (A.26)

The specialization of (A.21) obtained by taking y to a and v to 0 amounts to the inverse
Fourier transform of (A.26). Restricting his parameter θ in (A.18) to (2,∞), Woronowicz
obtains a formula equivalent to (A.26) in Appendix B of [6].
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We conclude this appendix by supplying a short proof of (A.21) that is independent of
previous ones. First, we need only prove (A.21) for as < al, since the case as = al then
follows by continuity. Now we set

al − as = δ > 0, (A.27)

and choose

v ∈ (0, δ/4). (A.28)

Thus we may take y in the interval

Iδ ≡ (0, as + δ/4) (A.29)

in the integral on the lhs of (A.21). Denoting the latter integral by F (z), we proceed to
study it by making use of the A∆Es

SR(w + ias) = (1 − exp(−αasw))SR(w), (A.30)

SL(z + ias) = (1 − exp(αasz))SL(z), (A.31)

which follow from (A.12)–(A.13) and the G-A∆Es (A.1) and (A.4). Letting y ∈ (0, δ/4),
we have

F (z + ias) =

∫ ∞

−∞
eiαzwe−αaswSR(w)du

=

∫ ∞

−∞
eiαzw[SR(w) − SR(w + ias)]du

= F (z) − eαaszF (z), (A.32)

where we used (A.30) in the first step, and shifted contours in the second one. As a
consequence F (z) extends to an analytic function for y > 0, which satisfies the same A∆E
(A.31) as SL(z). Therefore the quotient

Q(z) ≡ F (z)/SL(z) (A.33)

is ias-periodic.
Focusing on Q(z) from now on, we first note that Q(z) is entire. (Indeed, Iδ (A.29)

contains the period interval

Π ≡ [δ/8, as + δ/8], (A.34)

and F (z) has no poles in Iδ, while SL(z) has no zeros in Iδ.) We continue to study the
x→ ±∞ asymptotics of Q(z) for y ∈ Π, choosing from now on v equal to

v0 ≡ δ/8. (A.35)

From (A.14)–(A.15) we have

1/SL(z) = 1 +O(eρx), x→ −∞, (A.36)

1/SL(z) = exp(i[2χ+α(z− ia)2/2])(1+O(e−ρx)) = O(e−α(y−a)x), x→ ∞,(A.37)
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uniformly for y ∈ Π. Also, using (A.23)–(A.24) we get

|F (z)| ≤ e−αv0x

(

C+

∫ ∞

0
e−αyudu+ C−

∫ 0

−∞
e−α(y+v0−a)udu

)

= O(e−αv0x), x→ ±∞, (A.38)

uniformly for y ∈ Π. Combining this with (A.35)–(A.37) we deduce

Q(z) = O(e−αδx/8), x→ −∞, (A.39)

Q(z) = o(eαax), x→ ∞, (A.40)

uniformly for y ∈ Π.
We are now prepared to infer that Q(z) must be constant. Indeed, Q is ias-periodic

and entire, so it can be written as a Fourier series

Q(z) =
∑

n∈Z

cn exp(nαalz). (A.41)

Since δ/8 < al, we obtain from (A.39)

lim
x→−∞

exp(αalz)Q(z) = 0, (A.42)

uniformly in y. Thus cn = 0,∀n < 0. Likewise, since a < al, we get from (A.40)

lim
x→∞

exp(−αalz)Q(z) = 0, (A.43)

uniformly in y. Hence cn = 0,∀n > 0, so that Q(z) is constant, as announced.

We mention in passing that uniformity in y is critical for this conclusion. Indeed, there
exist entire functions E(z) satisfying

lim
r→0

E(reiφ) = lim
r→∞

E(reiφ) = 0, ∀φ ∈ (0, 2π], (A.44)

a fact that is not widely known.
It remains to show

Q(z) = (2π/α)1/2e−iπ/4−2iχ. (A.45)

To this end we write

F (z) =

∫ ∞

−∞
eiαzw

(

SR(w) −
1

1 + exp(−αasw)

)

du+B(z),

ℑz ∈ (0, as), ℑw ∈ (0, δ/4), (A.46)

so that B(z) equals the elementary integral

∫ ∞

−∞
eiαzu exp(αasu/2)

2 cosh(αasu/2)
du =

iπ

αas sinh(πz/as)
, ℑz ∈ (0, as). (A.47)

Also, for |ℑz| < as the integrand in (A.46) has exponential decay as |u| → ∞, which
entails that the integral yields a function that is analytic in |ℑz| < as. As a consequence,
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F (z) extends to a function that is analytic for |ℑz| < as, but for a simple pole at z = 0
with residue i/α. Moreover, SL(z) has residue

rL =
i

α
(α/2π)1/2eiπ/4+2iχ (A.48)

at z = 0, cf. (A.16) and (A.10). Thus we have

Q = lim
z→0

F (z)

SL(z)
=

i

α
·

1

rL
= (2π/α)1/2e−iπ/4−2iχ, (A.49)

and so the proof of (A.21) is complete.

Appendix B. The operators M(η), E(ν), and their sum

This appendix is mostly concerned with various dense subspaces of the Hilbert space

H ≡ L2(R, dx), (B.1)

in relation to the multiplication operators

M(η) = exp(ηx), η ∈ R∗, (B.2)

and exponentiated momentum operators

E(ν) = exp(iνd/dx), ν ∈ R∗. (B.3)

Clearly M(η) is self-adjoint on its natural definition domain

D(M(η)) ≡ {f ∈ H | exp(ηx)f(x) ∈ H}, (B.4)

whereas we use Fourier transformation to define E(ν) as a self-adjoint operator. Specifi-
cally, in this appendix we work with the unitary operator

F : H → H, f(x) 7→ (2π)−1/2

∫ ∞

−∞
dx′ exp(ixx′)f(x′), (B.5)

and define

E(ν) ≡ F∗M(ν)F . (B.6)

Thus the definition domain of E(ν) is given by

D(E(ν)) ≡ F∗(D(M(ν)). (B.7)

Defining time reversal, parity and scaling by

(Tf)(x) ≡ f(x), (B.8)

(Pf)(x) ≡ f(−x), (B.9)

(Sλf)(x) ≡ λ1/2f(λx), λ ∈ (0,∞), (B.10)
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we clearly have

TE(ν)T = E(−ν), TM(η)T = M(η), (B.11)

PE(ν)P = E(−ν), PM(η)P = M(−η), (B.12)

S∗
λE(ν)Sλ = E(λν), S∗

λM(η)Sλ = M(λ−1η). (B.13)

Consider now the function space

Q ≡ Span{exp(−κx2 + ξx) | ℜκ > 0, ξ ∈ C}. (B.14)

It is easily verified that Q is a dense subspace of H satisfying

FQ = Q. (B.15)

Moreover, any f(x) ∈ Q extends to an entire function f(z) = f(x+ iy), x, y ∈ R, and one
has

Q ⊂ D(M(η)), Q ⊂ D(E(ν)), (B.16)

(E(ν)f)(x) = f(x+ iν), f ∈ Q. (B.17)

It is also not hard to see that Q is a core (domain of essential self-adjointness [12]) for
M(η) and E(ν). (In view of (B.6) and (B.15), this need only be shown for M(η). To this
end assume f is orthogonal to (M(η) + i)Q. Then the Fourier transform of the function
f(x)(eηx + i)e−κx2

vanishes. Thus f = 0, implying (M(η) + i)Q is dense. Likewise,
(M(η) − i)Q is dense, so that Q is a core.)

We mention in passing that the operators E(ν) and M(2π/ν) and their common core
Q furnish a quite simple example of the Nelson phenomenon [12]. Indeed, both operators
leave Q invariant, and in view of (B.17) they commute on Q. Even so, the operators do
not commute in the usual sense of unbounded self-adjoint operators. (If they did, the
translation group exp(td/dx), t ∈ R, and the bounded operator (1+exp(2πx/ν))−1 would
commute, which is plainly false.)

For a given f it is easy to recognize whether it belongs to D(M(η)), cf. (B.4). The
definition (B.7) of D(E(ν)) is far less explicit, however. We are going to characterize the
domain and action of E(ν) in a more illuminating way. In particular, we shall obtain
necessary and sufficient conditions for a function f(x) to belong to D(E(ν)) that are weak
enough to be of practical use, in the sense that they can be readily verified in concrete
cases. For this purpose it is expedient to introduce the auxiliary multiplication operators

Ma(η) ≡ cosh(ηx), D(Ma(η)) ≡ {f ∈ H | cosh(ηx)f(x) ∈ H}, η > 0, (B.18)

and their Fourier transforms

Ea(ν) ≡ F∗Ma(ν)F = cosh(iνd/dx), ν > 0. (B.19)

By contrast to M(η) and E(ν), the latter operators have bounded inverses. Clearly Q is
also a core for Ma(η) and Ea(ν). First, we render the domain and action of Ea(ν) more
explicit.
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Lemma B.1. Assume f(x) ∈ H extends to an analytic function f(z) = f(x+ iy) in the
strip |y| < ν with the following properties:

(i) for all ǫ > 0 one has

exp(−ǫz2)f(z) = O(1), |y| < ν, |x| → ∞, (B.20)

with the bound uniform for |y| ≤ ν − δ,∀δ ∈ (0, ν);
(ii) there exist functions f±ν(x) ∈ H such that for all ǫ > 0 one has

s · lim
y↑ν

exp(−ǫ(x± iy)2)f(x± iy) = exp(−ǫ(x± iν)2)f±ν(x). (B.21)

Then f(x) belongs to D(Ea(ν)), and the action of Ea(ν) is given by

Ea(ν)f = (fν + f−ν)/2. (B.22)

Conversely, let f ∈ D(Ea(ν)). Then f(x) extends to an analytic function f(z) in the
strip |y| < ν with the above properties. Furthermore, one has

|f(z)| ≤ Cδ, |y| ≤ ν − δ, ∀δ ∈ (0, ν), (B.23)

lim
x→±∞

f(x+ iy) = 0, ∀y ∈ (−ν, ν), (B.24)

f(x+ iy) ∈ H, ∀y ∈ (−ν, ν), (B.25)

f±ν(x) = s · lim
y↑ν

f(x± iy), (B.26)

and the map

[−ν, ν] → H, y 7→ f(· + iy), (B.27)

is strongly continuous.

Proof. To prove the first assertion let φ ∈ Q. Using (B.17) we deduce

2(Ea(ν)φ, f) =

∫ ∞

−∞
dx[φ∗(x− iν) + φ∗(x+ iν)]f(x), (B.28)

where

φ∗(z) ≡ φ(z). (B.29)

Since φ ∈ Q, there exists ǫ > 0 such that the function exp(ǫx2)φ∗(x + iα) belongs to H
for all α ∈ R (recall (B.14)). Thus we can use the bound (B.20) and Cauchy’s theorem to
shift contours, obtaining

2(Ea(ν)φ, f) =

∫ ∞

−∞
dxeǫ(x+iy)2φ∗(x+ iy − iν)

(

e−ǫ(x+iy)2f(x+ iy)
)

+

∫ ∞

−∞
dxeǫ(x−iy)2φ∗(x− iy + iν)

(

e−ǫ(x−iy)2f(x− iy)
)

, (B.30)

where y ∈ (0, ν). Now we may and will view the integrals as inner products of y-dependent
vectors in H. (Indeed, from (B.20) with ǫ → ǫ/2 it is clear that the vectors exp[−ǫ(· ±
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iy)2]f(· ± iy) depend continuously on y ∈ (0, ν) in the strong H-topology.) Taking y ↑ ν
and invoking (B.21), we deduce

2(Ea(ν)φ, f) = (φ, fν + f−ν), ∀φ ∈ Q. (B.31)

Because Q is a core for the self-adjoint operator Ea(ν), this implies not only our claim
f ∈ D(Ea(ν)), but also the action formula (B.22).

In order to prove the necessary conditions, let f ∈ D(Ea(ν)). Then we have (cf. (B.19))

f̂ ≡ Ff ∈ D(Ma(ν)), (B.32)

so that

f̂(x) =
1

cosh νx
g(x), g ≡Ma(ν)Ff ∈ H. (B.33)

Acting with F∗, we may now write

f(x) = (2π)−1/2

∫ ∞

−∞
dx′

exp(−ixx′)

cosh(ν − δ)x′

(

cosh(ν − δ)x′

cosh νx′
g(x′)

)

. (B.34)

Fixing δ ∈ (0, ν), the function in parentheses is in L1(R). Hence f(x) extends to an
analytic function f(z) in the strip |y| < ν−δ. As δ is arbitrary, the features (B.23)–(B.24)
readily follow, and we also deduce

f(· + iy) = F∗M(y)Ma(ν)
−1g. (B.35)

Since the family of bounded multiplication operators M(y)/Ma(ν), y ∈ [−ν, ν], is strongly
continuous in y, the remaining assertions follow from (B.35). (Note that (B.20) is evident
from (B.23), and (B.21) from (B.26).) �

We are now prepared to study E(ν). For convenience we choose ν > 0. The corre-
sponding results for negative ν can be derived by using P or T .

Lemma B.2. Assume

f(z) = f(x+ iy), x ∈ R, y ∈ (0, ν), (B.36)

is an analytic function with the following properties:
(i) for all ǫ > 0 one has

exp(−ǫz2)f(z) = O(1), y ∈ (0, ν), |x| → ∞, (B.37)

with the bound uniform for y ∈ [δ, ν − δ], ∀δ ∈ (0, ν/2);
(ii) there exist functions f(x), fν(x) ∈ H such that for all ǫ > 0 one has

s · lim
y↓0

exp(−ǫ(x+ iy)2)f(x+ iy) = exp(−ǫx2)f(x), (B.38)

s · lim
y↑ν

exp(−ǫ(x+ iy)2)f(x+ iy) = exp(−ǫ(x+ iν)2)fν(x). (B.39)

Then f(x) belongs to D(E(ν)), and the action of E(ν) is given by

E(ν)f = fν. (B.40)
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Conversely, let f ∈ D(E(ν)). Then there exists a function f(z) that is analytic for
y ∈ (0, ν) and that has the above properties. Moreover, it fulfils

|f(z)| ≤ Cδ, y ∈ (δ, ν − δ), ∀δ ∈ (0, ν/2), (B.41)

lim
x→±∞

f(x+ iy) = 0, ∀y ∈ (0, ν), (B.42)

f(· + iy) ∈ H, ∀y ∈ (0, ν), (B.43)

f = s · lim
y↓0

f(· + iy), (B.44)

fν = s · lim
y↑ν

f(· + iy), (B.45)

and f(· + iy) is strongly continuous for y ∈ [0, ν].

Proof. To prove the sufficient conditions we modify the argument in the proof of
Lemma B.1. Thus we fix φ ∈ Q and choose ǫ > 0 such that the function exp(ǫx2)φ∗(x+iα)
belongs to H for all real α. By (B.37) the integral

∫ ∞

−∞
dxeǫ(x+iy)2φ∗(x+ iy − iν)

(

e−ǫ(x+iy)2f(x+ iy)
)

, y ∈ (0, ν), (B.46)

is well defined and does not depend on y. Viewing it as the inner product of two y-
dependent vectors in H, we now use (B.17) and the boundary values (B.38)–(B.39) to
obtain

(E(ν)φ, f) = (φ, fν), ∀φ ∈ Q. (B.47)

Since Q is a core, this yields f(x) ∈ D(E(ν)), and also the action formula (B.40).

Now let f(x) ∈ D(E(ν)), so that (cf. (B.7))

f̂ ≡ Ff ∈ D(M(ν)). (B.48)

As we obviously have a definition domain equality

D(M(ν)) = D(Ma(ν/2)M(ν/2)), (B.49)

we deduce

g ≡ F∗M(ν/2)f̂ ∈ D(Ea(ν/2)). (B.50)

Hence g satisfies (B.23)–(B.27) with f → g and ν → ν/2. Setting

f(x+ iy) ≡ g(x− iν/2 + iy), y ∈ [0, ν], (B.51)

the converse assertions easily follow. �

We proceed to study the sum operator

S(ν, η) ≡ E(ν) +M(η), ν, η ∈ R∗, (B.52)



288 S N M Ruijsenaars

on its natural initial domain

D(S(ν, η)) ≡ D(E(ν)) ∩ D(M(η)). (B.53)

It is obviouly symmetric. It is not obvious, but true that the closure of the restricted
operator

Sr(ν, η) ≡ S(ν, η) ↾ Q (B.54)

is an extension of S(ν, η). This is the content of the following lemma, which we invoke in
Section 5.

Lemma B.3. The domain of the closure Sr(ν, η) of the operator (B.54) contains the
domain D(S(ν, η)) (B.53).

Proof. Let f ∈ D(S(ν, η)). Then f ∈ D(E(ν)), and since Q is a core for E(ν), there
exists a sequence

fn ∈ Q, fn → f, E(ν)fn → E(ν)f, n→ ∞. (B.55)

Now consider the sequence

fn,ǫ(x) ≡ exp(−ǫx2)fn(x) ∈ Q, ǫ > 0. (B.56)

We have

(E(ν)fn,ǫ)(x) = exp(−ǫ(x+ iν)2)(E(ν)fn)(x), (B.57)

(M(η)fn,ǫ)(x) = exp(−ǫx2 + ηx)fn(x), (B.58)

so that

fn,ǫ(x) → fǫ(x) ≡ exp(−ǫx2)f(x), E(ν)fn,ǫ → E(ν)fǫ, M(η)fn,ǫ →M(η)fǫ. (B.59)

(We used (B.40) to rewrite the second limit.) Hence we obtain

Sr(ν, η)fn,ǫ → S(ν, η)fǫ. (B.60)

Therefore fǫ belongs to the domain of Sr(ν, η) and we have

Sr(ν, η)fǫ = S(ν, η)fǫ = exp(−ǫ(· + iν)2)E(ν)f + exp(−ǫ(·)2)M(η)f. (B.61)

Letting ǫ ↓ 0, the rhs has the strong limit S(ν, η)f , so that the assertion follows. �

The next lemma is concerned with the question whether S(ν, η) is closed. It seems
quite likely that this is not the case whenever the phase

q ≡ exp(−iνη/2) (B.62)

equals −1, whereas we shall prove that S(ν, η) is closed for q 6= −1. The special character
of this phase is due to the operator 1 + qE(ν) not having a bounded inverse for q = −1.
To appreciate the role of this operator, we need a few preliminaries.
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First, we define the unitary multiplication operator

(U(s)f)(x) ≡ exp(isx2)f(x), s ∈ R. (B.63)

Next we note that we have

U(η/2ν)M(η)D(S(ν, η)) ⊂ D(E(ν)). (B.64)

Indeed, this inclusion readily follows from Lemma B.2: for g ∈ D(S(ν, η)) the analytic
function

f(z) ≡ exp(iηz2/2ν) exp(ηz)g(z) (B.65)

has the properties (i) and (ii), with

fν(x) ≡ q exp(iηx2/2ν)gν(x). (B.66)

As a consequence, we obtain an identity

S(ν, η)g = U(−η/2ν)(1 + qE(ν))U(η/2ν)M(η)g, ∀g ∈ D(S(ν, η)), (B.67)

in which the above operator 1 + qE(ν) features. This prepares us for the last lemma of
this appendix.

Lemma B.4. Assume q 6= −1. Then S(ν, η) is closed.

Proof. Consider a sequence

gn ∈ D(S(ν, η)), gn → g, S(ν, η)gn → h. (B.68)

Rewriting S(ν, η)gn by using (B.67) with g → gn, we multiply by the bounded operator

U(−η/2ν)(1 + qE(ν))−1U(η/2ν), (B.69)

concluding that M(η)gn has a strong limit. Hence E(ν)gn has a strong limit as well. Since
M(η) and E(ν) are closed, we deduce g ∈ D(M(η)) and g ∈ D(E(ν)). Therefore S(ν, η)
is closed. �

The results in the main text imply that there is a remarkable difference between the
cases |νη| < 2π and |νη| > 2π: In the first case Q is a core for S(ν, η), whereas Q is
not a core in the second one (cf. Propositions 5.1 and 5.2). In view of Lemmas B.3 and
B.4 it follows that S(ν, η) is self-adjoint for |νη| < 2π, and not essentially self-adjoint for
|νη| > 2π. The state of affairs for |νη| = 2π is an interesting open question.

Appendix C. Limits of principal value integrals

This appendix concerns an auxiliary result that is used in the proof of Lemma 4.1, but
which is also of some interest in itself. It deals with the asymptotic behavior of a class of
principal value integrals (Hilbert transforms) as a parameter goes to infinity. As such it
is related to Lemmas 5.1 and 5.2 in our article [25]. But the latter lemmas do not imply
Lemma C.1. Conversely, Lemma C.1 does not imply the previous lemmas, but its proof
is inspired by the proofs given in loc. cit.
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Lemma C.1. Let ψ(x) be a C∞
0 (R)-function with

supp(ψ) ⊂ (−r, r), r > 0. (C.1)

Let ω(x) be a real-valued C∞(R)-function such that

ω′(x) ≥ C1 > 0, ∀x ∈ [−r − 1, r + 1], (C.2)

|ω′′(x)| ≥ C2 > 0, ∀x ∈ [−r − 1, r + 1]. (C.3)

Finally, let

H(x) ≡ P

∫ ∞

−∞
dv
ψ(v)e−isω(v)

x− v
, s ∈ R. (C.4)

Then we have

max
|x|≤r

|H(x) ∓ iπψ(x)e−isω(x)| = O(|s|−1/3), s→ ±∞. (C.5)

Proof. Letting at first e ∈ (0, 1), we write

H(x) = H−(x) −H+(x) +H0(x), (C.6)

where we have

H±(x) ≡

∫ ∞

|s|e−1

du

u
I(x± u) (C.7)

H0(x) ≡

∫ |s|e−1

0

du

u
[I(x− u) − I(x+ u)], (C.8)

with

I(v) ≡ ψ(v) exp(−isω(v)). (C.9)

Now we consider the three summands in (C.6).
First, integration by parts in

H−(x) =

∫ ∞

|s|e−1

du

u
ψ(x− u)

∂ue
−isω(x−u)

isω′(x− u)
(C.10)

yields a boundary term

i

s
·
ψ(x− |s|e−1)

|s|e−1
·
exp(−isω(x− |s|e−1))

ω′(x− |s|e−1)
= O(|s|−e), |s| → ∞, (C.11)

and the sum of two integrals

I1 ≡
1

is

∫ ∞

|s|e−1

du

u2

I(x− u)

ω′(x− u)
, (C.12)

I2 ≡ −
1

is

∫ ∞

|s|e−1

du

u
exp(−isω(x− u))∂u

ψ(x− u)

ω′(x− u)
. (C.13)
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From (C.1)–(C.3) we deduce

|I1| ≤
C

|s|

∫ 2r

|s|e−1

du

u2
= O(|s|−e), |s| → ∞, (C.14)

|I2| ≤
C

|s|

∫ 2r

|s|e−1

du

u
= O(ln(|s|)/|s|), |s| → ∞. (C.15)

Clearly, the implied constants in (C.11), (C.14) and (C.15) can be chosen uniformly for
|x| ≤ r, so that

max
|x|≤r

|H−(x)| ≤ C|s|−e, |s| → ∞. (C.16)

It is plain that H+(x) can be handled in the same fashion, yielding

max
|x|≤r

|H+(x)| ≤ C|s|−e, |s| → ∞. (C.17)

Turning to H0(x), we set u = k/|s| in (C.8), so that we have

H0(x) = ε(s)

∫ |s|e

0

dk

k

(

I(x−
k

s
) − I(x+

k

s
)

)

, (C.18)

where ε(s) denotes the sign of s. We now write

ω(x±
k

s
) = ω(x) ±

k

s
ω′(x) +

k2

s2
R±(x,

k

s
), (C.19)

with R±(x, v) ∈ C∞(R2). Then we set

H0(x) = ε(s)e−isω(x)(J−(x) − J+(x) + J0(x)), (C.20)

where we have introduced

J±(x) ≡

∫ |s|e

0

dk

k
ψ(x±

k

s
) exp(∓ikω′(x))

(

exp[−i
k2

s
R±(x,

k

s
)] − 1

)

, (C.21)

J0(x) ≡

∫ |s|e

0

dk

k

(

ψ(x−
k

s
)eikω′(x) − ψ(x+

k

s
)e−ikω′(x)

)

. (C.22)

To estimate J± we note that
∣

∣

∣

∣

k2

s
R±(x,

k

s
)

∣

∣

∣

∣

≤ C|s|2e−1, ∀k ∈ (0, |s|e), (C.23)

uniformly for |x| ≤ r. Choosing from now on e ∈ (0, 1/2), we deduce
∣

∣

∣

∣

exp[−i
k2

s
R±(x,

k

s
)] − 1

∣

∣

∣

∣

≤ C
k2

|s|
, |s| ≥ Λ, ∀k ∈ (0, |s|e), (C.24)

for sufficiently large Λ, with C uniform for |x| ≤ r. Hence,

max
|x|≤r

|J±(x)| ≤ C

∫ |s|e

0

dk

k

k2

|s|
= C|s|2e−1, |s| → ∞. (C.25)
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It remains to handle J0(x) To this end we use

ψ(x±
k

s
) = ψ(x) +

k

s
ρ±(x,

k

s
), (C.26)

with ρ±(x, v) ∈ C∞(R2). Then we may write

J0(x) = K0(x) +R0(x), (C.27)

where

K0(x) ≡ 2iψ(x)

∫ |s|eω′(x)

0

dv

v
sin v, (C.28)

so that the remainder term reads

R0(x) =
1

s

∫ |s|e

0
dk

(

ρ−(x,
k

s
)eikω′(x) − ρ+(x,

k

s
)e−ikω′(x)

)

. (C.29)

Obviously, the latter satisfies

max
|x|≤r

|R0(x)| ≤ C|s|e−1. (C.30)

With the final choice e = 1/3 we now combine the bounds (C.16), (C.17), (C.25) and
(C.30) to deduce

|H(x) − iπε(s)e−isω(x)ψ(x)| ≤ |K0(x) − iπψ(x)| +O(|s|−1/3), |s| → ∞, (C.31)

with the implied constant uniform for |x| ≤ r. Since we also have (cf. (C.28))

K0(x) − iπψ(x) = −2iψ(x)

∫ ∞

|s|1/3ω′(x)
dv

sin v

v

= −2iψ(x)

(

cos(|s|1/3ω′(x))

|s|1/3ω′(x)
−

∫ ∞

|s|1/3ω′(x)
fracdvv2 cos v

)

= O(|s|−1/3, |s| → ∞, (C.32)

uniformly for |x| ≤ r, the lemma now follows. �

In Section 4 we use this lemma in the following more convenient guise.

Corollary C.2. With the assumptions of Lemma C.1, let

L+(x) ≡ lim
ǫ↓0

∫ ∞

−∞
dv
ψ(v)e−isω(v)

x+ iǫ− v
. (C.33)

Then we have

max
|x|≤r

|L+(x)| = O(s−1/3), s→ ∞, (C.34)

max
|x|≤r

|L+(x) + 2iπψ(x)e−isω(x)| = O(|s|−1/3), s→ −∞. (C.35)
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Proof. Using the well-known relation

1

u+ i0
= P

1

u
− iπδ(u) (C.36)

between tempered distributions, we obtain

L+(x) = H(x) − iπψ(x) exp(−isω(x)). (C.37)

Hence (C.34)–(C.35) follow from (C.5). �
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