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Abstract

We prove bispectral duality for the generalized Calogero–Moser–Sutherland systems
related to configurations An,2(m), Cn(l,m). The trigonometric axiomatics of the
Baker–Akhiezer function is modified, the dual difference operators of rational Mac-
donald type and the Baker–Akhiezer functions related to both series are constructed.

1 Introduction

The original bispectral problem as it appeared in the paper by Duistermaat and Grunbaum
[14] was devoted to investigations of the Sturm–Liouville operators such that they admit
a family of eigenfunctions satisfying some differential equation in the spectral parameter.
Part of the corresponding potentials, namely the rational KdV potentials, were described
as those which can be obtained from 0 by applying the Darboux transformations. The
corresponding Sturm–Liouville operators admit non-trivial commuting differential oper-
ators. In paper [14] the conditions in terms of local Laurent expansions for a potential
to be a rational KdV potentials were also analyzed. These conditions generalized simple
locus conditions from [1].

An example which may be looked at as a generalization of this picture to the many-
dimensional case is given by the Calogero–Moser operator ([4], [22], [28], [23])

L = ∆ −
∑

α∈A

mα(mα + 1)(α,α)

(α, x)2
, (1.1)

where A is a root system. When the parameters mα are integer (and invariant) operator
(1.1) can be included into a large supercomplete commutative ring of differential operators
as it was discovered by Chalykh and Veselov in [11]. The key object of this construction
is the multidimensional Baker–Akhiezer function ψ(k, x) = ψ(k1, . . . , kn, x1, . . . , xn). This
function is defined on a certain many-dimensional rational spectral variety, it is an eigen-
function for all operators from the commutative ring. The function ψ satisfies the same
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differential equations in the spectral variables k, as was shown by Chalykh, Styrkas, and
Veselov [31], thus the bispectrality holds. The Baker–Akhiezer functions defined on the
Riemann surfaces were introduced by Krichever for studying one variable rings of com-
muting differential operators and non-linear integrable equations [19] (see also [3]).

The generalization of the one-dimensional locus conditions from [14] to the multi-
dimensional case led Chalykh, Veselov, and the author to an interesting class of Schroedinger
operators of type (1.1) where A can be a Coxeter system and also more general locus
configuration [10]. These operators can be included into the supercomplete rings of com-
muting differential operators, they admit the Baker–Akhiezer functions which also satisfy
the differential equations in the spectral parameters.

Despite large number of locus configurations in the two-dimensional case the known
examples in higher dimensions are quite exceptional and discrete. Besides operators (1.1)
related to the Coxeter systems two other series of deformations An,1(m), Cn(l,m) were
found in [30], [9], [10], and one more configuration An,2(m) appeared later in Chalykh–
Veselov [12]. Configuration An,1(m) becomes the root system An when m=1. Config-
uration Cn(l,m) specializes to the root system Cn at l = m. Configuration An,2(m) is
a complex extension of the root system An−2. When n = 2 the parameter m can be
arbitrary complex and the corresponding operator coincides with the degeneration of the
Hietarinta operator [16] (see also [10], [8]).

In this paper we analyze bispectrality and the Baker–Akhiezer functions for the trigono-
metric versions of the operators (1.1) for the configurations Cn(l,m) and An,2(m), whereas
the root systems and configuration An,1(m) were considered by Chalykh [6]. Earlier in
paper [9] the intertwining operators for the Schroedinger operators with trigonometric
potentials related to the configurations C2(m, l), An,1(m) were constructed.

A construction with the multi-dimensional trigonometric Baker–Akhiezer function was
also introduced by Chalykh and Veselov in [11]. Such a function is a certain eigenfunction
for the generalized Calogero–Moser–Sutherland operator

L = ∆ −
∑

α∈A

mα(mα + 1)(α,α)

sinh2(α, x)
. (1.2)

It was shown in [11] that the Baker–Akhiezer function exists when A is a root system and
the multiplicities mα are integer and invariant. Then L is included into a supercomplete
ring of commuting differential operators.

In the trigonometric case the dual operators happen to be the difference operators.
These operators are also discretizations of the Calogero–Moser Hamiltonians, they were
introduced by Ruijsenaars for the problem related to An root system [24] (see [26] for
the classical version). The bispectral duality of the Calogero–Moser–Sutherland and Rui-
jsenaars systems was conjectured by Ruijsenaars in [25]. For an arbitrary reduced root
system the difference operators were introduced by Macdonald [21]. The duality on the
level of Macdonald polynomials was conjectured by Macdonald and proved first by Koorn-
winder [17] (see chapter VI of [20]) for the An case. For an arbitrary reduced root system
the proof was obtained by Cherednik [13]. For the case of the BCn system Macdonald
polynomials were introduced by Koornwinder [18], their duality property was established
in [29], [27].

In terms of the Baker–Akhiezer functions the bispectral duality for (1.2) related to any
root system was established by Chalykh in [6]. Also it was done for the system An,1 thus
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the corresponding deformation of the rational Ruijsenaars–Macdonald operator appeared
in [6].

The method of establishing the dual equations as well as of constructing the Baker–
Akhiezer functions was introduced by Chalykh in [6], and it is as follows. The Baker–
Akhiezer function should satisfy some shifting conditions as a function of the spectral
variables k. One considers the space of functions satisfying these conditions and a certain
difference operator in k such that the application of this operator leaves the space invariant.
Then taking a proper initial function from the space and iterating the application of the
operator we arrive at the Baker–Akhiezer function, besides that on the next step we get
zero thus the dual equation appears. This method was first applied in the rational case
[5] (see also [10]), it works also in the trigonometric difference case [7]. The corresponding
formula for the Baker–Akhiezer functions in the rational case was found earlier by Berest
[2] under assumption of existence.

In this paper we follow the described strategy to construct the Baker–Akhiezer func-
tions and to establish the bispectrality for the configurations Cn(l,m), An,2(m). On the
way we introduce the generalizations of rational Macdonald operators related to these
deformations. An interesting feature of the configuration An,2(m) is that for the corre-
sponding operator (1.2) there is no Baker–Akhiezer function in the original axiomatics [11].
Thus we modify conditions in variables k which should be imposed on the Baker–Akhiezer
function in order to cover this case as well. The corresponding modification of rational
Chalykh–Veselov axiomatics for the Baker–Akhiezer functions from [11] was carried out
in [10]. We should mention that in our considerations we restrict ourselves to the simpler
case when a configuration A has no parallel vectors although a deformation of BCn system
leading to algebraically integrable operators appeared in [8], so it is natural to expect the
bispectral property for the degeneration of this model as well.

The structure of this paper is the following. In section 2 we give the modified ax-
iomatics for the trigonometric Baker–Akhiezer function and review the Chalykh–Veselov
construction [11] adopting it to the new settings. In section 3 we recall how the bispec-
trality allows construction of commuting operators in the spectral variables if we know
commuting operators in x ([2], [14], [6]). Then we prove that the Baker–Akhiezer functions
for the root systems and for the deformation An,1(m) also satisfy modified axiomatics. In
section 4 we consider configuration Cn(l,m). We introduce a deformed rational Macdonald
operator for this case and we construct the Baker–Akhiezer function. Then we prove the
bispectral property, and the family of commuting difference operators appears. In section
5 the analogous results are proved for the An,2(m) configuration. In the last section we
discuss necessary conditions for a configuration of vectors with multiplicities to admit the
Baker–Akhiezer function. They reveal clear geometrical restrictions on the configurations.
The presentation closely follows [15].

2 Baker–Akhiezer function and commuting differential op-

erators

Let A be a finite set of non-collinear vectors α ∈ C
n, let every vector α have a multiplicity

mα ∈ N. Meaning by m this multiplicity function we will denote such configurations as
A = (A,m). By the Baker–Akhiezer function ψ(k, x) we will mean a function of two sets
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of variables k, x ∈ C
n of the form

ψ(k, x) =
(∏

α∈A

(k, α)mα + lower order polynomial in k
)
e(k,x), (2.1)

(k, x) = k1x1 + . . .+ knxn, which satisfies special properties. We introduce −A to be the
system of vectors {−α|α ∈ A} with the multiplicities m−α = mα. Inside A∪−A we choose
a positive subsystem A+ consisting of those vectors which belong to some half-space inside
R

2n ≈ C
n. The half-space should be in a generic position such that for any α ∈ A either

α ∈ A+ or −α ∈ A+. We say that a vector α ∈ A+ is an edge vector if α is not a linear
combination of other vectors from A+ with positive real coefficients.

In this paper we will assume that the set A of vectors α is such that all the vectors
belong to some lattice of rank n in the space C

n. Though constructions and most of
the proofs work without this assumption in all known examples such a lattice does exist,
also assumption on the lattice makes definition of the edge vectors and subsystems A+

more invariant. Namely, we now have an n-dimensional real vector space V containing the
system A which is spanned by a basis in the lattice. Positive subsystems A+ ⊂ (A ∪−A)
are those which consist of the vectors belonging to a generic half-space in the real linear
space V . We will also assume that A does not contain isotropic vectors α : (α,α) = 0, as
we will see such vectors do not contribute to the potential.

Definition 1. A function ψ(k, x) of the form (2.1) is called the Baker–Akhiezer function
for a configuration A = (A,m) (BA function) if for any choice of positive subsystem A+

and for any choice of an edge vector α the following identities hold

ψ(k + sα, x)∏
β∈A+
β 6=α

∏mβ

i=1(k + iβ + sα, β)
≡ ψ(k − sα, x)∏

β∈A+
β 6=α

∏mβ

i=1(k + iβ − sα, β)
(2.2)

at (k, α) = 0, s = 1, . . . ,mα.

Remark 1. For a given vector α ∈ A there are normally few choices of the subsystems A+

such that the vector α is an edge vector. Therefore the existence of the Baker–Akhiezer
function for a system A forces, in particular, the following compatibility conditions. Let
A1

+, A
2
+ be two choices of positive subsystems in A such that α is an edge vector. Then

the following identity must hold:

∏
β∈A1

+
β 6=α

∏mβ

i=1(k + iβ + sα, β)

∏
β∈A1

+
β 6=α

∏mβ

i=1(k + iβ − sα, β)
≡

∏
β∈A2

+
β 6=α

∏mβ

i=1(k + iβ + sα, β)

∏
β∈A2

+
β 6=α

∏mβ

i=1(k + iβ − sα, β)

at (k, α) = 0 for s = 1, . . . ,mα.

Introducing the functions ψ
A+
α depending on the choices of positive subsystem A+ and

an edge vector α by formulas

ψA+
α =

ψ(k, x)∏
β∈A+
β 6=α

∏mβ

i=1(k + iβ, β)
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conditions (2.2) take the following form

ψA+
α (k + sα) ≡ ψA+

α (k − sα), if (α, k) ≡ 0, s = 1, . . . ,mα. (2.2′)

Also it will be convenient for us to use the following equivalent form of equations (2.2)

(
δα

1

(k, α)

)s−1

δαψ
A+
α ≡ 0, at (k, α) = 0, s = 1, . . . ,mα. (2.2′′)

Here δα is an operator acting by the rule δαf(k) = f(k+α)− f(k−α). It is obvious that
conditions (2.2′) and (2.2′′) are identical for mα = 1. One can also check that they are
equivalent in general. Conditions (2.2) form an overdetermined system of equations for
the coefficients of a polynomial in (2.1). It takes place the following statement.

Proposition 1. (c.f.[11]) If a Baker–Akhiezer function exists then it is unique.

Proof. Assume there are two functions ϕ1 = P1(k, x)e
(k,x), ϕ2 = P2(k, x)e

(k,x), which
satisfy equations (2.2), and assume the highest terms of the polynomials Pi(k, x) are both∏

α∈A(k, α)mα . Consider the difference ϕ1 − ϕ2 = (P1 − P2)e
(k,x). This function also

satisfies conditions (2.2) but the degree of the polynomial P1 − P2 is less than
∑

α∈Amα.
Thus the proof of the proposition reduces to the following statement.

Lemma 1. (c.f.[11]) Let ψ(k, x) = P (k, x)e(k,x) satisfy conditions (2.2) with P (k, x)
being a polynomial in k with the highest term P0(k, x). Then P0(k, x) is divisible by∏

α∈A(k, α)mα .

Proof. Consider condition (2.2′′) for some subsystem A+ and an edge vector α. We have

ψA+
α =

P (k, x)

Q(k)
e(k,x),

where

Q(k) =
∏

β∈A+
β 6=α

mβ∏

i=1

(k + iβ, β).

We denote by Q0(k) the highest term of Q(k) and consider conditions (2.2′′) with s = 1.
We have

P (k + α, x)

Q(k + α)
e(α,x)e(k,x) − P (k − α, x)

Q(k − α)
e−(α,x)e(k,x) =

= e(k,x)P0(k, x) (e(α,x) − e(−α,x))Q0(k) + lower terms

Q(k + α)Q(k − α)

... (k, α).

As Q0(k) =
∏

β∈A+
β 6=α

(k, β)mβ is not divisible by (k, α) we conclude that P0(k, x) should be

divisible by (k, α).
Now we rewrite the obtained relation in the form

δαψ
A+
α = (k, α)

P̃ (k, x)

Q̃(k)
e(k,x)(e(α,x) − e(−α,x)),
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where P̃ , Q̃ are some polynomials in k with the highest terms P̃0 = P0
(k,α)Q0, and Q̃0 =

∏
β∈A+
β 6=α

(k, β)2mβ , so Q̃0 is again not divisible by (k, α). Considering conditions (2.2′′) with

s = 2 we analogously conclude that P̃0
... (k, α), that is P0

... (k, α)2. Continuing in this

way up to s = mα we obtain P0
... (k, α)mα . Since any vector α ∈ A is an edge vector

for the proper choice of a subsystem A+, system (2.2′′) contains equations for all α ∈ A.

Therefore P0
...
∏

α∈A(k, α)mα , and lemma is proven. �

�

The existence of the Baker–Akhiezer function is possible for very special configurations
A only. In this case ψ(k, x) becomes a joint eigenfunction of a rich commutative ring of
differential operators. Namely to any configuration A = (A,m) we relate the ring RA of
polynomials p(k) which for any α ∈ A satisfy the conditions

p(k + sα) ≡ p(k − sα) at (k, α) = 0,

where s = 1, . . . ,mα.

Theorem 1. (c.f.[11]) Assume configuration A admits the Baker–Akhiezer function.
Then for any p(k) ∈ RA there exists a differential operator Lp(x, ∂x) such that

Lp(x, ∂x)ψ(k, x) = p(k)ψ(k, x).

For any p, q ∈ RA one has the commutativity LpLq = LqLp.

Proof. Consider function ψ1(k, x) = p(k)ψ(k, x)−p(∂x)ψ(k, x). Then the function ψ1 sat-
isfies conditions (2.2) and it has the form ψ1 = Q1(k, x)e

(k,x) with degQ1 6
∑
mα+deg p−

1. By lemma 1 the highest term of the polynomial Q1 has the form Q0
1 =

∏
(k, α)mαr(x, k).

We define now ψ2(k, x) = ψ1(k, x)−r(x, ∂/∂x)ψ(k, x). We have ψ2(k, x) = Q2(k, x)e
(k,x),

where Q2 is some polynomial of degree degQ2 6
∑
mα +deg p−2, and ψ2 satisfies condi-

tions (2.2). Therefore we can again apply lemma 1 and inductively we construct operator
Lp = p(∂x) + r(x, ∂x) + . . .

The commutativity [Lp, Lq] = 0 follows from the condition that if an operator L(x, ∂x)
satisfies L(x, ∂x)ψ(k, x) = 0 for a function ψ of the form (2.1), then L ≡ 0. The theorem
is proven. �

We note that for any configuration A the ring RA contains the polynomial k2 = k2
1 +

. . .+k2
n. Indeed, (k±sα)2 = (k±sα, k±sα) = (k, k)±2s(α, k)+s2(α,α), and if (α, k) = 0

we have (k+sα)2 = (k−sα)2. The corresponding differential operator is the Schroedinger
operator.

Proposition 2. (c.f.[11]) In the settings of theorem 1 to the polynomial p(k) = k2 it
corresponds the operator

Lk2 = ∆ −
∑

α∈A

mα(mα + 1)(α,α)

sinh2(α, x)
.
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Proof. Let

ψ(k, x) = P (k, x)e(k,x) = (
∏

α∈A

(k, α)mα + P1 + lower order terms)e(k,x),

where P1 is a polynomial of degree
∑
mα−1. To obtain Lk2 we apply recurrent procedure

described in the proof of theorem 1. We have

ψ1(k, x) = k2ψ(k, x) − ∆ψ(k, x) =

=

(
−2

n∑

i=1

ki
∂

∂xi
P − ∆P

)
e(k,x) =

(
−2

n∑

i=1

ki
∂P1

∂xi
+ R

)
e(k,x),

where R is some polynomial in k, degR <
∑
mα. According to lemma 1

−2

n∑

i=1

ki
∂P1

∂xi
= u(x)

∏

α∈A

(k, α)mα

for some function u(x). Also from lemma 1 it follows that ψ1(k, x) − u(x)ψ(k, x) = 0.
Thus

Lk2 = ∆ + u = ∆ − 2∏
α∈A(k, α)mα

n∑

i=1

ki
∂P1

∂xi
.

And the proof of the proposition is reduced to the following lemma.

Lemma 2. (c.f.[11]) Assume that a system A admits the Baker–Akhiezer function

ψ(k, x) = P (k, x)e(k,x) =
(∏

α∈A

(k, α)mα + P1 + . . .
)
e(k,x),

where P1 = P1(k, x) are terms of order
∑
mα − 1 in the polynomial P . Then

P1 = −
( ∏

α∈A

(k, α)mα

)∑

α∈A

mα(mα + 1)

2

(α,α)

(α, k)
coth(α, x).

Proof. We choose a subsystem A+ and consider conditions (2.2′′) for an arbitrary edge
vector α. We want to show that P1 is divisible by (k, α)mα−1 and to find P1/(k, α)mα−1.
For s = 1 condition (2.2′′) can be rewritten in the following way

1

Q1(k)

{
T1(k)(k, α)mα

∏

β∈A
β 6=α

(k, β)mβ (e(α,x) − e−(α,x))+

+ T1(k)

(
mα(α,α)(k, α)mα−1(e(α,x) + e−(α,x))

∏

β∈A
β 6=α

(k, β)mβ + (e(α,x) − e−(α,x))P1

)
+

+ O1

(
(k, α)mα

)
+ R1

}
e(k,x) ≡ 0,
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if (k, α) = 0. In the last formula

T1(k) =
∏

β∈A+
β 6=α

mβ∏

i=1

(k + iβ, β), Q1(k) = T1(k + α)T1(k − α),

and O1

(
(k, α)mα

)
is a polynomial of degree 2

∑
β∈A+

mβ − 1 −mα, which is divisible by
(k, α)mα . And R1 is some polynomial in k such that degR1 < 2

∑
β∈A+

mβ − 1 −mα.

Going by induction we conclude that for an arbitrary s such that mα > s > 1 one has

1

Qs(k)

{
Ts(k)(k, α)mα−s+1

∏

β∈A
β 6=α

(k, β)mβ +

+ Ts(k)

(
cs(mα)(α,α)(k, α)mα−s

∏

β∈A
β 6=α

(k, β)mβ coth(α, x) +
P1

(k, α)s−1

)
+

+ Os

(
(k, α)mα−s+1

)
+ Rs

}
≡ 0 (2.3)

if (k, α) = 0. Here Ts(k) = Ts−1(k)Qs−1(k), Qs(k) = Qs−1(k + α)Qs−1(k − α), and the
polynomial Os

(
(k, α)mα−s+1

)
is divisible by (k, α)mα−s+1, degOs 6 deg Ts +

∑
β∈A+

mβ −
s, degRs < degTs +

∑
β∈Amβ − s. It is important for us that cs(mα) = cs−1(mα)+mα −

s+ 1. Consider now condition (2.3) with s = mα. As Ts(k) 6= 0 if (k, α) = 0 we conclude
that

cmα(mα)(α,α)
∏

β∈A
β 6=α

(k, β)mβ coth(α, x) +
P1

(k, α)mα−1
= 0 (2.4)

at (α, k) = 0, and

cmα(mα) = mα + (mα − 1) + . . .+ 1 =
mα(mα + 1)

2
.

Now we remark that conditions (2.4) characterize the polynomial P1 uniquely. Indeed the
existence of a polynomial P̃1, deg P̃1 = degP1 =

∑
mβ − 1, satisfying (2.4) would mean

that P1−P̃1
(k,α)mα−1 = 0 at (k, α) = 0, thus P1 − P̃1 would be divisible by (k, α)mα . As any

vector α ∈ A is an edge vector for a proper subsystem A+, we get P1− P̃1
...
∏

α∈A(k, α)mα .

But this is impossible as deg(P1 − P̃1) 6
∑

α∈Amα − 1. Further it is obvious that the
polynomial

P1 = −
( ∏

α∈A

(k, α)mα

)∑

α∈A

mα(mα + 1)

2

(α,α)

(α, k)
coth(α, x)

satisfies (2.4), therefore lemma 2 is proven. �

This completes the proof of the proposition. �
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3 Bispectral duality and examples

By bispectral duality we mean the situation when a function ψ(k, x) of two sets of variables
k and x satisfies certain equations in each of the sets. In our case we will have the equations
of the form

L(x, ∂x)ψ(k, x) = k2ψ(k, x), Dψ(k, x) = λ(x)ψ(k, x), (3.1)

where D is some difference operator in k-variables, and ψ is the Baker-Akhiezer function.
Originally the equations in the spectral parameter were considered by Duistermaat and
Grunbaum [14] who analyzed in the one-dimensional situation the pair of equations (3.1)
for a Sturm–Liouville operator L and a differential operator D.

One of the applications of the bispectrality is the following construction ([14], [2], [6])
allowing to obtain a commuting operator for D if a commuting operator for L is given.
More exactly, assume we have some operator M(x, ∂x) satisfying

M(x, ∂x)ψ(k, x) = q(k)ψ(k, x), (3.2)

for some polynomial q(k). Then from (3.1), (3.2) it follows

(λM −Mλ)ψ(k, x) = (qD −Dq)ψ(k, x).

Iterating this process we obtain

(adr
λM)ψ(k, x) = (−1)r(adr

Dq)ψ(k, x),

where adAB = A◦B−B ◦A for any operators A,B. Now consider the difference operator
D̃ given by deg q iterations of the operation ad,

D̃ = addeg q
D q(k).

As

a(x) = (−1)deg qaddeg q
λ M

becomes a polynomial in x, the function ψ(k, x) is an eigenfunction for D̃:

D̃ψ(k, x) = a(x)ψ(k, x),

and therefore the commutativity relation holds:

[D, D̃] = 0.

It happens that the difference operator D allows simple construction of the Baker–
Akhiezer function itself. This method was introduced by Chalykh in [6] where such op-
erators and the BA functions for the root systems and the An,1(m) deformation were
constructed. The formulas are as follows

ψ(k, x) = C(x) (D − λ(x))M
(
Q(k)e(k,x)

)
(3.3)
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where the number of iterations M =
∑

α∈Amα, Q(k) is the following polynomial in k

Q(k) =
∏

α∈A

mα∏

j=1

(k + jα, α)(k − jα, α),

and C(x) is a normalization function depending on x variables only. In the rational case
such formulas for obtaining the Baker–Akhiezer functions through applying differential
Calogero–Moser Hamiltonian were found earlier by Berest [2].

3.1 Root systems

Let A = R = {α} be a root system corresponding to a semisimple Lie algebra where we
take exactly one of any pair of opposite roots. Let function m(α) = mα be invariant with
respect to the action of the corresponding Weyl group.

Proposition 3. For the system R = (R,m) there exists the Baker–Akhiezer function.

Proof. Essentially this statement contains in [31]. More exactly, in [31] it was shown the
existence of function ψ(k, x) having the desired form (2.1) but satisfying conditions

ψ(k + sα) = ψ(k − sα), (3.4)

at (k, α) = 0 for all α ∈ R, s = 1, . . . ,mα. It turns out that ψ(k, x) also satisfies (2.2).
Indeed, we have to check that for any α ∈ R and for any subsystem R+ in R∪ (−R) such
that α is an edge vector one has

∏

β∈R+
β 6=α

mβ∏

i=1

(k + iβ + sα, β) =
∏

β∈R+
β 6=α

mβ∏

i=1

(k + iβ − sα, β), (3.5)

for (k, α) = 0, s = 1, . . . ,mα. We remark that the condition that α is an edge vector
for R+ means that α is a simple root with respect to R+. We show that the function∏

β∈R+
β 6=α

∏mβ

i=1(k + iβ, β) is symmetric with respect to (α, k) = 0, in particular that the

identity (3.5) holds for arbitrary s. Indeed, if rα is the reflection with respect to a root α
then

rα
∏

β∈R+
β 6=α

mβ∏

i=1

(k + iβ, β) =
∏

β∈R+
β 6=α

mβ∏

i=1

(rαk + iβ, β) =

=
∏

β∈R+
β 6=α

mβ∏

i=1

(k + irαβ, rαβ) =
∏

γ∈R+
γ 6=α

mγ∏

i=1

(k + iγ, γ),

as for a simple root α the map rα : R+ \ α→ R+ \ α is a one-to-one correspondence pre-
serving the multiplicity function. �

In order to construct the BA function let us first present the dual difference operator
D. For the root system An this operator D was found by Ruijsenaars [24], and for an
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arbitrary root system the operators D were introduced by Macdonald [21]. For simplicity
we will present here formulas for all reduced root systems except E8, F4, G2. The last
systems do not have the so called minuscule coweight but we need its existence for the
formulas below. A minuscule coweight π is such a coweight that for any α ∈ R the scalar
product (π, α) takes only three values 0,1, and -1 at most.

For example, the root system An consisting of the vectors ei − ej in R
n+1 has n non-

trivial minuscule coweights given by the vectors πr = e1 + ...+ er, where 1 6 r 6 n.

So we define following [21] the difference operator Dπ by the formula

Dπ =
∑

τ=wπ
w∈W




∏

α∈(R∪(−R))
(α,τ)=1

(
1 − mα

(α, k)

)

T τ , (3.6)

where W in the summation is the corresponding Weyl group, and the operator T τ is
the operator which shifts a function f(k) to f(k + τ). In the following way the bispectral
duality between the Calogero–Moser–Sutherland and Ruijsenaars–Macdonald systems was
established by Chalykh.

Theorem 2. ([6]) Let A = (A,m) be a positive part of any reduced root system of type
A,B,C,D or E6, E7 with invariant multiplicity function. Let ψ be the corresponding
Baker–Akhiezer function (2.1). Then the following two equations hold

(
∆ −

∑

α∈A

mα(mα + 1)(α,α)

sinh2(α, x)

)
ψ = k2ψ,

Dπψ =
∑

w∈W

e(wπ,x)ψ,

where Dπ is the difference operator (3.6) constructed for the root system 1
2A

∨ with a
minuscule coweight π, and W is the corresponding Weyl group.

As it was shown in [6] the BA function can be expressed by formula (3.3) where D is
the operator given by formula (3.6) constructed from the dual system 1

2A
∨ which means

that we consider the set of vectors { α
(α,α)} instead of {α}. And

C(x) =



∏

α∈A



∑

τ=wπ
w∈W

(α, τ)(α,α)e(τ,x)




mα



−1

,

where π is a minuscule coweight for the root system { α
(α,α)}. As to λ(x) it is given by the

formula

λ(x) =
∑

τ=wπ
w∈W

e(τ,x).
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3.2 Configuration AAAn,1(m)

The system An,1(m) consists of the vectors ep − eq, p < q, p, q = 1, . . . , n, mep−eq = m,
and the vectors ep−

√
men+1, p = 1, . . . , n, mep−

√
m en+1

= 1. This configuration appeared
in [30]. In [9] it was shown that the corresponding rational and trigonometric operators
can be intertwined with the Laplacian thus they were algebraically integrable. In [10] it
was shown that the rational version of the corresponding Schroedinger operator admits
the corresponding (symmetric) Baker–Akhiezer function. The bispectral duality for the
trigonometric version of this system as well as the existence of the BA function in the
sense of [11] was obtained by Chalykh in [6].

Proposition 4. There exists the Baker–Akhiezer function for the system A = An,1(m).

Proof. In the paper [6] it was constructed a function ψ(k, x) of the form (2.1), satisfying
conditions (3.4) at (k, α) = 0 for all α ∈ A, s = 1, . . . ,mα. It happens that as in the
case of root systems (subsection 3.1), conditions (3.4) and (2.2) for the system An,1(m)
are equivalent. Indeed, if α = ep − eq, then

∏
β∈A+, β 6=α

∏mβ

i=1(k + iβ, β) is symmetric

with respect to (α, k) = 0. Consider now α = ep −
√
men+1. In order to state (3.4) it is

sufficient to check that in any two-dimensional plane π, π ∋ α one has

∏

β∈A+∩π

β 6=α

mβ∏

i=1

(k + iβ + α, β) =
∏

β∈A+∩π

β 6=α

mβ∏

i=1

(k + iβ − α, β) (3.7)

at kp − √
mkn+1 = 0. There are two cases, either plane π contains only one vector

β ∈ A+, β 6= α, or π contains two vectors β1 and β2. In the first case (α, β) = 0 and
relation (3.7) holds. In the second case the condition β ∈ A+ allows to set β1 = eq − ep,
β2 = eq −

√
men+1 or β1 = ep − eq, β2 =

√
men+1 − eq since α = ep −

√
men+1 is an edge

vector. For the first choice identity (3.7) takes the form

(kq − kp + 1) . . . (kq − kp + 2m− 1)(kq −
√
mkn+1 + 2m+ 1) =

= (kq − kp + 3) . . . (kq − kp + 2m + 1)(kq −
√
mkn+1 + 1),

which is valid at kp =
√
mkn+1. The second choice also gives a valid identity. �

We present now the bispectral dual difference operator and the formula for the BA
function both found by Chalykh in [6]. The operator is given by the following formulae

D = a1T1 + . . . + anTn + an+1T
√

m
n+1,

ai =

(
1 − 2

ki −
√
mkn+1 + 1 −m

) n∏

j 6=i

(
1 − 2m

ki − kj

)
, i = 1, . . . , n, (3.8)

an+1 =
1

m

n∏

i=1

(
1 +

2m

ki −
√
mkn+1 + 1 −m

)
,

where the operators Ti act on the functions f(k) by shifting the ith argument ki to ki +2,

and T
√

m
n+1f(k1, . . . , kn+1) = f(k1, . . . , kn+1 + 2

√
m).
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Theorem 3. ([6]) Let ψ(k, x) be the Baker–Akhiezer function for the system An,1(m).
Then ψ(k, x) satisfies the following difference equation

Dψ(k, x) = λ(x)ψ(k, x),

where the operator D is given by formulas (3.8), and

λ(x) = e2x1 + . . .+ e2xn +
1

m
e2

√
mxn+1.

Also ψ(k, x) itself can be expressed by the formula

ψ(k, x) = C(x) (D − λ(x))M
(
Q(k)e(k,x)

)

with

C(x) =


2MM !

n∏

i<j

(e2xi − e2xj )m
n∏

i=1

(e2xi − e2
√

mxn+1)




−1

, M = m
n(n− 1)

2
+ n,

Q(k) =

n∏

i<j

m∏

s=1

(
(ki − kj)

2 − 4s2
) n∏

i=1

(
(ki −

√
mkn+1)

2 − (m+ 1)2
)
.

Remark 2. When m = 1 the system An,1(m) coincides with the root system An with
multiplicity m = 1, and the operator D degenerates to the corresponding Ruijsenaars–
Macdonald operator (3.6) with coweight π = e1.

4 Configuration Cn(l, m)Cn(l, m)Cn(l, m)

This system consists of the following vectors in C
n depending on two integer parameters

l, m. The vectors
√

2m+ 1 ei have multiplicities mi = l, i = 1, . . . , n − 1, the vector√
2l + 1 en has multiplicity mn = m, the vectors

√
2m+1
2 (ei ± ej) have multiplicities mij =

2l+1
2m+1 , 1 6 i < j 6 n− 1 (it is assumed that 2l+1

2m+1 ∈ Z), and the vectors
√

2m+1 ei±
√

2l+1 en

2
have multiplicities min = 1, i = 1, . . . , n− 1.

The configuration was introduced in [10] where the BA functions related to rational
potentials corresponding to this system was under investigations. For the trigonometric
version related to the C2(m, l) system the intertwining operator to the pure Laplacian was
constructed earlier in [9] (see also [30]).

We note at first that all the two-dimensional subsystems in Cn(l,m) have the form either
of the system A2,1(m) or the one of a root system or the form of the subsystem C2(l,m).
We have noticed already that for a root system R and for the system An,1(m) identity (3.5)
holds. It also holds for the system C2(l,m) and therefore for the system Cn(l,m). Thus
for the system Cn(l,m), as well as for the systems R, An,1(m), conditions (2.2) for the
Baker-Akhiezer function are equivalent to simpler conditions (3.4).

Now we start constructing the BA function for the system Cn(l,m). The effective
method we are going to use was found by Chalykh [6]. The method is based on finding a
difference operator D with special properties. Then the BA function ψ(k, x) is obtained
by multiple application of such operator D to some initial function ϕ0.
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For the system Cn(l,m) we define operator D by the following formulas

D =

n∑

i=1

a+
i T

+
i + a−i T

−
i , (4.1)

where T±
i are difference operators which act as follows

T±
i f(k1, . . . , ki, . . . , kn) = f(k1, . . . , ki ±

√
2m+ 1, . . . , kn),

i = 1, . . . , n− 1,

T±
n f(k1, . . . , kn) = f(k1, . . . , kn ±

√
2l + 1).

The coefficients a±i are functions of k which are defined by the formulas

a±i =

n∏

j=1

a±ij , i = 1, . . . , n,

where

a±ij =

(
1 − 2l + 1

±ki + kj

)(
1 − 2l + 1

±ki − kj

)
, 1 6 i, j 6 n− 1, i 6= j,

a±ii =
1

2m+ 1

(
1 − (2m+ 1)l

±ki

)
, i = 1, . . . , n− 1,

a±in =

(
1 − 2m+ 1

±ki + kn − l +m

)(
1 − 2m+ 1

±ki − kn − l +m

)
,

i = 1, . . . , n− 1,

a±nj =

(
1 − 2l + 1

±kn + kj + l −m

)(
1 − 2l + 1

±kn − kj + l −m

)
,

j = 1, . . . , n− 1,

a±nn =
1

2l + 1

(
1 − (2l + 1)m

±kn

)
.

In the above formulas and throughout this section we use notation ki =
√

2m+ 1 ki for
i = 1, . . . , n− 1, and kn =

√
2l + 1 kn.

Remark 3. When m = l the system Cn(l,m) becomes the root system Cn consisting of the

vectors
√

2m+ 1ei with multiplicities m and the vectors
√

2m+1
2 (ei±ej) with multiplicities

1. Then operator (4.1) is a 1
2m+1 multiple of the corresponding Macdonald operator (3.6)

written for the root system Bn = 1
2C

∨
n consisting of the vectors 1√

2m+1
ei with multiplicity

m, 1√
2m+1

(ei ± ej) with multiplicity 1, and the minuscule coweight π =
√

2m+ 1e1.

The next step is to prove invariance of the space V of holomorphic functions f(k)
satisfying

f(k + sα) = f(k − sα) at (k, α) = 0 (4.2)
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for s = 1, . . . ,mα, for all α ∈ Cn(l,m), under the action of operator (4.1). Notice that
for the system Cn(l,m) conditions (4.2) can be rewritten in the following form. For
α =

√
2m+ 1 ei, i 6 n− 1, and α =

√
2l + 1 en

(T+
i )sf = (T−

i )sf at ki = 0, i = 1, . . . , n− 1, s 6 l; and i = n, s 6 m. (4.3)

For α =
√

2m+1
2 (ei − ej)

(T+
i )sf = (T+

j )sf

at ki − kj = 0, i, j = 1, . . . , n− 1, s = 1, . . . ,
2l + 1

2m+ 1
,

(4.4)

or equivalently

(T−
i )sf = (T−

j )sf

at ki − kj = 0, i, j = 1, . . . , n− 1, s = 1, . . . ,
2l + 1

2m+ 1
.

(4.4′)

For α =
√

2m+1
2 (ei + ej)

(T+
i )sf = (T−

j )sf

at ki + kj = 0, i, j = 1, . . . , n− 1, s = 1, . . . ,
2l + 1

2m+ 1
,

(4.5)

or equivalently

(T−
i )sf = (T+

j )sf

at ki + kj = 0, i, j = 1, . . . , n− 1, s = 1, . . . ,
2l + 1

2m+ 1
.

(4.5′)

For α =
√

2m+1 ei−
√

2l+1 en

2

T+
i f = T+

n f at ki − kn − l +m = 0, i = 1, . . . , n− 1, (4.6)

or equivalently

T−
i f = T−

n f at ki − kn + l −m = 0, i = 1, . . . , n− 1. (4.6′)

Finally, for the case α =
√

2m+1 ei+
√

2l+1 en

2 conditions (4.2) may be represented as

T+
i f = T−

n f at ki + kn − l +m = 0, i = 1, . . . , n− 1, (4.7)

and also

T−
i f = T+

n f at ki + kn + l −m = 0, i = 1, . . . , n− 1. (4.7′)

The validity of the transformation from the form (4.2) to the form (4.3)–(4.7) can

be simply established. For example, consider condition (4.2) for α =
√

2m+1 ei+
√

2l+1 en

2 .
Obviously it can be written as

(T+
i − T−

n )f

(
k +

−
√

2m+ 1 ei +
√

2l + 1 en
2

)
= 0, at ki + kn = 0.



110 M Feigin

We are left to point out that the set

{
k +

−
√

2m+ 1 ei +
√

2l + 1 en
2

∣∣∣ ki + kn = 0

}

is given by the equation ki + kn +m− l = 0. Thus we arrive to record (4.7). Representing
condition (4.2) in the form

(T−
i − T+

n )f

(
k +

√
2m+ 1 ei −

√
2l + 1 en

2

)
= 0, at ki + kn = 0.

we get record (4.7′). The form (4.6) is obtained analogously. The equivalence of conditions
(4.3)–(4.5) to the corresponding conditions (4.2) is obvious.

Proposition 5. Let D be operator (4.1), let f(k1, . . . , kn) be any holomorphic function
satisfying conditions (4.3)–(4.7). Then the function Df(k1, . . . , kn) is also holomorphic.

Proof. In principle the functionDf(k1, . . . , kn) could have singularities at the hyperplanes
where the operator D is singular. We will show that this doesn’t happen by the subsequent
consideration of the singularities of the operator D.

a) ki = 0, i = 1, . . . , n. We collect terms in Df(k1, . . . , kn) which are singular at ki = 0.
We have

Df =

n∑

j=1

a+
j T

+
j (f) + a−j T

−
j (f) = − ǫ

ki

(∏

j 6=i

a+
ijT

+
i f −

∏

j 6=i

a−ijT
−
i f

)
+ fi(k),

where ǫ = l for i < n and ǫ = m for i = n; the functions fi(k) are holomorphic at
ki = 0. We note that a+

ij = a−ij at ki = 0, therefore a+
ij = a−ij + kihij(k) where hij(k) are

holomorphic at ki = 0, and we obtain the relation

n∑

j=1

a+
j T

+
j f + a−j T

−
j f = −

(
ǫ
∏

j 6=i

a+
ij

) 1

ki

(T+
i f − T−

i f) + f̃i(k),

where f̃i(k) is holomorphic at ki = 0. Thus because of conditions (4.3) the function Df
is non-singular at ki = 0.

b) ki−kj = 0, i, j = 1, . . . , n−1. For the appropriate functions fij, f̃ij,
≈
fij holomorphic
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at ki = kj the following chain of equalities takes place

Df = a+
i T

+
i f + a+

j T
+
j f + a−i T

−
i f + a−j T

−
j f + fij =

= − 2l + 1

ki − kj

(
1 − 2l + 1

ki + kj

)
1

2m+ 1

(
1 − (2m+ 1)l

ki

) ∏

s 6=i,j

a+
is T

+
i f−

− 2l + 1

kj − ki

(
1 − 2l + 1

ki + kj

)
1

2m+ 1

(
1 − (2m+ 1)l

kj

) ∏

s 6=i,j

a+
js T

+
j f+

+
2l + 1

ki − kj

(
1 +

2l + 1

ki + kj

)
1

2m+ 1

(
1 +

(2m+ 1)l

ki

) ∏

s 6=i,j

a−is T
−
i f+

+
2l + 1

kj − ki

(
1 +

2l + 1

ki + kj

)
1

2m+ 1

(
1 +

(2m+ 1)l

kj

) ∏

s 6=i,j

a−js T
−
j f + f̃ij =

= −(2l+1)

(
1− 2l + 1

ki + kj

)
1

2m+ 1

(
1− (2m+ 1)l

ki

) ∏

s 6=i,j

a+
is · 1

ki − kj

(T+
i f −T+

j f)+

+(2l+1)

(
1+

2l + 1

ki + kj

)
1

2m+ 1

(
1+

(2m+ 1)l

ki

) ∏

s 6=i,j

a+
is ·

1

ki − kj

(T−
i f−T−

j f)+
≈
fij,

as one has a±is = a±js at ki = kj for s 6= i, j. Thus because of conditions (4.4), (4.4′) the

function Df has no singularities at ki − kj = 0. Further it is easy to see the invariance
of the operator D under reflections around kj = 0, j = 1, . . . , n. But the hyperplane
ki −kj = 0 is mapped to ki +kj = 0 under such a reflection. Therefore Df is non-singular
also at the hyperplanes ki + kj = 0, i, j = 1, . . . , n − 1.

We are left to analyze the possible singularities of the function Df at the hyperplanes
ki±kn± (l−m) = 0, i = 1, . . . , n−1. Because of the mentioned symmetry of the operator
D it is enough to restrict considerations to the hyperplanes ki − kn + l −m = 0.

c) ki − kn + l − m = 0, i = 1, . . . , n − 1. The coefficients of operator D which are
singular at this hyperplane are a−i , a−n . We have

Df = a−i T
−
i f + a−n T

−
n f + fin =

=
1

2m+ 1

(
1 +

(2m+ 1)l

ki

)(
1 +

2m+ 1

ki + kn + l −m

)
×

×
∏

j 6=i,n

a−ij

(
− 2m+ 1

−ki + kn − l +m

)
T−

i f+

+
1

2l + 1

(
1 +

(2l + 1)m

kn

)(
1 +

2l + 1

kn + ki − l +m

)
×

×
∏

j 6=i,n

a−nj

(
− 2l + 1

−kn + ki + l −m

)
T−

n f + f̃in,

where fin, f̃in are some functions which are holomorphic at ki−kn + l−m = 0. Obviously



112 M Feigin

one has a−ij = a−nj, j 6= i, n at ki − kn + l −m = 0. Moreover, one has

(
1 +

(2m+ 1)l

ki

)(
1 +

2m+ 1

ki + kn + l −m

)
=

=
ki + (2m+ 1)l

ki

· ki + kn + l +m+ 1

ki + kn + l −m
=

=
kn + (2l + 1)m

1
2 (ki + kn − l +m)

· ki + kn + l +m+ 1

2kn

=

=

(
1 +

(2l + 1)m

kn

)(
1 +

2l + 1

kn + ki − l +m

)

at this hyperplane. Therefore we can extend the equality for Df as follows

Df =

(
1 +

(2m+ 1)l

ki

)(
1 +

2m+ 1

ki + kn + l −m

)
×

×
∏

j 6=i,n

a−ij · 1

ki − kn + l −m
(T−

i f − T−
n f) +

≈
fin

for some function
≈
fin holomorphic at ki − kn + l −m = 0. Because of (4.6′) the function

Df is non-singular at ki − kn + l −m = 0. Thus the proposition is fully proved. �

Proposition 6. For any holomorphic function f(k1, . . . , kn) satisfying conditions (4.3)–
(4.7) the function Df(k1, . . . , kn) also satisfies conditions (4.3)–(4.7) if D is operator (4.1).

Proof. We consider different hyperplanes and subsequently show that the operator D
keeps axiomatics at any of the hyperplanes.

a) πi = {ki = 0}, 1 6 i 6 n.
We have

(T+
i

s − T−
i

s
)Df = (T+

i

s − T−
i

s
)

n∑

j=1

(a+
j T

+
j + a−j T

−
j )f =

=
∑

j 6=i

(
T+

i

s
(a+

j )T+
j T

+
i

s
f − T−

i

s
(a+

j )T+
j T

−
i

s
f
)

+

+
∑

j 6=i

(
T+

i

s
(a−j )T−

j T
+
i

s
f − T−

i

s
(a−j )T−

j T
−
i

s
f
)

+

+ T+
i

s
(a+

i )T+
i

s+1
f − T−

i

s
(a−i )T−

i

s+1
f + T+

i

s
(a−i )T+

i

s−1
f − T−

i

s
(a+

i )T−
i

s−1
f.
(4.8)

If j 6= i then the functions a±j are invariant with respect to reflection si around the

hyperplane πi. Therefore T+
i

s
(a±j )|πi

= T−
i

s
(a±j )|πi

. As si(a
+
i ) = a−i we get si(T

+
i

s
(a+

i )) =
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T−
i

s
(a−i ) and in particular T+

i

s
(a+

i )|πi
= T−

i

s
(a−i )|πi

. Thus the right-hand side of (4.8)
can be rewritten in the form

∑

j 6=i

T+
i

s
(a+

j )T+
j

(
T+

i

s − T−
i

s)
f +

∑

j 6=i

T+
i

s
(a−j )T−

j

(
T+

i

s − T−
i

s)
f+

+ T+
i

s
(a+

i )
(
T+

i

s+1 − T−
i

s+1)
f + T+

i

s
(a−i )

(
T+

i

s−1 − T−
i

s−1)
f.

Because of conditions (4.3) at s < mi everything is proven. For s = mi we are left to
notice that T+

i

s
(a±i )|πi

= 0.

b) πij = {ki = kj}, 1 6 i < j < n.
We have

(T+
i

s − T+
j

s
)Df = (T+

i

s − T+
j

s
)

n∑

q=1

(a+
q T

+
q + a−q T

−
q )f =

=
∑

q 6=i,j

(
T+

i

s
(a+

q )T+
q T

+
i

s
f − T+

j

s
(a+

q )T+
q T

+
j

s
f
)
+

+
∑

q 6=i,j

(
T+

i

s
(a−q )T−

q T
+
i

s
f − T+

j

s
(a−q )T−

q T
+
j

s
f
)
+

+
(
T+

i

s
(a+

i )T+
i

s+1
f − T+

j

s
(a+

j )T+
j

s+1
f
)
+

+
(
T+

i

s
(a−i )T+

i

s−1
f − T+

j

s
(a−j )T+

j

s−1
f
)
+

+
(
T+

i

s
(a+

j )T+
i

s
T+

j f − T+
j

s
(a+

i )T+
j

s
T+

i f
)
+

+
(
T+

i

s
(a−j )T+

i

s
T−

j f − T+
j

s
(a−i )T+

j

s
T−

i f
)
. (4.9)

We show that sum (4.9) vanishes at the hyperplane πij . For q 6= i, j the functions a±q
are invariant with respect to reflection sij around the hyperplane ki = kj. Therefore
T+

i

s
(a±q )|πij

= T+
j

s
(a±q )|πij

. As sij(a
±
i ) = a±j we get

sij(T
+
i

s
(a±i )) = T+

j

s
(a±j ), sij(T

+
j

s
(a±i )) = T+

i

s
(a±j ),

and in particular

T+
i

s
(a±i )|πij

= T+
j

s
(a±j )|πij

, T+
j

s
(a±i )|πij

= T+
i

s
(a±j )|πij

.

Totally we conclude that the right-hand side of (4.9) can be rewritten as

∑

q 6=i,j

T+
i

s
(a+

q )T+
q

(
T+

i

s − T+
j

s
)
f +

∑

q 6=i,j

T+
i

s
(a−q )T−

q

(
T+

i

s − T+
j

s
)
f+

+ T+
i

s
(a+

i )
(
T+

i

s+1 − T+
j

s+1
)
f + T+

i

s
(a−i )

(
T+

i

s−1 − T+
j

s−1
)
f+

+ T+
i

s
(a+

j )T+
i T

+
j

(
T+

i

s−1 − T+
j

s−1
)
f + T+

i

s
(a−j )T−

i T
−
j

(
T+

i

s+1 − T+
j

s+1
)
f.

(4.10)
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Because of conditions (4.4) the first two sums in (4.10) equal zero. As the shifts along the
vectors ei+ej, −ei−ej do not change ki−kj , the left four terms at s < mij also vanish be-
cause of (4.4). If s = mij then this is correct if we recall that T+

i

mij (a+
i ) = T+

i

mij (a−j ) = 0
at k ∈ πij .

c) πin = {kn − ki + l −m = 0}, 1 6 i < n.
We have

(T+
n − T+

i )Df = (T+
n − T+

i )

n∑

q=1

(a+
q T

+
q + a−q T

−
q )f =

=
∑

q 6=i,n

(
T+

n (a+
q )T+

q T
+
n f − T+

i (a+
q )T+

q T
+
i f
)
+

+
∑

q 6=i,n

(
T+

n (a−q )T−
q T

+
n f − T+

i (a−q )T−
q T

+
i f
)
+

+
(
T+

n − T+
i

) (
a+

n T
+
n + a−n T

−
n + a+

i T
+
i + a−i T

−
i

)
f. (4.11)

We notice that both sums in (4.11) vanish like in the case b) because T+
n (a±q ) = T+

i (a±q ).
Indeed,

T+
n (a±q ) =

∏

t6=n

a±qtT
+
n (a±qn) =

=
∏

t6=n,i

a±qta
±
qiT

+
n

(
1 − 2m+ 1

±kq + kn − l +m

)(
1 − 2m+ 1

±kq − kn − l +m

)
=

=
∏

t6=n,i

a±qt

(
1 − 2l + 1

±kq + ki

)(
1 − 2l + 1

±kq − ki

)
×

×
(

1 − 2m+ 1

±kq + kn + l +m+ 1

)(
1 − 2m+ 1

±kq − kn − 3l +m− 1

)
.

Analogously,

T+
i (a±q ) =

∏

t6=n,i

a±qt

(
1 − 2m+ 1

±kq + kn − l +m

)(
1 − 2m+ 1

±kq − kn − l +m

)
×

×
(

1 − 2l + 1

±kq + ki + 2m+ 1

)(
1 − 2l + 1

±kq − ki − 2m− 1

)
.
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It is easy to check that if k ∈ πin then one has
(

1 − 2l + 1

±kq + ki

)(
1 − 2l + 1

±kq − ki

)(
1 − 2m+ 1

±kq + kn + l +m+ 1

)
×

×
(

1 − 2m+ 1

±kq − kn − 3l +m− 1

)
=

=

(
1 − 2m+ 1

±kq + kn − l +m

)(
1 − 2m+ 1

±kq − kn − l +m

)
×

×
(

1 − 2l + 1

±kq + ki + 2m+ 1

)(
1 − 2l + 1

±kq − ki − 2m− 1

)
.

Thus the right-hand side of (4.11) is simplified to the following expression

T+
n (a+

n )T+
n

2
f − T+

i (a+
i )T+

i

2
f + T+

n (a−i )T+
n T

−
i f − T+

i (a−n )T+
i T

−
n f+

+
(
T+

n (a+
i ) − T+

i (a+
n )
)
T+

i T
+
n f +

(
T+

n (a−n ) − T+
i (a−i )

)
f. (4.12)

We note that
T+

n (a+
ni) = T+

i (a+
in) = T+

n (ai
in) = T+

i (a−ni) = 0

at k ∈ πin. We are left to check that

T+
n (a+

i ) = T+
i (a+

n ), (4.13)

T+
n (a−n ) = T+

i (a−i ). (4.14)

We note that if t 6= i, n then

T+
n (a+

it) = a+
it = a+

nt = T+
i (a+

nt).

Therefore condition (4.13) is reduced to the condition a+
iiT

+
n (a+

in) = a+
nnT

+
i (a+

ni), or

1

2m+ 1

(
1 − (2m+ 1)l

ki

)(
1 − 2m+ 1

ki + kn + l +m+ 1

)
×

×
(

1 − 2m+ 1

ki − kn − 3l +m− 1

)
=

=
1

2l + 1

(
1 − (2l + 1)m

kn

)(
1 − 2l + 1

kn + ki + l +m+ 1

)
×

×
(

1 − 2l + 1

kn − ki + l − 3m− 1

)
,

which is valid. We are left to check condition (4.14). We note that if t 6= i, n then

T+
n (a−nt) = T+

n (1 − 2l + 1

−kn + kt + l −m
)(1 − 2l + 1

−kn − kt + l −m
) =

= (1 − 2l + 1

−kn + kt − l −m− 1
)(1 − 2l + 1

−kn − kt − l −m− 1
) =

= (1 − 2l + 1

−ki + kt − 2m− 1
)(1 − 2l + 1

−ki − kt − 2m− 1
) =

= T+
i (1 − 2l + 1

−ki + kt

)(1 − 2l + 1

−ki − kt

) = T+
i (a−it).
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Therefore identity (4.14) is reduced to the following relation

T+
n (a−nna

−
ni) = T+

i (a−iia
−
in).

Substituting the corresponding expressions we get

1

2l + 1

(
1 +

(2l + 1)m

kn + 2l + 1

)(
1 − 2l + 1

−kn + ki − l −m− 1

)
×

×
(

1 − 2l + 1

−kn − ki − l −m− 1

)
=

1

2m+ 1

(
1 +

(2m+ 1)l

ki + 2m+ 1

)
×

×
(

1 − 2m+ 1

−ki + kn − l −m− 1

)(
1 − 2m+ 1

−ki − kn − l −m− 1

)
,

equivalently,

(
1 +

(2l + 1)m

kn + 2l + 1

)(
1 +

2l + 1

kn + ki + l +m+ 1

)
=

=

(
1 +

(2m+ 1)l

ki + 2m+ 1

)(
1 +

2m+ 1

ki + kn + l +m+ 1

)
,

which is valid for k ∈ πin.

d) The fact that axiomatics at the hyperplanes ki + kj = 0, kn + ki + l−m = 0, i, j =
1, . . . , n−1 is preserved can be checked analogously to the cases b) and c) correspondingly.
Thus the proposition is proved. �

Now we are ready to construct the Baker–Akhiezer function ψ(k, x). We define the
sequence of functions ϕi(k, x) by the following formulas. Let

ϕ0 =
∏

α∈Cn(l,m)

mα∏

s=1

(k + sα, α)(k − sα, α)e(k,x). (4.15)

More explicitly we have

ϕ0 = a
n−1∏

i=1

l∏

s=1

(k
2
i − s2(2m+ 1)2)

m∏

s=1

(k
2
n − s2(2l + 1)2)×

n−1∏

i=1

(
(ki + kn)2 − (m+ l + 1)2

) (
(ki − kn)2 − (m+ l + 1)2

)
×

n−1∏

i<j

2l+1
2m+1∏

s=1

(
(ki + kj)

2 − s2(2m+ 1)2
) (

(ki − kj)
2 − s2(2m+ 1)2

)
e(k,x),

where

a = 22(1−n)(2+(n−2) 2l+1
2m+1

).
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Then we define

ϕi+1 =

(
D − 2

2m+ 1

n−1∑

j=1

cosh
√

2m+ 1xj −
2

2l + 1
cosh

√
2l + 1xn

)
ϕi. (4.16)

It turns out that at the step

M =
∑

α∈Cn(l,m)

mα = (2 + l)(n − 1) +m+ (n− 1)(n − 2)
2l + 1

2m+ 1
(4.17)

one gets the BA function. Before formulating the theorem let us introduce the abbrevia-
tions xi =

√
2m+ 1xi for i = 1, . . . , n− 1, and xn =

√
2l + 1xn.

Theorem 4. The Baker–Akhiezer function is given by the formula

ψ(k, x) = c−1(x)ϕM ,

where ϕM is defined by formulas (4.15), (4.16), (4.17), and

c(x) = M ! (exn − e−xn)m×

×
n−1∏

i=1

(exi − e−xi)l
n−1∏

i<j

(exi−xj − exj−xi)
2l+1
2m+1 (exi+xj − e−xi−xj)

2l+1
2m+1×

×
n−1∏

i=1

(exi−xn − exn−xi)(exi+xn − e−xi−xn).

Proof. For the function ϕ0 the axiomatic conditions (2.2′) are clearly satisfied. Therefore
in view of propositions 5, 6 these conditions would also hold for all ϕi(k, x), and ϕi(k, x) =
Pi(k, x) e

(k,x) where Pi is a polynomial in k. Further we use induction to find the highest
term P 0

i (k, x) of the polynomial Pi.
By definition for any s ∈ N we have

(P 0
s+1 + lower order terms in Ps+1)e

(k,x) =

=

(
D − 1

2m+ 1

n−1∑

j=1

exj − 1

2m+ 1

n−1∑

j=1

e−xj − 1

2l + 1
exn − 1

2l + 1
e−xn

)
×

× (P 0
s + lower order terms in Ps)e

(k,x). (4.18)

In order to get the formulas for P 0
s+1 we represent the right-hand side of (4.18) as a fraction

of two polynomials. In the denominator of (4.18) it will be the polynomial

N =

n−1∏

i<j

(ki + kj)(ki − kj)×

×
n−1∏

i=1

(ki + kn − l+m)(ki − kn − l+m)(−ki + kn − l+m)(−ki − kn − l+m)

n∏

i=1

ki.
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We continue equality (4.18) using the formulas for the coefficients of the operator D given
by (4.1). We introduce the notation [Q(k)]0 for the highest homogeneous part of the
polynomial Q(k). Let N1 denote the homogeneous component of the polynomial N of
degree degN − 1. Then up to the lower terms we have

(
D − 1

2m+ 1

n−1∑

j=1

(exj + e−xj) − 1

2l + 1
(exn + e−xn)

)
(P 0

s + P 1
s + . . .)e(k,x) =

=
1

N

{
1

2m+ 1

n−1∑

i=1

(
N0 +N1 −

[
N
(∑

j 6=i

(
2l + 1

ki + kj

+
2l + 1

ki − kj

)
+

(2m+ 1)l

ki

+

+
2m+ 1

ki + kn − l +m
+

2m+ 1

ki − kn − l +m

)]0
+ . . .

)
T+

i −

− (N0 + N1 + . . .)exi +

+
1

2m+ 1

n−1∑

i=1

(
N0 +N1 −

[
N
(∑

j 6=i

(
2l + 1

−ki + kj

+
2l + 1

−ki − kj

)
− (2m+ 1)l

ki

+

+
2m+ 1

−ki + kn − l +m
+

2m+ 1

−ki − kn − l +m

)]0
+ . . .

)
T−

i −

− (N0 + N1 + . . .)e−xi +

+
1

2l + 1

(
N0 +N1 −

[((2l + 1)m

kn

+

+

n−1∑

j=1

( 2l + 1

kn + kj + l −m
+

2l + 1

kn − kj + l −m

))
N
]0

+ . . .

)
T+

n −

− (N0 + N1 + . . .)exn +

+
1

2l + 1

(
N0 +N1 −

[((2l + 1)m

−kn

+

+

n−1∑

j=1

( 2l + 1

−kn + kj + l −m
+

2l + 1

−kn − kj + l −m

))
N
]0

+ . . .

)
T−

n −

− (N0 + N1 + . . .)e−xn

}
×

×
(
P 0

s + P 1
s + . . .

)
e(k,x).
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Applying operators T±
i we get the following expression

1

2m+ 1

n−1∑

i=1

{[(
−
∑

j 6=i

( 2l + 1

ki + kj

+
2l + 1

ki − kj

)
−

− 2m+ 1

ki + kn − l +m
− 2m+ 1

ki − kn − l +m
− (2m+ 1)l

ki

)
N

]0

exiP 0
s +

+ exiN0∂P
0
s

∂ki

(2m + 1) + . . .

}
e(k,x)

N
+

+
1

2m+ 1

n−1∑

i=1

{[(
−
∑

j 6=i

( 2l + 1

−ki + kj

+
2l + 1

−ki − kj

)
−

− 2m+ 1

−ki + kn − l +m
− 2m+ 1

−ki − kn − l +m
+

(2m+ 1)l

ki

)
N

]0

e−xiP 0
s −

− e−xiN0 ∂P
0
s

∂ki

(2m + 1) + . . .

}
e(k,x)

N
+

+
1

2l + 1

{[(
−

n−1∑

j=1

( 2l + 1

kn + kj + l −m
+

2l + 1

kn − kj + l −m

)
−

− (2l + 1)m

kn

)
N

]0

exnP 0
s + exnN0 ∂P

0
s

∂kn

(2l + 1) + . . .

}
e(k,x)

N
+

+
1

2l + 1

{[(
−

n−1∑

j=1

( 2l + 1

−kn + kj + l −m
+

2l + 1

−kn − kj + l −m

)
+

+
(2l + 1)m

kn

)
N

]0

e−xnP 0
s − exnN0∂P

0
s

∂kn

(2l + 1) + . . .

}
e(k,x)

N
.

We assume now that P 0
s has the following form

P 0
s =

∑

{λ}
cλP

0
s,{λ},

where

P 0
s,{λ} =

n∏

i<j

k
λj

j (ki + kj)
λ+

ij (ki − kj)
λ−

ij .

Then P 0
s+1 being the ratio of the highest term in the numerator to the highest term in the

denominator takes the following form

P 0
s+1 =

∑

{λ}
cλP

0
s+1,{λ},
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where

P 0
s+1,{λ} =

n−1∑

i=1

(exi − e−xi)

(
λi − l

ki

+

n−1∑

j 6=i

(λ+
ij − 2l+1

2m+1

ki + kj

+
λ−ij − 2l+1

2m+1

ki − kj

)
+

+
λ+

in − 1

ki + kn

+
λ−in − 1

ki − kn

)
P 0

s,{λ}+

+ (exn − e−xn)

(
λn −m

kn

+

n−1∑

j 6=i

(λ+
jn − 1

kj + kn

+
−λ−jn + 1

kj − kn

))
P 0

s,{λ}

and we assume the notations λ±ij = λ±ji. Thus finally we have

P 0
s+1,{λ} =

n−1∑

i0=1

(λi0 − l)(exi0 − e−xi0 )k
λi0

−1
i0

∏

j 6=i0

k
λj

j

n∏

i<j

(ki + kj)
λ+

ij (ki − kj)
λ−

ij+

+ (λn −m)(exn − e−xn)k
λn−1
n

∏

j 6=n

k
λj

j

n∏

i<j

(ki + kj)
λ+

ij (ki − kj)
λ−

ij +

+

n−1∑

i0<j0

(
λ+

i0j0
− 2l + 1

2m+ 1

)
(exi0 − e−xi0 + exj0 − e−xj0 )(ki0 + kj0)

λ+
i0j0

−1×

×
n∏

j=1

k
λj

j

∏

i<j
(i,j) 6=(i0,j0)

(ki + kj)
λ+

ij

∏

i<j
(i,j) 6=(i0,j0)

(ki − kj)
λ−

ij +

+

n−1∑

i0<j0

(
λ−i0j0

− 2l + 1

2m+ 1

)
(exi0 − e−xi0 − exj0 + e−xj0 )(ki0 − kj0)

λ−
i0j0

−1×

×
n∏

j=1

k
λj

j

∏

i<j
(i,j) 6=(i0,j0)

(ki + kj)
λ+

ij

∏

i<j
(i,j) 6=(i0,j0)

(ki − kj)
λ−

ij +

+
n−1∑

i0=1

(λ+
i0n − 1)(exi0 − e−xi0 + exn − e−xn)(ki0 + kn)

λ+
i0n−1×

×
n∏

j=1

k
λj

j

∏

i<j
(i,j) 6=(i0,n)

(ki + kj)
λ+

ij

∏

i<j
(i,j) 6=(i0,n)

(ki − kj)
λ−

ij +

+
n−1∑

i0=1

(λ−i0n − 1)(exi0 − e−xi0 − exn + e−xn)(ki0 − kn)
λ−

i0n−1×

×
n∏

j=1

k
λj

j

∏

i<j
(i,j) 6=(i0,n)

(ki + kj)
λ+

ij

∏

i<j
(i,j) 6=(i0,n)

(ki − kj)
λ−

ij . (4.19)
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We now follow the changes of P 0 starting from

ϕ0 =
∏

α∈Cn(l,m)

mα∏

j=1

(k + jα, α)(k − jα, α)e(k,x),

that is

P 0
0 =

n∏

i=1

k
2mi

i

n∏

i<j

(ki + kj)
2mij

n∏

i<j

(ki − kj)
2mij .

Formula (4.19) shows that for any s P 0
s is a linear combination of monomials consisting

of the products k
λi

i (ki + kj)
λ+

ij (ki − kj)
λ−

ij , and the degree of monomials is decreasing by
1 at every application of the operator D. Besides this the coefficients in formula (4.19)
show that the monomials with degrees λi < mi and λ±ij < mij cannot appear. Thus we
get

P 0
∑

mα
= c(x)

n∏

i=1

k
mi

i

∏

i<j

(ki + kj)
mij (ki − kn)mij .

Therefore the function c(x)−1ϕ∑
mα

satisfies conditions (2.1), (2.2) of the BA function.
We are left to determine the coefficient c(x). For this we analyze once again formula

(4.19). At every step one of the terms ki, ki ± kj in the monomials is changed by the
corresponding function of x with some coefficient. We begin with the monomial

n∏

j=1

k
2mj

j

∏

i<j

(ki + kj)
2mij (ki − kj)

2mij

and finish by the monomial

n∏

j=1

k
mj

j

∏

i<j

(ki + kj)
mij (ki − kj)

mij .

Therefore

c(x) = c0

n−1∏

i=1

(exi − e−xi)l(exn − e−xn)m×

×
n−1∏

i<j

(exi − e−xi + exj − e−xj)
2l+1
2m+1

n−1∏

i<j

(exi − e−xi − exj + e−xj )
2l+1
2m+1×

×
n−1∏

i=1

(exi − e−xi + exn − e−xn)(exi − e−xi − exn + e−xn) =

= c0 (exn − e−xn)m×

×
n−1∏

i=1

(exi − e−xi)l
n−1∏

i<j

(exi−xj − exj−xi)
2l+1
2m+1 (exi+xj − e−xi−xj)

2l+1
2m+1 ×

×
n−1∏

i=1

(exi−xn − exn−xi)(exi+xn − e−xi−xn).
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It is left to determine the coefficient c0. This is an integer equal to the total number
of possible monomials. From (4.19) it easily follows that at the first step there appear
M =

∑
mi + 2

∑
mij monomials, and after the second step there appear M(M − 1)

monomials. In total we obtain c0 = M ! and the theorem is proven. �

In the end of this section we put the result on bispectrality.

Theorem 5. The Baker–Akhiezer function ψ(k, x) for the system Cn(l,m) satisfies the
following equation in variables k:

Dψ(k, x) =


 2

2m+ 1

n−1∑

j=1

cosh
√

2m+ 1xj +
2

2l + 1
cosh

√
2l + 1xn


ψ(k, x),

where D is operator (4.1). For the polynomials p(k) ∈ RCn(l,m) the difference operators

Dp = addeg p
D p(k)

commute with each other. These operators also commute with the operator D.

Proof. In the notations (4.15), (4.16) it follows from theorem 4 and propositions 5, 6
that ϕ∑

mα+1 has the form P (k, x)e(k,x) where P is a polynomial in k of degree less than∑
mα, and it satisfies axiomatics (2.2). By lemma 1 it follows that ϕ∑

mα+1 = 0 which is
equivalent to the first statement of the theorem.

Now, as it is explained in section 2 for any p ∈ RCn(l,m) there exists differential operator
Lp(x, ∂x) such that

Lp(x, ∂x)ψ(k, x) = p(k)ψ(k, x).

By the bispectrality arguments presented in section 3 we have

Dpψ(k, x) = ap(x)ψ(k, x)

for some function ap(x), therefore we have the relation

(Dp1Dp2 −Dp2Dp1)ψ(k, x) = (ap1ap2 − ap2ap1)ψ(k, x) = 0.

Because of the special form of ψ it follows that Dp1Dp2 −Dp2Dp1 = 0. �

5 Configuration AAAn,2(m)

The vectors and multiplicities forming this system in C
n+1 are as follows. The vectors

α0i =
√
−m− 1e0 − ei, ei −

√
men have multiplicities m0i = min = 1, i = 1, . . . , n − 1.

The vectors αij = ei − ej have multiplicities mij = m, 1 6 i < j 6 n − 1, the vector
α0n =

√
−m− 1 e0 −

√
men has multiplicity m0n = 1.

This configuration was introduced by Chalykh and Veselov in [12] as the one satisfying
the rational locus conditions but not satisfying the ∨-conditions and thus not leading to
a solution of the generalized WDVV equations (see [12]). In the case n = 2 the system
contains three vectors all having multiplicity 1 thus the parameter m can be arbitrary
complex rather than an integer. The corresponding elliptic operator was considered by
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Hietarinta [16] (see also [8], [10]). The important for us feature of this configuration is the
fact that the system does not admit the Baker–Akhiezer function in the sense of [31], that
is satisfying the conditions

ψ(k + sα, x) = ψ(k − sα, x)

at (α, k) = 0, s 6 mα. But the system admits the BA function in the sense of our definition
that is we impose conditions (2.2).

In order to construct the BA function we again follow the scheme of [6]. As a difference
operator D we take

D =

n∑

i=0

1

ei2

n∏

j=0
j 6=i

(k −mijαij , αij)Ti
1∏n

j=0
j 6=i

(k − αij, αij)
, (5.1)

where for this section we have introduced the following notations

e0 =
√
−m− 1 e0, en =

√
men, and ei = ei for 1 6 i 6 n− 1.

Also for 0 6 i 6 n we denote

ei
2 = (ei, ei), ki = (k, ei), xi = (x, ei)

for this section. Operators Ti act by the rule Ti(f(k)) = f(k + 2ei), and we understand
that αij = ei − ej also when i > j. Then operator D can be written as follows

D = − 1

m+ 1

(
1 +

2(m+ 1)

k0 − kn − 2m− 1

) n−1∏

j=1

(
1 +

2(m+ 1)

k0 − kj −m− 2

)
T0+

n−1∑

i=1

(
1 − 2

ki − k0 +m+ 2

)(
1 − 2

ki − kn −m+ 1

) n−1∏

j=1

(
1 − 2m

ki − kj

)
Ti+

+
1

m

(
1 − 2m

kn − k0 + 2m+ 1

) n−1∏

j=1

(
1 − 2m

kn − kj +m− 1

)
Tn.

At first we rearrange conditions (2.2′) into more convenient for us form similarly to the
case Cn(l,m) system considered earlier. Namely, for α = ei − ej , 1 6 i < j 6 n − 1

dropping A+ in the notation ψ
A+
α (k) for simplicity, the condition ψα(k+sα) = ψα(k−sα)

is equivalent to the condition

T s
i ψα = T s

j ψα at k ∈ πij : ki − kj = 0. (5.2)

Now we move to the consideration of the condition for α = ei − ej , where i = 0 or j = n
or both. The identity ψα(k + α) = ψα(k − α) is equivalent to the relation

Tiψα = Tjψα at k ∈ πij : ki − kj + e2i − e2j = 0, (5.3)

where ki = (k, ei). Indeed, let k ∈ πij , then

Tiψα(k) = ψα(k + 2ei) = ψα(k + α+ ei + ej),

Tjψα(k) = ψα(k + 2ej) = ψα(k − α+ ei + ej).

As (α, k + ei + ej) = 0 the conditions in the original form are equivalent to (5.3).
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Proposition 7. For any holomorphic function f(k0, k1, . . . , kn) satisfying conditions (5.2),
(5.3) the function Df(k0, . . . , kn) is also holomorphic if D is given by (5.1).

Proof. In principle the function Df(k0, . . . , kn) could have singularities at the hyperplane
π of the form

Ti0(k − αi0j0, αi0j0) = (k + ei0 + ej0, ei0 − ej0) = 0, (5.4)

i0 6= j0. We will show that this does not happen. We collect terms in Df which possibly
have singularities at (k + ei0 + ej0, ei0 − ej0) = 0. Since

Ti0(k − αi0j0, αi0j0) = −Tj0(k − αj0i0 , αj0i0) = (k + ei0 + ej0 , ei0 − ej0),

we get the sum of two terms

1

(k + ei0 + ej0 , ei0 − ej0)

(
1

e2i0

n∏

j=0
j 6=i0

(k −mi0j , αi0j)Ti0

f(k)∏n
j 6=i0,j0

(k − αi0j, αi0j)
−

− 1

e2j0

n∏

i=0
i6=j0

(k −mj0i, αj0i)Tj0

f(k)∏n
i6=i0,j0

(k − αj0i, αj0i)

)
. (5.5)

We have to show that the expression in brackets vanishes at k ∈ π (5.4). We note that
the vectors Ai0j0 = {αi0j , αj0i| j 6= i0, i 6= j0, i0} lie in some half-space in C

n ≈ R
2n, and

for any choice of the subsystem B ⊂ A such that B ∪ Ai0j0 is a positive system A+, the
vector αi0j0 is an edge vector in A+. Therefore axiomatic conditions (5.2), (5.3) state, in
particular, that

Ti0

f(k)
∏

j 6=i0,j0

∏mi0j

s=1 (k − sαi0j, αi0j)
∏

i6=i0,j0

∏mj0i

s=1 (k − sαj0i, αj0i)
∏

β∈B

∏mβ

s=1(k − sβ, β)
=

= Tj0

f(k)
∏n

i6=i0,j0

∏mj0i

s=1 (k − sαj0i, αj0i)
∏

i6=i0,j0

∏mi0j

s=1 (k − sαi0j , αi0j)
∏

β∈B

∏
s(k − sβ, β)

(5.6)

on the hyperplane π. Further we apply the shift operators to a part of the product in
(5.6) and we use equality

Ti0

mi0j∏

s=2

(k − sαi0j , αi0j) =

mi0j−1∏

s=1

(k − sαi0j , αi0j),

which is non-trivial only if mi0j > 1, that is for 1 6 i0, j 6 n− 1. We get

Ti0
f(k)∏

j 6=i0,j0
(k−αi0j ,αi0j)

∏
j 6=i0,j0

∏mi0j−1
s=1 (k − sαi0j, αi0j)

∏
i6=i0,j0

∏mj0i

s=1 (k − sαj0i, αj0i)
=

=
Tj0

f(k)∏
i6=i0,j0

(k−αj0i,αj0i)

∏n
i6=i0,j0

∏mj0i−1
s=1 (k − sαj0i, αj0i)

∏
j 6=i0,j0

∏mi0j

s=1 (k − sαi0j, αi0j)
.
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After necessary cancellations we obtain from above

∏

j 6=i0,j0

(k −mi0jαi0j , αi0j)Ti0

f(k)∏
j 6=i0,j0

(k − αi0j, αi0j)
=

=
∏

i6=i0,j0

(k −mj0iαj0i, αj0i)Tj0

f(k)∏
i6=i0,j0

(k − αj0i, αj0i)
.

Simplifying (5.5) with the help of equality

(k −mi0j0αi0j0, αi0j0)

(ei0 , ei0)
=

(k −mj0i0αj0i0 , αj0i0)

(ej0, ej0)

which is valid for k ∈ π, we conclude that expression (5.5) has no singularities at the
hyperplane π. �

Proposition 8. Let holomorphic function f(k) satisfy conditions (5.2), (5.3). Then the
function Df(k) also satisfies (5.2), (5.3) if D is given by (5.1).

Before we start proving the proposition we state a lemma which will be useful for us
to work with axiomatic conditions (5.2), (5.3).

Lemma 3. Let vector αij ∈ An,2(m) be an edge vector for two subsystems A
(1)
+ and A

(2)
+ .

Then the following condition for a holomorphic function f(k)

(T s
i − T s

j )
f(k)

∏
β∈A

(1)
+

β 6=αij

~β
= 0 at k ∈ πij, 1 6 s 6 mij

is equivalent to the condition

(T s
i − T s

j )
f(k)

∏
β∈A

(2)
+

β 6=αij

~β
= 0 at k ∈ πij, 1 6 s 6 mij

where ~β =
∏mβ

l=1(k + lβ, β).

Proof. We denote for the brevity
∏

t
~β =

∏
β∈A

(t)
+

β 6=αij

~β, t = 1, 2. As

(T s
i − T s

j )
f(k)
∏

2
~β

=

(
T s

i f(k)

T s
i

∏
1
~β

)(
T s

i

∏
1
~β

T s
i

∏
2
~β

)
−
(
T s

j f(k)

T s
j

∏
1
~β

)(
T s

j

∏
1
~β

T s
j

∏
2
~β

)
,

we have to show that

T s
i

∏
1
~β

∏
2
~β

= T s
j

∏
1
~β

∏
2
~β

at k ∈ πij.

This is equivalent to

(T s
i − T s

j )

∏
β∈A

(1)
+

(β,αij) 6=0

~β

∏
β∈A

(2)
+

(β,αij) 6=0

~β
= 0 at k ∈ πij . (5.7)
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Regrouping the product terms condition (5.7) takes the form

(T s
i − T s

j )
∏

q 6=i,j

mjq∏

t=1

miq∏

s=1

(k + sεiqαiq, αiq)(k + tεjqαjq, αjq)

(k + sδiqαiq, αiq)(k + tδjqαjq, αjq)
= 0 at k ∈ πij,

where εiq, δiq = ±1. And it is sufficient to show that ∀q 6= i, j

(T s
i − T s

j )

mjq∏

t=1

miq∏

s=1

(k + sεiqαiq, αiq)(k + tεjqαjq, αjq)

(k + sδiqαiq, αiq)(k + tδjqαjq, αjq)
= 0 at k ∈ πij . (5.8)

This means that condition (5.7) is reduced to the two-dimensional identity (5.8) in the
plane containing vectors αij , αiq, αjq. And the condition that αij is an edge vector for

A
(1)
+ , A

(2)
+ means that αij = ±(εiqαiq − εjqαjq), that is εiq = εjq, analogously we have

δiq = δjq. Therefore property (5.8) is reduced to the identity

(T s
i − T s

j )

mjq∏

t=1

miq∏

s=1

(k + sαiq, αiq)(k + tαjq, αjq)

(k − sαiq, αiq)(k − tαjq, αjq)
= 0 at k ∈ πij . (5.9)

Now we separately consider the arising cases
a) 1 6 i, j 6 n − 1. At any q the product in (5.9) is invariant under the reflection

ki ↔ kj . Therefore in particular property (5.9) holds.
Further we may assume that s = 1.
b) i = 0, 1 6 j 6 n− 1. Consider firstly the case q < n. Identity (5.9) takes the form

(T0 − Tj)
(k + α0q, α0q)

(k − α0q, α0q)

∏m
t=1(k + tαjq, αjq)∏m
t=1(k − tαjq, αjq)

= 0

at k0 − kj + (e0, e0) − (ej , ej) = 0. Or, more explicitly, we have

(k + 2e0 + α0q, α0q)

(k + 2e0 − α0q, α0q)

∏m
t=1(kj − kq + 2t)∏m
t=1(kj − kq − 2t)

=

=
(k + α0q, α0q)

(k − α0q, α0q)

∏m
t=1(kj − kq + 2t+ 2)∏m
t=1(kj − kq − 2t+ 2)

.

Performing the cancellations and recalling that k0 = kj − (e0, e0) + (ej, ej) = 0 we get

(kj − kq − 2m)(kj − kq + 2)

(kj − kq)(kj − kq − 2m)
=

(kj − kq + 2)(kj − kq + 2m+ 2)

(kj − kq + 2(m+ 1))(kj − kq)
,

which is obviously satisfied. Further we consider relation (5.9) at q = n. We have to check
that

T0
(k + α0n, α0n)(k + αjn, αjn)

(k − α0n, α0n)(k − αjn, αjn)
= Tj

(k + α0n, α0n)(k + αjn, αjn)

(k − α0n, α0n)(k − αjn, αjn)

at k0 − kj + (e0, e0) − (ej , ej) = 0. Applying the difference operators we have

(k0 − kn + 3e20 + e2n)(kj − kn + e2j + e2n)

(k0 − kn + e20 − e2n)(kj − kn − e2j − e2n)
=

=
(k0 − kn + e20 + e2n)(kj − kn + 3e2j + e2n)

(k0 − kn − e20 − e2n)(kj − kn + e2j − e2n)
.
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We substitute now k0 = kj − e20 + e2j , e
2
0 = −m− 1, e2n = m, e2j = 1 and we get the obvious

identity

(kj − kn −m− 1)(kj − kn +m+ 1)

(kj − kn −m+ 1)(kj − kn −m− 1)
=

=
(kj − kn +m+ 1)(kj − kn +m+ 3)

(kj − kn +m+ 3))(kj − kn −m+ 1)
.

c) i = 0, j = n. We have to check that

T0
(k + α0q, α0q)(k + αnq, αnq)

(k − α0q, α0q)(k − αnq, αnq)
= Tn

(k + α0q, α0q)(k + αnq, αnq)

(k − α0q, α0q)(k − αnq, αnq)

at k0 − kn + e20 − e2n = 0. Equivalently we have

(k0 − kq + 3e20 + e2q)(kn − kq + e2n + e2q)

(k0 − kq + e20 − e2q)(kn − kq − e2n − e2q)
=

=
(k0 − kq + e20 + e2q)(kn − kq + 3e2n + e2q)

(k0 − kq − e20 − e2q)(kn − kq + e2n − e2q)
.

We express k0 through kn and substitute the lengths of the vectors. We obtain the correct
equality

(kn − kq −m− 1)(kn − kq +m+ 1)

(kn − kq +m− 1)(kn − kq −m− 1)
=

=
(kn − kq +m+ 1)(kn − kq + 3m+ 1)

(kn − kq + 3m+ 1)(kn − kq +m− 1)
.

Finally, consider the last case

d) 1 6 i 6 n − 1, j = n. Like in the case b) we have to consider the cases q > 0 and
q = 0 separately. We assume at first that q > 0. We have to check that

(Ti − Tn)
(k + αnq, αnq)

(k − αnq, αnq)

∏m
t=1(k + tαiq, αiq)∏m
t=1(k − tαiq, αiq)

= 0 (5.10)

at ki − kn + e2i − e2n = 0. We consider separately (Ti − Tn) applied to the numerator of
(5.10). We get

(kn − kq +m+ 1)

m∏

t=1

(ki − kq + 2t+ 2) − (kn − kq + 3m+ 1)

m∏

t=1

(ki − kq + 2t) =

=
(
(ki − kq + 2m+ 2)(ki − kq + 2) − (ki − kq + 2)(ki − kq + 2m+ 2)

)
×

×
m∏

t=2

(ki − kq + 2t) = 0.
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Analogously we get

(Ti − Tn)(k − αnq, αnq)
m∏

t=1

(k − tαiq, αiq) = 0,

therefore condition (5.10) is satisfied. Finally let q = 0. We have to check that

(Ti − Tn)
(k + αi0, αi0)(k + αn0, αn0)

(k − αi0, αi0)(k − αn0, αn0)
= 0

if ki − kn + 1 −m = 0. We have

(Ti − Tn)
(k + αi0, αi0)(k + αn0, αn0)

(k − αi0, αi0)(k − αn0, αn0)
=

=
(ki − k0 −m+ 2)(kn − k0 − 1)

(ki − k0 +m+ 2)(kn − k0 + 1)
− (ki − k0 −m)(kn − k0 + 2m− 1)

(ki − k0 +m)(kn − k0 + 2m+ 1)
=

=
kn − k0 − 1

ki − k0 +m+ 2
− ki − k0 −m

kn − k0 + 2m+ 1
= 0.

Lemma 3 is fully proven. �

Now we are prepared for the proof of proposition 8.

Proof. At first we note that the operator D can be represented in the form

D =

n∑

p=0

1

(ep, ep)

n∏

q=0
q 6=p

~αqpTp
1∏n

q=0
q 6=p

~αqp
,

where

~αqp =

mqp∏

s=1

(k + sαqp, αqp).

We have to prove that

(T s
i − T s

j )
Df(k)
∏

β∈A+
β 6=αij

~β
= 0 at k ∈ πij,

if

(T s
i − T s

j )
f(k)

∏
β∈A+
β 6=αij

~β
= 0 at k ∈ πij, (5.11)

s = 1, . . . ,mij .
We have

(T s
i − T s

j )
Df(k)
∏ ~β

= (T s
i − T s

j )
1
∏ ~β

n∑

p=0

1

(ep, ep)

n∏

q=0
q 6=p

~αqpTp
1∏n

q=0
q 6=p

~αqp
f(k).
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We show that the terms in the last sum corresponding to p 6= i, j vanish, that is we show
that

(T s
i − T s

j )
1

∏
β∈A+
β 6=αij

~β

n∏

q=0
q 6=p

~αqpTp
1∏n

q=0
q 6=p

~αqp
f(k) = 0 (5.12)

at k ∈ πij. According to lemma 3 conditions (5.12) are equivalent for different choices of
A+ such that αij is an edge vector. Therefore we can assume that A+ contains the vectors
αqp, 0 6 q 6 n, q 6= p. For such a choice of A+ one can carry out the cancellations in
(5.12) and continue the equality

(T s
i − T s

j )
1

∏
β∈A+

β 6=αij,(β,ep)=0

~β
Tp

f(k)∏n
q=0
q 6=p

~αqp
= Tp(T

s
i − T s

j )
f(k)

∏
β∈A+
β 6=αij

~β
= 0

because of (5.11). Thus we get

(T s
i − T s

j )
1∏

β∈A+
β 6=αij

Df(k) =

= (T s
i − T s

j )
1
∏ ~β

(
1

(ei, ei)

∏

q

~αqiTi
1∏
q ~αqi

+
1

(ej , ej)

∏

q

~αqjTj
1∏

q ~αqj

)
f(k). (5.13)

Because of lemma 3 it is again legal to prove the triviality of the last expression for a special
choice of A+ only. We choose A+ containing the vectors αqi, αqj, 0 6 q 6 n, q 6= i, j. Then
in equality (5.13) one can perform cancellations and commutation such that the equality
continues as follows

(T s
i − T s

j )
1∏

β∈A+
β 6=αij

Df(k) =

= (T s
i − T s

j )

(
~αji

(ei, ei)
Ti(

1

~αji
)Ti

1
∏

β∈A+
β 6=αij

~β
+

~αij

(ej , ej)
Tj(

1

~αij
)Tj

1
∏

β∈A+
β 6=αij

~β

)
f(k) =

=
1

(ei, ei)

T s
i ~αji

T s+1
i ~αji

T s+1
i

(
f(k)
∏ ~β

)
− 1

(ej , ej)

T s
j ~αij

T s+1
j ~αij

T s+1
j

(
f(k)
∏ ~β

)
−

− 1

(ei, ei)

T s
j ~αji

T s
j Ti~αji

TiT
s
j

(
f(k)
∏ ~β

)
+

1

(ej, ej)

T s
i ~αij

T s
i Tj~αij

TjT
s
i

(
f(k)
∏ ~β

)
. (5.14)

In order to check that the obtained expression is equal to zero we analyze the possible
cases. If mij = 1 then s = 1 and Ti~αji = Ti(k + αji, αji) = kj − ki + (ej, ej) − (ei, ei) = 0
if k ∈ πij. Analogously Ti~αij = 0, thus the first two terms in (5.14) vanish. Also the last
two terms in (5.14) cancel pairwise as

1

(ei, ei)

Tj~αji

TjTi~αji
=

Tj(k + αji, αji)

(ei, ei)TjTi(k + αji, αji)
=

kj − ki + 3e2j + e2i

(ei, ei)(kj − ki + 3e2j − e2i )
=

=
2(e2i + e2j )

2e2i e
2
j

=
1

(ej, ej)

Ti~αij

TiTj~αij
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at k ∈ πij. Now, if mij = m, that is 1 6 i, j 6 n − 1, then at ki = kj because of the
symmetry we obviously have

1

(ei, ei)

T s
i ~αji

T s+1
i ~αji

=
1

(ej, ej)

T s
j ~αij

T s+1
j ~αij

= g(k),

and also
1

(ei, ei)

T s
j ~αji

T s
j Ti~αji

=
1

(ej, ej)

T s
i ~αij

T s
i Tj~αij

= h(k).

Thus relation (5.14) can be rewritten as

(
T s

i − T s
j

) 1
∏ ~β

Df(k) = g(k)

(
T s+1

i

f(k)
∏ ~β

− T s+1
j

f(k)
∏ ~β

)
+

+ h(k)TiTj

(
T s−1

i

f(k)
∏ ~β

− T s−1
j

f(k)
∏ ~β

)
+ O(ki − kj) = 0,

since conditions (5.11) hold, here we have 1 6 s < mα. In the case s = mα the previous
equality also takes place as in this case g(k) = 0. The proposition is proven. �

Theorem 6. Let

ϕ0 =
(
(k0 − kn)2 − 1

) n−1∏

i,j=1
i<j

m∏

s=1

(
(ki − kj)

2 − 4s2
)
×

n−1∏

i=1

(
(k0 − ki)

2 −m2
)(

(ki − kn)2 − (m+ 1)2
)
, (5.15)

and let
ϕt+1 = (D − λ(x))ϕt,

where D is operator (5.1), λ(x) =
∑n

i=0
1
e2
i

e2xi , and t = 0, 1, 2, . . . Then

ψ(k, x) =

[
2MM !

∏

i<j

(e2xi − e2xj)mij

]−1

ϕM (k, x)

is the Baker–Akhiezer function for the configuration An,2(m) if M = m(n−1)(n−2)
2 +2n−1.

Proof. We note at first that the function ϕ0 has in fact the following form

ϕ0 =
∏

α∈An,2(m)

mα∏

i=1

(k + iα, α)(k − iα, α)e(k,x).

Therefore propositions 7, 8 guarantee that for any s the function ϕs(k, x) has the form
ϕs = Ps(k, x)e

(k,x) where Ps is a polynomial in k with the highest term P 0
s , and also

ϕs satisfies axiomatics (5.2), (5.3). Thus we have to show that if s = M then the first
condition of the BA function definition (2.1) holds, that is P 0

M =
∏

i<j(ki − kj)
mij . For

that we analyze how P 0
s changes while one applies operator D − λ(x).
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Lemma 4. Let (D − λ(x))(Q1(k, x)e
(k,x)) = Q2(k, x)e

(k,x), where Q1, Q2 are polynomials
in k with the highest terms Q0

1, Q
0
2. Then

Q0
2 = 2

n∑

i=0

e2xi
∂Q0

1

∂ki

+

( n∑

i=0

e2xi

n∑

j=0
j 6=i

−2mij

ki − kj

)
Q0

1. (5.16)

To prove the lemma we rewrite the operator D in the form

D =

n∑

i=0

1

e2i

n∏

j=0
j 6=i

ki − kj −mij(e
2
i + e2j )

ki − kj + e2i − e2j
Ti.

Now the arguments analogous to the ones given in the proof of theorem 4, show that

Q0
2 =

n∑

i=0

e2xi

e2i

∂Q0
1

∂ki
2
√

(ei, ei)+

+

n∑

i=0

e2xi

e2i

∑

j 6=i

1

ki − kj

(
−(mij + 1)e2i − (mij − 1)e2j

)
Q0

1.

And it is easy to notice that the obtained expression coincides with the one in for-
mula (5.16). In particular, ifQ0

1 is a linear combination of monomials, Q0
1 =

∑
{λ}
∏

i<j(ki−
kj)

λij , then

Q0
2 =

∑

{λ}

∑

i0<j0

2(λi0j0−mi0j0)(e
2xi0 −e2xj0 )(ki0 −kj0)

λi0j0
−1

∏

(i,j)6=(i0,j0)

(ki−kj)
λij . (5.17)

Thus in order to construct ϕi we start with the monomial P 0
0 =

∏
i<j(ki − kj)

2mij , and

at every step i the highest term P 0
i is a linear combination of monomials of the form∏

(ki − kj)
λij . From formula (5.17) it can be seen that λij > mij , therefore at the step

with the number M =
∑
mα it is necessarily that P 0

M = C(x)
∏

i<j(ki − kj)
mij . The

combinatorial arguments similar to the ones given in the proof of theorem 4 for the system
Cn(l,m) show that C(x) = 2MM !

∏
i<j(e

2xi − e2xj )mij , thus the theorem is proven. �

In the end of this section we put the result on bispectrality.

Theorem 7. The Baker–Akhiezer function ψ(k, x) for the system An,2(m) satisfies the
following equation in variables k:

Dψ(k, x) =
n∑

i=0

1

e2i
e2xiψ(k, x),

where D is operator (5.1). For the polynomials p(k) ∈ RAn,2(m) the difference operators

Dp = addeg p
D p(k)

commute. These operators also commute with operator D.
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Proof. By propositions 7, 8 the function

(D −
n∑

i=0

1

e2i
e2xi)ψ(k, x)

has the form P (k, x)e(k,x) where P is a polynomial in k of degree less than
∑
mα, and sat-

isfies axioms (5.2), (5.3). By lemma 1 we have P = 0 which is the required equation. The
proof of the second part of the theorem is also identical to the proof of the corresponding
theorem 5 about the configuration Cn(l,m).

�

6 Trigonometric locus conditions

In this section we obtain the restrictions for a configuration A = (A,m) to admit the
Baker–Akhiezer function. We obtain them from the Scroedinger equation which holds
for the BA function, the restrictions turn out to be quite strong, they also have clear
geometrical sense.

By Proposition 2 we have the following equation for the Baker–Akhiezer function
ψ(k, x):

(
∆ −

∑

α∈A

mα(mα + 1)(α,α)

sinh2(α, x)

)
ψ(k, x) = k2ψ(k, x). (6.1)

In paper [10] such an equation was considered for an arbitrary meromorphic potential and
a function ψ of the form ψ = P (k, x)e(k,x) where P is a polynomial in k. As it was shown
in [10] (see also [15]) the potential should satisfy the so called locus conditions. Regarding
the form (6.1) these conditions have the form

∂2s−1
α

∑

β∈A
β 6=α

mβ(mβ + 1)(β, β)

sinh2(β, x)
= 0 at sinh(α, x) = 0, (6.2)

s = 1, . . . ,mα.
We take vectors β forming a positive subsystem A+, with α one of the edge vectors.

Then projections

β̂ = β − aβα, aβ =
(α, β)

(α,α)
(6.3)

of the vectors β to the hyperplane Π : (α, x) = 0 belong to a half-space in this hyperplane.
Indeed, otherwise we have a non-trivial dependence

∑
β∈A+\α rββ̂ = 0 with some non-

negative real coefficients rβ . Then
∑

β∈A+\α rββ = λα for some λ ∈ C. Since all the
vectors from A+ belong to some lattice it follows that the coefficient λ must be real. In
order for α to belong to the same half space as all β it must be λ > 0 which contradicts
the condition that α is an edge vector. So the projections β̂ must belong to a half-space.
We denote by σ the border of this half-space.

The cone K = {Re(β̂, x) < 0| β ∈ A+\α} has a non-empty intersection with Π.
Indeed, we consider a generic extension to C

n of the (2n−3)−plane σ to form a (2n−1)−
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hyperplane. Let it have the equation Re(u, x) = 0 for some u ∈ C
n so that Re(u, β̂) < 0

for all projections β̂. Now consider û = u− (u,α)
(α,α)α. One has û ∈ Π, and also (û, β̂) = (u, β̂)

thus û ∈ K so the intersection K ∩ Π is non-empty.

In the cone K we can expand sinh(β, x) into the corresponding series so that conditions
(6.2) take the form

∂2s−1
α

∑

β∈A+
β 6=α

4mβ(mβ + 1)(β, β)

∞∑

j=1

je2j(β,x) = 0 at sinh(α, x) = 0.

More explicitly we obtain

∑

β∈A+
β 6=α

∞∑

j=1

mβ(mβ + 1)(β, β)(j(α, β))2s−1je2j(β,x) = 0 (6.4)

at Πn : {(α, x) = πin}; n ∈ Z. We note that the intersection K ∩Πn is non-empty for any
n. Indeed, we represent x in the form x = πin

(α,α)α + y for some vector y. The condition

x ∈ Πn ∩K takes the form (α, y) = 0 and Re(β, x) < 0, β ∈ A+\α. In terms of y we get

Re(β, x) = Re
(
β̂ + aβα,

πin

(α,α)
α+ y

)
= Re(β̂, y) + Re(aβπin) < 0.

Thus x belongs to Πn∩K if and only if the corresponding y = x− πin
(α,α)α satisfies (α, y) = 0

and also Re(β̂, y) < −Re(aβπin). The last intersection is non-empty as it contains a real
multiple of any vector from the cone Π ∩K.

Now in the cone K̂n =
{
y| (α, y) = 0, Re(β̂, y) < −Re(aβπin)

}
the following form of

conditions (6.4) takes place:

∑

β∈A+
β 6=α

∞∑

j=1

mβ(mβ + 1)(β, β) (j(α, β))2s−1 j e2jaβπin e2j(β̂,y) = 0. (6.5)

We notice that the vectors β̂ belong to a lattice of rank n − 1 in the hyperplane Π.
Indeed, considering if necessary a sub-lattice of the original lattice in C

n we may assume
that the vector α is an integer multiple of a basis vector of this lattice. The projections
of other n− 1 basis vectors to Π will generate a lattice in Π containing the vectors β̂.

Let e∗1, . . . , e
∗
n−1 be a basis of this lattice. We claim that after collecting the terms

the coefficients at each particular exponent (p1e
∗
1 + . . .+ pn−1e

∗
n−1, x) in (6.5) equal zero.

Indeed, the cone K̂n contains a parallelepiped of the form

Bλ =
{
x| (x, e∗j ) ∈ [λj , λj + 2πitj ], 0 6 tj 6 1, j = 1, . . . , n− 1

}
(6.6)

for some λj ∈ C. Multiplying the series (6.5) by exp(−p1e
∗
1 − . . . − pn−1e

∗
n−1, x) and

integrating it over Bλ (which can be done term by term as (6.5) is uniformly convergent
onBλ) we conclude that all the terms are zero except the coefficient at the chosen exponent,
thus it should vanish as well.
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Consider now the set of vectors B1 = {β1, . . . , βp} ⊂ A+ such that β̂1 = . . . = β̂p, and

jβ̂ 6= β̂1 for any β ∈ A+, j ∈ N, j > 1. By the previous argument we conclude

∑

β∈B1

mβ(mβ + 1)(β, β)(α, β)2s−1e2aβπin = 0.

Since n ∈ Z is arbitrary the set B1 is decomposed into the subsets B1 = B1
1 ∪ . . . ∪ B1

t

such that ∀β, γ ∈ B1
l one has e2aβπi = e2aγπi and

∑

β∈B1
l

mβ(mβ + 1)(β, β)(α, β)2s−1 = 0. (6.7)

We note that the condition e2aβπi = e2aγπi is equivalent to aβ − aγ = nβγ ∈ Z. Using

β̂ = γ̂ and recalling (6.3) we get

β − γ = nβγα. (6.8)

Further, for any j > 1 we clearly have

∑

β∈B1

mβ(mβ + 1)(β, β) (j(α, β))2s−1 j e2jaβπin = 0,

and therefore identity (6.5) is valid with the summation over β ∈ A+\α\B1. Thus the
system A+\α can be presented as a union of subsystems B1 ⊔B2 ⊔ . . . for each of which
it is valid (6.7), (6.8). We have proven the following

Theorem 8. Let configuration A = (A,m) admit the Baker–Akhiezer function. Let
A+ ⊂ (A ∪ (−A)) be a positive subsystem and let vector α ∈ A+ be an edge vector.
Then the system of vectors A+\α can be represented as a disjoint union of “series”
A+\α = B1 ⊔ . . . ⊔BN such that for all l, 1 6 l 6 N one has

1) for any β, γ ∈ Bl the difference β − γ = nβγα, with nβγ ∈ Z;
2)
∑

β∈Bl
mβ(mβ + 1)(β, β)(α, β)2s−1 = 0, where 1 6 s 6 mα.

These properties are equivalent to locus conditions (6.2).
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