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Abstract

By associating polynomials and power series expansions with sln(C) modules we de-
scribe the theory of Padé approximants in terms of tensor products of representations
and interpret their recurrence relations algebraically. The treatment links with the
theory of Hirota derivatives and discrete integrable models and is generalizable to
larger numbers of variables. This paper summarizes and extends the work of [2].

1 Introduction

The primary aim of this work is to apply the representation theory of Lie algebras to
Padé approximants and to make a case, by demonstration, for the use of such methods
in that area. A secondary aim is to draw together certain ideas in the field of integrable
systems, namely integrable lattice equations and Hirota derivatives, under the umbrella
of representation theory.

Although driven by prejudice these aims are also motivated by phenomenology. The
prejudice is that visually complex algebraic expressions are significant only in the contexts
of simple algebraic structures, the phenomenological observation that generic expressions
for the coefficients of Padé approximants are curiously reminiscent of expressions occurring
in algebraic invariant theory [11].

The paper is divided into six sections.

Firstly we review the essentials of the theory of Padé approximants and establish the
notation to be used. Secondly we explain how the polynomial, rational and analytic func-
tions are associated with covariants and invariants of the Lie algebra sl2. In the third
section we explicitly show how the Padé approximants of a given analytic function are
generated by Lie algebraic operations and associated with certain highest weight repre-
sentations of sl2. The next section provides an algebraic formulation of the classical Hirota
derivative and derives the recurrence relations for the highest weight vectors associated to
the rational approximations. Following this we indicate how the theory is generalized to
n variable rational functions (multi variable Padé approximants). We claim this leads to
deformed discrete KdV equations.

Copyright c© 2005 by C Athorne
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The historical origins of Padé approximants lie within the development of continued
fractions [6]. Either can be viewed as arising from 2-term recurrence relations:

fk−1 = lkfk + qkfk+1 (1.1)

where the coefficients lk and qk are either independent or dependent on a parameter, x.

If we choose lk to be linear in x and qk to be quadratic then we obtain a generalization

fk−1(x) = (ak + bkx)fk(x) + (ck + dkx + ekx
2)fk+1(x) (1.2)

of a recurrence relation first considered by Lagrange and leading to a sequence of [k−1, k]
Padé approximants. Although we will not deal directly with this relation in what follows,
we can regard as motivation the following observation: that the change of variables

x 7→ X =
αx + β

γx + δ
(1.3)

fk(x) 7→ Fk(X) = (γx + δ)k−1fk(x) (1.4)

acts covariantly on the recurrence relation, so that,

Fk−1(X) = (Ak + BkX)Fk(X) + (Ck + DkX + EkX
2)Fk+1(X) (1.5)

where the upper case coefficients, Ak, . . . Ek are simply related to the lower case, ak, . . . ek,
through the parameters α, . . . δ of the transformation.

All that follows below is a simple consequence of this covariance.

2 Padé approximants

In general Padé approximants are rational approximations to analytic functions (which
may themselves be rational).

All functions will be defined on the projective line on which we use homogeneous
coordinates x and y. The fundamental identity for the [n,m] Padé approximant of a
function f(z) analytic at z = 0 is:

P [n,m](x, y)

Q[n,m](x, y)
= F [n,m](x, y) = yn−m

∞
∑

i=0

f
[n,m]
i zi (2.1)

where:

• n and m are positive or zero integers and P [n,m](x, y) and Q[n,m](x, y) homogeneous
polynomials in x and y of degrees n and m respectively;

• z = x
y is the inhomogenous variable on one coordinate chart of the projective line;

• the first n+m+1 Taylor coefficients of the given function f(z) coincide with the first

n + m + 1 coefficients of ym−nF [n,m](x, y), namely f
[n,m]
0 , f

[n,m]
1 , f

[n,m]
2 , . . . , f

[n,m]
n+m .
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We will adopt the point of view that the function F [n,m](x, y), the expansion of the
rational approximation, is the “fundamental” object and that the coefficients

f
[n,m]
0 , f

[n,m]
1 , f

[n,m]
2 , . . . , f

[n,m]
n+m

are the “fundamental” variables in terms of which everything else will be expressed. The
superfices [n,m] will normally be suppressed, they being implicit in the context.

Equation (2.1) leads to an infinite number of equations linear in the coefficients of
P [n,m](x, y) and Q[n,m](x, y). We use the following notation for these coefficients

P [n,m](x, y) = p
[n,m]
0 yn + p

[n,m]
1 xyn−1 + . . . + p[n,m]

n xn (2.2)

Q[n,m](x, y) = q
[n,m]
0 ym + q

[n,m]
1 xym−1 + . . . + q[n,m]

m xm (2.3)

and, as before, suppress the superfices, so that amongst the infinite set of linear equations
are a special set of homogeneous equations (written here in the case that n < m),























fn+1 fn fn−1 . . . f0 0 . . . 0
fn+2 fn+1 fn . . . f1 f0 . . . 0

...
. . . 0

... f0

...
...

fn+m+1 fn+m . . . . . . . . . . . . . . . fn+1













































q0

q1
...
...
...

qm























= 0 (2.4)

In fact, this linear system tells us all we need to know to construct the rational approximant
and the explicit representation theory.

3 Modules associated with functions

Initially we define sl2 modules spanned by monomials in x, y, x−1 and y−1. sl2 is the C

algebra generated by

e = x∂y (3.1)

f = y∂x (3.2)

h = x∂x − y∂y (3.3)

with antisymmetric product (commutation)

[e, f ] = h (3.4)

[h, e] = 2e (3.5)

[h, f ] = −2f (3.6)

We define a module V [n] and a submodule V
[n]
0 thereof as C spans of basis elements:

V [n] = SpanC{x
iyj|i, j ∈ Z, i + j = n} (3.7)

V
[n]
0 = SpanC{x

iyj|i ∈ N, j ∈ Z, i + j = n} (3.8)
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and the notation N refers to the additive semigroup, so 0 ∈ N.

V
[n]
0 is a submodule of V [n] with a highest weight element y ∈ ker f .

In the case that n ≥ 0, V [n] has a finite dimensional submodule V
[n]
glob spanned by

monomials in x and y of degree n.
Now introduce a C-vector space

F [n] = spanC{f
[n]
i,j |i, j ∈ Z, i + j = n} (3.9)

and a pairing

F [n] × V [n] → homogeneous Laurent series (3.10)

(f, v) 7→
∑

i+j=n

f
[n]
i,j xiyj (3.11)

In order to extend the sl2 action to F [n] we use invariance of this pairing. Thus

(e(f), v) + (f, e(v)) = 0 (3.12)

implies

e(f
[n]
i,j ) = −(j + 1)f

[n]
i−1,j+1 (3.13)

Similarly

f(f
[n]
i,j ) = −(i + 1)f

[n]
i+1,j−1 (3.14)

h(f
[n]
i,j ) = (j − i)f

[n]
i,j (3.15)

The Laurent series represented by (f, v) is thus an invariant of the Lie algebra action
generalizing the approach to invariants adopted in the classical literature [11]. Because
we wish to restrict attention to functions with analytic expansions the above Lie algebra
action has to be restricted to a quotient module of F [n]. There is a submodule

(V
[n]
0 )⊥ = {f ∈ F [n]|(f, v) = 0,∀v ∈ V

[n]
0 } ⊳ F [n] (3.16)

and we can define the analytic quotient module F
[n]
0 as the factor module

F
[n]
0 = F [n]/(V

[n]
0 )⊥ (3.17)

with the inherited sl2 action. So now the pairing above restricts to

F
[n]
0 × V

[n]
0 → homogeneous series analytic at x = 0 (3.18)

The relation (2.1) is now interpreted as a relation between invariants P [n,m], Q[n,m]

and F [n,m], the linear relations (2.4) are covariant under the sl2 action and the relations
between the coefficients of P [n,m], Q[n,m] and F [n,m] become expressed in terms of factors
of tensor products of the analytic quotient module associated with F [n,m]. We are effec-
tively constructing finite dimensional modules (of dimensions n and m) from an infinite

dimensional module, F
[n]
0 .
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4 Generating the Padé table

The immediate problems are:

• to construct F [n,m] from F
[σ]
0 ;

• to construct q
[n,m]
0 from F [n,m];

• to obtain the recurrence relations;

• to give an algebraic construction of the highest weight element associated with the
[n,m] approximant.

The coefficients of the analytic function F [n,m](x, y) behave like a representation of the
form F [n−m] but with a set of relations coming from an infinite set of linear equations of
which the homogeneous equation (2.4) is the simplest. Letting

δ[n,m] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fn+1 fn fn−1 . . . f0 0 . . . 0
fn+2 fn+1 fn . . . f1 f0 . . . 0

...
. . . 0

... f0

...
...

fn+m+1 fn+m . . . . . . . . . . . . . . . fn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.1)

the relations are δ[n,m] = 0 and all other relations obtained by application of f to this
relation.

δ[n,m] is itself a highest weight element for, if not, we could obtain a relation independent
of fn+m+1 by an application of e contradicting the independence of the fundamental
variables. This highest weight element thus defines a submodule of relations living inside
the symmetric m + 1-fold tensor product module,

m+1
⊙

F
[σ]
0 .

As such it must be isomorphic to one of the F
[τ ]
0 , for some τ ∈ Z, an identification which

can be made more precise by an application of the Casimir operator

C = ef + fe +
1

2
h2

which has eigenvalue 1
2τ(τ + 2) on any element of F

[τ ]
0 . It is easily evaluated on δ[n,m]

simply by examining the two terms of highest degree in fn+1 and it is seen that δ[n,m] is

highest weight element for a submodule of
⊙m+1 F

[σ]
0 isomorphic to F

[−(m+1)(n+m+2)]
0 .

In order to construct the coefficients of the polynomials P [n,m] and Q[n,m] it is efficient

to start with q
[n,m]
0,m . The cofactor expansion of δ[n,m] dictates that the q

[n,m]
i,m−i are the

determinantal cofactor expressions up to an overall factor. This overall factor is easily
determined by insisting that

f(q
[n,m]
0,m ) = −q

[n,m]
1,m−1
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which implies an easily solvable differential equation for the factor.
In this way

q
[n,m]
0,m = (δ[n,m−1])−

1

n+m+1 (4.2)

and all the other q’s follow by application of f . Then also

p
[n,m]
0,m = f0q

[n,m]
0,m (4.3)

and applications of f yield the others.
The following is an example of the procedure.
Consider the case n = m = 2, σ = 0. Then

p0y
2 + p1xy + p2x

2

q0y2 + q1xy + q2x2
= F [2,2] (4.4)

= f0 + f1
x

y
+ f2

x2

y2
+ f3

x3

y3
+ f4

x4

y4
+ f5

x5

y5
+ . . . (4.5)

and we consider f0, f1, f2, f3 and f4 to be the fundamental variables. They satisfy a
relation with f5:

δ[2,2] =

∣

∣

∣

∣

∣

∣

f3 f2 f1

f4 f3 f2

f5 f4 f3

∣

∣

∣

∣

∣

∣

= 0. (4.6)

We start with

δ[2,1] =

∣

∣

∣

∣

f3 f2

f4 f3

∣

∣

∣

∣

and

q0 = (f2
3 − f2f4)

−
1

5 . (4.7)

Successive application of −f and −1
2 f , modulo the relation δ[2,2] = 0, yields

q1 = (f2
3 − f2f4)

−
1

5 (f3f1 − f2
2 )−1(f1f4 − f2f3) (4.8)

q2 = (f2
3 − f2f4)

−
1

5 (f3f1 − f2
2 )−1(f2f4 − f2

3 ) (4.9)

and it is easily checked that q2 is in the kernel of f . Likewise

p0 = f0(f
2
3 − f2f4)

−
1

5 (4.10)

and successive application of −f and −1
2 f , modulo the relation δ[2,2] = 0, yields

p1 = (f2
3 − f2f4)

−1/5(f1f3 − f2
2 )−1(f2

1 f3 − f0f1f4 + f0f2f3 − f1f
2
2 ) (4.11)

p2 = (f2
3 − f2f4)

−1/5(f1f3 − f2
2 )−1(f0f2f4 + 2f1f2f3 − f3

2 − f2
1 f4 − f0f

2
3 ) (4.12)
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and it is easily checked that p2 is in the kernel of f .

Although the expressions for the coefficients are algebraic rather than polynomial, it is
guaranteed that a common algebraic factor cancels between the numerator and denomi-
nator of the rational function. We obtain, finally,

F [2,2] =

(f0f1f3 − f0f
2
2 )y2 + (f0f2f3 + f2

1 f3 − f0f1f4 − f1f
2
2 )xy + (f0f2f4 + 2f1f2f3 − f3

2 − f2
1f4 − f0f

2
3 )x2

(f1f3 − f2

2
)y2 + (f2f3 − f1f4)xy + (f2f4 − f2

3
)x2

(4.13)

Thus all the information about the generic [n,m] Padé approximant is contained in the
determinants δ[n,m−1] defining q0 and δ[n,m] defining a module of relations.

5 Recurrence relations and Hirota derivatives

Relations between Padé approximants labelled by different integer pairs exist and originate
with Frobenius [9]. One class of such relations are due to Wynn [14] and are sometimes
called the “missing relations of Frobenius”. Gragg [10] summarises the situation.

There are actually a host of relations quoted in the literature which are mutually
dependent. It is not altogether clear to the present author what “missing” means: certainly
Frobenius was aware of five point relations. (See [9] eqn. 17.)

From the current point of view there are two points to be made. Firstly, we can
establish equivalent classes of relations between the δ[n,m]. Viewed as a lattice function δ
satisfies both four-point (Frobenius-like) and five-point (missing Frobenius-like) relations
and these can be shown to be mutually consistent. Secondly, the δ, being interpreted
as highest weight vectors of (infinite dimensional) representations of sln(C), can also be
constructed using a Hirota map which is really just a slight extension of the classical Hirota
derivative [12].

The relations are obtained using the determinantal identity (variously ascribed, [1]),

|A||i,kAl,j| = |iAj||kAl| − |iAl||kAj|, (5.1)

where the prefixes denote omitted rows and the suffices omitted columns.

Choosing |A| = δ[n,m+1] and i = l = 1, k = j = m + 2 gives

δ[n,m+1]δ[n,m−1] = δ[n+1,m]δ[n−1,m] − δ[n,m]2 (5.2)

a five point relation centred on lattice site [n,m].

Four point relations follow from the choices i = n, k = 1, l = 1 and j = 2. This leads
to the “lozenge” type relation:

δ[n,m]δ[n+1,m+2] =
1

n + m + 3
f(δ[n,m+1])δ[n+1,m+1] −

1

n + m + 4
δ[n,m+1]f(δ[n+1,m+1])

(5.3)
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Similarly,

δ[n,m]δ[n+2,m+1] =
1

n + m + 3
f(δ[n+1,m])δ[n+1,m+1] −

1

n + m + 4
δ[n+1,m]f(δ[n+1,m+1])

(5.4)

If we consider a relation of type (5.3) between the sites with labels (n,m − 1), (n +
1,m), (n + 1,m + 1) and (n,m) and a relation of type (5.4) between (n − 1,m), (n,m +
1), (n + 1,m + 1) and (n,m) we may eliminate the site (n + 1,m + 1) to leave a five-point
relation between sites (n,m − 1), (n,m + 1), (n − 1,m), (n + 1,m) and (n,m) which is
exactly the relation (5.2). This relation is, in principle, equivalent to the discrete KdV
equation [13]

Now let us define the bilinear Hirota maps E and F acting on two fold tensor products
of sln-modules.

E : F [n] ⊗ F [m] → F [n+1] ⊗ F [m+1] (5.5)

E(f
[n]
i,j ⊗ f

[m]
k,l ) = −(i + 1)(l + 1)f

[n+1]
i+1,j ⊗ f

[m+1]
k,l+1 + (j + 1)(k + 1)f

[n+1]
i,j+1 ⊗ f

[m+1]
k+1,l

F : F [n] ⊗ F [m] → F [n−1] ⊗ F [m−1] (5.6)

F(f
[n]
i,j ⊗ f

[m]
k,l ) = −f

[n+1]
i−1,j ⊗ f

[m+1]
k,l−1 + f

[n+1]
i,j−1 ⊗ f

[m+1]
k−1,l

These maps have two important properties:

• They commute (intertwine) with the actions of e and f ;

• They themselves generate a representation of sln.

The intertwining property means that highest weight modules in the domain of E and
F are mapped to highest weight vectors in the target space. Being highest vectors the
δ[n,1] can be constructed in precisely this way, by an appropriate number of actions of E.
In fact:

1

(2n)!
Symm

(

E
2n(f

[−n−2]
0,−n−2 ⊗ f

[−n−2]
0,−n−2)

)

= −(n + 1)!2
(

(f
[n−2]
n,−2 )2 − f

[n−2]
n−1,−1f

[n−2]
n+1,−3

)

= −(n + 1)!2δ[n−1,1] (5.7)

In order to extend this construction to third order tensor products and so to the δ[n−1,2]

we need to define trilinear Hirota operators:

E12 : F [n] ⊗ F [m] ⊗ F [p] → F [n+1] ⊗ F [m+1] ⊗ F [p] (5.8)
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E12(f
[n]
i,j ⊗ f

[m]
k,l ) ⊗ f [p]

r,s) = (i + 1)(l + 1)f
[n+1]
i+1,j ⊗ f

[m+1]
k,l+1 ⊗ f [p]

r,s (5.9)

−(j + 1)(k + 1)f
[n+1]
i,j+1 ⊗ f

[m+1]
k+1,l ⊗ f [p]

r,s

E23 : F [n] ⊗ F [m] ⊗ F [p] → F [n] ⊗ F [m+1] ⊗ F [p+1] (5.10)

E23(f
[n]
i,j ⊗ f

[m]
k,l ⊗ f [p]

r,s) = (k + 1)(s + 1)f
[n]
i,j ⊗ f

[m+1]
k+1,l ⊗ f

[p+1]
r,s+1 (5.11)

−(l + 1)(r + 1)f
[n]
i,j ⊗ f

[m+1]
k,l+1 ⊗ f

[p+1]
r+1,s

E31 : F [n] ⊗ F [m] ⊗ F [p] → F [n+1] ⊗ F [m] ⊗ F [p+1] (5.12)

E31(f
[n]
i,j ⊗ f

[m]
k,l ⊗ f [p]

r,s) = (r + 1)(j + 1)f
[n]
i,j+1 ⊗ f

[m+1]
k,l ⊗ f

[p+1]
r+1,s (5.13)

−(i + 1)(s + 1)f
[n]
i+1,j ⊗ f

[m+1]
k,l ⊗ f

[p+1]
r,s+1

The third order calculations are time consuming even using MAPLE but the following
holds:

Symm
(

(E12E23E31)
n(f

[−n−3]
0,−n−3 ⊗ f

[−n−3]
0,−n−3 ⊗ f

[−n−3]
0,−n−3

)

= Knδ[n−1,2] (5.14)

where the Kn are constants. We give an argument for this form in a moment.
Eij can be generalized to m + 1-fold tensor products in the obvious way. A relation of

the following kind is then conjectured:

Symm
(

(E12E23 . . . Em m+1Em+11)
n(

m+1
⊗

f
[−n−m−1]
0,−n−m−1

)

= Km
n δ[n−1,m] (5.15)

That this is correct can be argued using a Casimir calculation. Firstly each position
label 1, 2, . . . m+1 occurs twice in the product E12E23 . . . Em m+1Em+11 so that each term
in the tensor product is raised from signature −n − m − 1 by 2n to n − m − 1 which is
correct for the definition of δ[n−1,m]. Further, since the Eij commute with the sl2 action
the eigenvalue of the Casimir on the left hand side of (5.15) is the same as that on the

highest weight vector
⊗m+1 f

[−n−m−1]
0,−n−m−1, which is easily checked to be

1

2
(m + 1)(−n − m − 1)((m + 1)(−n − m − 1) + 2).

But this is equal to the known value found earlier for the module F
[−(m+1)(n+m+1)]
0 for

which δ[n−1,m] is precisely the highest weight vector.
As a prescription for calculating the δ’s this is exceedingly inefficient given that the

determinant form is easy but from a theoretical point of view it emphasizes that all
the objects of the theory of Padé approximants have their origin in the representation
theory. It also demonstrates that the constraints of the form δ[n,m] = 0 are interpretable
as multilinear Hirota-type equations: the members of the family of rational functions of
numerator degree n and denominator degree m each satisfy the same nonlinear differential
equation of order n + m + 1 which is Hirota multi-linearizable.
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6 Modules and n-variable approximants

Suppose now we have a function analytic and homogeneous in p variables x1, x2, . . . , xp

and we wish to approximate it by a ratio of homogeneous polynomials in the same variables
of degrees n and m. This will give rise to p-Padé approximants which have been discussed
in a classical manner by Cuyt [8]. Here we will indicate how the above treatment extends
to these cases. We can write:

P [n,m](x1, x2, . . . xp)

Q[n,m](x1, x2, . . . xp)
= F [n,m](x1, x1, . . . xp) =

∞
∑

i1+...ip=n−m

f
[n,m]
i1i2...ip

xi1
1 xi2

2 . . . x
ip
p (6.1)

The same kinds of consideration apply as before except that now the Lie algebra sln(C)
is acting on variables and coefficients. This can be taken to be generated by elements

eij = xi∂xj
i 6= j = 1 . . . p (6.2)

whose (dual) action on the f
[n,m]
k1k2...kp

is

eij(f
[n,m]
k1k2...kp

) = −(kj + 1)f
[n,m]
k1...ki−1...kj+1...kp

i 6= j = 0 . . . p (6.3)

Again the coefficients of f form an infinite dimensional representation of sln, those of
the polynomials form finite dimensional representations. A highest weight vector in any
such representation is defined as belonging to the kernel of a Borel (maximal, nilpotent)
subalgebra of sln.

The Hirota maps are simple generalizations of those for sl2 but there are now n− 1 of
each kind, up to linear dependence, for the two fold tensor product:

E
kl : F [n] ⊗ F [m] → F [n+1] ⊗ F [m+1] (6.4)

E
kl(f

[n]
i1...ip

⊗ f
[m]
j1...jp

) = −(ik + 1)(jl + 1)f
[n+1]
i1...ik+1...ip

⊗ f
[m+1]
j1...jl+1...jp

(6.5)

+(il + 1)(jk + 1)f
[n+1]
i1...il+1...ip

⊗ f
[m+1]
j1...jk+1...jp

F
kl : F [n] ⊗ F [m] → F [n−1] ⊗ F [m−1] (6.6)

F
kl(f

[n]
i1...ip

⊗ f
[m]
j1...jp

) = −f
[n−1]
i1...ik−1...ip

⊗ f
[m−1]
j1...jl−1...jp

+ f
[n−1]
i1...il−1...ip

⊗ f
[m−1]
j1...jk−1...jp

Details of the representation theory can be found in [5].
To illustrate the issues we discuss the situation for n = 3, with variables x1, x2 and x3

and take the specific instance of a [1, 2] approximant.
Consider

p100x1 + p010x2 + p100x3

q200x2
1 + q110x1x2 + q020x2

2 + q011x2x3 + q002x2
3 + q101x1x3

=
∑

i1+i2+i3=−1

fijkx
i1
1 xi2

2 xi3
3

(6.7)
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We focus on the dependence on one variable, say x3 and write this as:

P1 + P0x3

Q2 + Q1x3 + Q0x
2
3

= F [−1] + F [−2]x3 + F [−3]x2
3 + F [−4]x3

3 + . . . (6.8)

where each Pi, Qi and F [i] is homogeneous of degree i in x1 and x2. This relation implies
(x3 = 0),

P1 = Q2F
[−1] (6.9)

from which all others can be generated by applications of e13 or e23. The actions of these
operators on the P ’s, Q’s and F ’s is, for i = 1, 2,

ei3(P1) = xiP0 ei3(P0) = 0 (6.10)

ei3(Q2) = xiQ1 ei3(Q1) = 2xiQ0 ei3(Q0) = 0 (6.11)

ei3(F
[p]) = −pxiF

[p−1] (6.12)

Thus, applying either e13 or e23 to (6.9) yields (after division by common factors) the
chain of further relations

P0 = Q1F
[−1] + Q2F

[−2] (6.13)

0 = Q0F
[−1] + Q1F

[−2] + Q2F
[−3] (6.14)

and, for all p > 1,

0 = Q0F
[−p] + Q1F

[−p−1] + Q2F
[−p−2] (6.15)

In this way a sequence of basic relations holds amongst the F [p] of which the simplest
is

∣

∣

∣

∣

∣

∣

F [−3] F [−2] F [−1]

F [−4] F [−3] F [−2]

F [−5] F [−4] F [−3]

∣

∣

∣

∣

∣

∣

= 0 (6.16)

the others being generated using the ei3. This relation is analogous to the δ constraint of
the two variable case except that it is, by virtue of the F ’s being functions of x1 and x2 a
set of constraints on the coefficients of (6.7). Also the entries F [p] correspond to different
representations of sl2 for each p.

Each of the F ’s is, of course, an analytic expansion of a rational function, e.g.

F [−1] =
P1

Q2
(6.17)

F [−2] =
P0Q2 − P1Q1

Q2
2

(6.18)

etc. each of these is treated exactly as in the two variable case using the sl2 representation
generated by e12 and e21, the e and f of earlier sections.
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Define, analogously to the δ[n,m] the determinants

∆[−n,−m] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

F [−n−1] F [−n] F [−n+1] . . . F [−n+m+1]

F [−n−2] F [−n−1] F [−n] . . .
...

F [−n−m−1] F [−n−m] . . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (6.19)

Such objects will satisfy four- and five-point relations of exactly the same algebraic form
as the δ[n,m]. Because the only difference is that the entries now depend on extra vari-
ables (effectively one variable by homogeneity) they amount to deformations of the earlier
relations, that is a deformation of the discrete KdV etc. Thus each F [−n] can be taken to
have an expansion in x1 and x2 analytic, say, at x1 = 0 of the form,

F [−n] = f
[−n]
0,−nx−n

2 + f
[−n]
1,−n−1x1x

−n−1
2 + f

[−n]
2,−n−2x

2
1x

−n−2
2 + . . . (6.20)

The four- and five-point relations on the ∆’s will have similar expansions giving rise
to lattice relations in three integer variables. Because all the constructions are entirely
analogous to the two variable case one may believe that the integrability properties carry
over to such higher dimensional deformations.

7 Conclusions and further work

We have demonstrated in this paper the simple way that the expressions arising in the
theory of Padé approximants can be viewed as consequences of representation theory for
sln. This provides an abstract underpinning for the combinatorial and recurrence aspects
of the theory. It would be instructive to formulate other developments of the Padé theory
from this point of view.

Clearly it is also important to follow up the discrete KdV deformations arising in the
p-variable case.

A number of other avenues are open for study.
Firstly there are relations between the continued fraction expansions of special functions

and the symmetries of the differential equations they satisfy [7]. These should be described
in similar terms to the general Padé approximant but under some specialization.

Secondly, it is possible to modify the treatment to sl2q and to create quantum Padé
approximants in noncommutative variables x and y. In a formal sense this is quite straight-
forward but a q-Hirota map has still to be found to complete the analogy with the classical
case.
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