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Abstract

In this paper, we define a new g—analogy of the Bernoulli polynomials and the
Bernoulli numbers and we deduced some important relations of them. Also, we de-
duced a g—analogy of the Euler-Maclaurin formulas. Finally, we present a relation
between the g—gamma function and the ¢g—Bernoulli polynomials.

1 g—Notations

Let ¢ € (0,1) and define the g—shifted factorials by
(a,q)o =1, - A
(a1, ..,ar;q)k =1, Hj;g(l —a;¢’), k=0,1,2,...,

(@)oo = [T:Zo(1 = ag’).
The classical exponential function e* has two different natural g—extension [10] one of
them denoted by e,4(2) and given by

A 1
“al?) = ,;) (@ae (0’

where z € C,| z |< 1 and 0 < ¢ < 1. The function e,(z) can be considered as formal
power series in the formal variable z and satisfies that lim,_,q e4((1 — ¢)z) = €*. For the
g-commuting variables z and y such that zy = qyz [11],

eq(z +y) = eq(y)eqg(z).
The g—difference operator D, is defined by

@1, 4
DQf(x) = { dff(%iq)

S =0

where

& (@)

lim D, f(x) =
q—1
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Thomae [1869-1870] defined the g—integral on the interval [0, 1] [4]-[5] by

1 oo
/O FOdt=(1—a) S F(g)a
n=0

Jackson [1910] extended this to the interval [a, b] [4]-[5] via

[P s [ s [

/0 iyt = a1 - 0) S flag)g
n=0

The g—analogue of n! is defined by

where

B 1, ifn=0
[n]q! = { [n][n — 1g-.[1]q, ifn=12,..

where [n], is the quantum number and is given by

The g—binomial coefficient (}), is defined by

(@ Ok(@; Qi [klg![n — Klg!

(g (@ 0)n e o

2 ¢—Bernoulli polynomials

The classical Bernoulli polynomials B, (z) are defined by the generating function

Z Bn(x) o Z e
n! e# —1
n=0
The Bernoulli numbers are defined through the relation B,, = By, (0).
The ¢—Bernoulli polynomials B,,(x, h|q) [3]- [8] are defined by g—generating function

> ]+h y 1t X By(z,hlg)
) L s AN AL O z .
Z::o D G i nzo —t" heZazeC

Note that
lim B,z hlq) = By ()
q—)

The g—Bernoulli numbers are defined through the relation

Bn(07 h’Q) = Bn(h’(J)



A Note on g—Bernoulli Numbers and Polynomials 11

In this paper we suggest a new approach to study the ¢g—Bernoulli polynomials. Let B (t)
be the generating function of the classical Bernoulli numbers [12]

>~ B z
D n
Bi)=) "= a1
n=0

Then we get
k
n 9 k - Bn a\" k k k—n
B()# =350 () == et
Also, on exponent

B (%) e = B(t)e!” = B(xz;t).

Now we will define a g—analogy of the generating function B (t) as

By(t) = i b"(q,) e,
n=0 ’

[n]q

where b, (q) is a g—analogy of the Bernoulli numbers. By using the ¢g—difference operator
D, we get

n=0

This procedure will suggest the following g—analogy of Bernoulli polynomials

Also,

Eq (Dq) eq(:ct) = i bn(q) DZ; <

From this point of view we can define the g—Bernoulli polynomials.
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Definition 1. The ¢—Bernoulli polynomials B,,(x,q) are defined by

nZ:OB"(w’q) (@D (1—q)(era — 1)6q(m)’ @1

where lim, 1 By, (z,q) = By(x), By(z) are the ordinary Bernoulli polynomials.

Proposition 1.

Dan(ZC,q) - [n]anfl(xaQ)' (22)
Proof.
nz:quBn(x,q) (¢ 9)n N (1— q)(elTZq —) 11— qeq(Zm)
- 1 —q*  n
- 1_qZBn1xq C]) -1
= LB d g
|

Proposition 2. For qg-commuting variables x and y such that ry = qyx, we have

n

Bu(r+y,q) = Z(?)qyn_ilgi(x, q). 23)
i=0
Proof.
nZ:OBn(z tod (@n  (1- q)(efq N 1)€q(2(:v +9))
- (1—¢ (el 7 ca(zy)eq(22)
= ((1_q = _1)eq(zx)>
= 2y) ZBn( Zn) _
n=0 n

Also,

S - A - y“B:v(J)Zn
2 Bil xQ)(q,Q) B ZZ )(q,Q)

nOzO
g z
q,q)

n 7
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_ Ny (@) Bieg)
=22 ) (4,9)s

== i
V4

N eq(zy),;)gn(x’Q)(q;Q)n'

as desired [ |

In equation (2.3), if we take the limit as ¢ — 1. Then we get

n

Bu(z+y)=> ()" 'Bi(w),

=0

where B,,(z) are the ordinary Bernoulli polynomials. And this relation satisfied for the
ordinary Bernoulli polynomials [1].

3 g—Bernoulli numbers
Definition 2. For n > 0, b, (q) = B,(0, q) are called ¢g—Bernoulli numbers.

Lemma 1.

e (3.1

where limy_—,1 by, (q) = by, by are the ordinary Bernoulli numbers .

Proof. Putting x = 0 in equation (2.1), we get

nzzob"(Q) @G aDn (1—g)(e™a —1)

z

and replace z by (1 — ¢)z, then

S (A-g2)" =
n;)bn@ (G0)n -1

But the ordinary Bernoulli numbers b,, satisfy

n—y — .
n!l  er—1
n=0

Then bn (4:9)
n \4;4)n
bn(q) = ===,
(a) n! (1 —q)"
Also,
. L be (G
qhi)nlbn(Q) - qhin1mw
by,
- m(l)n:b”’

where (a), is the Pochhammer-symbol. [
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The knowledge of the Bernoulli numbers and the lemma (3.1) allows us to determine the
g—Bernoulli numbers. The first five of them are:

1 2]

bo(g) =1, bi(g)=—5. ba(a) =", [21q[3)4]q.

720
By using the properties of the ordinary Bernoulli numbers b,, [6], we can prove that
1- b,(q) =0V n odd and n > 3,

9_ Z;L:—& np. (1=q)? b;(q) =0,

T (a:9); -
n—1 i n 1—q)’ S
3= X5 (17 "By i 0) = iy

bs(q) =0, bs(q) = —

Proposition 3. For any n >1

n—1

n ‘(1_Q)j (o — n! xnfl
JZ:: b (439); Bilw.0) = o™ (32)

Proof. The case where n = 1 is obvious. If we assume that the relation is true for some
k > 1, we have

k1 p (1 —q) - w1, (1—a)
Dyy "R Bi(xg) = Y MR [j]Bjo1(x, q)

Then

k Y |
Z kJrIPj (1 Q) Bj(ﬁﬂ,q) = (k+})$k+c
prd (4:9); !

Put z =0, then

k; .
1 — )l
> i )
T aa);
=0 T
Using the second property of b;(g), we get ¢ = 0. Hence, by induction, relation is true for
any positive integer. |
Proposition 4.
n .
Bu(x,q) = Y ({)gbi(@)z" " (3.3)

1=0
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Proof. Let

n
Fu(w,q) =) _()gbi(a)z"~".
i=0
It suffices to show that (i) F},(0,q) = by(q) for n > 0 and (i1) DgFy,(z,q) = [n]gFn—1(x,q)
for any n > 1, since these two properties uniquely characterize By, (z,q). The first property
is obvious. As for the second property,

|
—

DyFu(z,q) = ﬁ (M)gbi(g)e™ (1 — )
=0
_ 1 (¢ Dn o

- (1—q)z A (QaQ)i(Q§Q)n—i—1b 2

_ (¢ @n—1 A g—ie]
(- ) &= (@ile Dm0
1

= [l Y abilg)an !

as desired. [

The knowledge of g—Bernoulli numbers allow us to determine the g—Bernoulli polyno-
mials. The five of them are listed below:

Bo(z,q) =1 ,
Bi(z,q) = x—%
Bs(z,q) = x?’—%x [22]3?%]‘1

Lemma 2. The q— Bernoulli polynomials have the following symmetry property
(—1)"Bn(—2,q) = Bn(x,q) + [n]gz"",  Yn>1.

Proof. The case where n = 1 is obvious. If we assume that relation is true for some
k>1, we get

Dy (-1 Bia(=2.)) = (=) +1),Bi(~z,q)
[k + 1gBy(z, ) + [k + U [k]gz* "
= Dy (Brsi(w,q) + [k +1ya*)

then
(=) Brya(=2,9) = Brya(2,q) + [k + 1]qu +ec.
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Put z =0, then
(151 = 1) brya(g) =

but ((—1)*™ —1) = 0 if k is an odd number and byy1(¢g) = 0 if k is an even number.

Then ¢ = 0 and hence, by induction, relation is true Vn > 1. |
Lemma 3.
v Byi1(z,q) — Bryi(a, q)
By(t, q)d t = =" UARCEE Y 3.4
/a n( Q) q [n+1]q ( )

Proof. By using D B, (t,q) = [n]¢Bn-1(t,q), then we get

[ Buttadt =gk [ DBt

1
= B, t, g
[n+ 1]q +1( Q) |
Bni1(7,9) — Buyi(a, )

[n+1]q

4 A g—Euler-Maclaurin formulas

Let the function P(z) = Bi(x — [z],q), in which [x] means the greatest integer < z. The
function P(z) is periodic P(x 4+ 1) = P(z). Also,

1 t+1
/ P(x)dgx = / P(z)dgx =0 Vt>0.
0 t

We employed P(z) in obtaining a g—analogy of the Euler-Maclaurin formulas [13].

Theorem 1.
S s = LD [ ftqnyie+ [ P D s @

where f(x) is differentiable.

Proof. First write

n n k
[ P@Dis@ia =Y [ P@D @
o k=1 k—1

k k
/ P()D, f(x)dyz = / (= b+ 1/2)Dy f(2)dye
k

-1 k-1

and we integrate by parts to obtain

k k
| P@D @ = =k +y2f@) = [ @)D Py
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then . .
flk)+ f(k—-1
P)D, () = T 2( L [ rtan)
k—1 k—1
hence
n
| P@)Dus(e)dge = Zf / faw)d
o
which is a simply rearrangement of the result in the theorem. |

Also, by induction we can get the following lemma

Lemma 4. Let f(z) be a differentiable function. Then ¥r = 2,3,4, ...

n r—ln 7"—1 z r ' '
Z f(qrilk‘) _ f(q ) + f(q + Z T — Z+ b,_; q)[f(qril*ln) _ f(qrfzflm)]
k=m i=o0

2

n o r+1
- f(q’"w)dqur([l], "B — [a], ) Dy (@)dga

m 7hq’ m

5 A relation between B,(z,q) and I'j(x)

The g—gamma function [5]-[2]

_M _ )
Fq(%)—((fc;q)m(l q) 0<g<1,

was introduced by Thomae [1869] and later by Jackson [1904].
By using the definition of e; we can see that

To(z+1) = (¢ 0)o0(1 — @) “eq(¢" ).

Also, if we replace by ¢* and z by ¢ in equation (2.1), then we have

R GO 74¢ Sk R
2 Bula" ) o = i gl

Then we get the following relation between B, (z,q) and I'y(x)

o° n—1
Tz 4+1) = (7079 —1)(g;q)oe(1 — ) * ZBn(qx,q) (Z- Qn’

and then g—gamma function is a generating function of the g—Bernoulli polynomials.
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