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1 Introduction

Throughout this paper, k denotes a field of characteristic 0 and all tensor products are
over k. Further, k[X;n] is the polynomial algebra in n commuting indeterminates X =
(x1, x2, · · · , xn) and Λ[Y ;m] is the Grassmann algebra in n anti-commuting indeterminates
Y = (y1, y2, · · · , ym).

Supersymmetries are symmetries of supervarieties, i.e., objects, functions on which de-
pend on both usual commuting (even) variables and on anticommuting (odd) ones. For
numerous applications of supersymmetry and for basics, see [3], [2] and [10]. Supersym-
metries widened the notion of group in order to be able to mix Bose and Fermi particles.
However, the collection of morphisms of supervarieties (locally, of its superalgebra of func-
tions F ) — supersymmetries — is not the largest possible group of automorphisms of the
algebra F , with superstructure ignored. Besides, not every subalgebra or a quotient of a su-
percommutative superalgebra is supercommutative, whereas they are metaabelian and the
notion of superscheme was first given ([7]) in terms of such, not necessarily homogeneous,
subalgebras and quotients of supercommutative superalgebras. Recall that a ring M is
said to be metaabelian if [a, [b, c]] = 0 for all a, b, c ∈M , where [a, b] = ab− ba. Volichenko
showed (see [8]) that every metaabelian algebra can be realized as a nonhomogeneous
subalgebra of a universal supercommutative superalgebra, called its supercommutative en-
velope.

The purpose of this note it to construct an appropriate analog of differential operators
on metaabelian algebras, more precisely, viewing a metaabelian algebra M as an analog
of the algebra of functions, construct the corresponding algebra of vector fields.

Lunts and Rosenberg ([9]) constructed algebras of differential operators on (graded)
noncommutative algebras. In particular, one can study differential operators on super-
algebras. Superderivations of a superalgebra, which are first order differential operators,
form a Lie superalgebra.

In a work aborted by his death, Volichenko gave a conjectural intrinsic description of
nongraded subalgebras of Lie superalgebras. In his memory then, Leites and Serganova
([8]) called such subalgebras Volichenko algebras and (under a technical assumption) listed
simple Volichenko algebras (finite dimensional and of vector fields). Like the list of simple
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Lie superalgebras about doubles the list of simple Lie algebras of the same type [6], the
list of simple Volichenko algebras about doubles the list of simple Lie superalgebras.

We construct differential operators on metaabelian algebras so that certain first order
differential operators form a Volichenko algebra.

Preliminaries on differential operators defined by Lunts and Rosenberg are covered in
section 2 followed by a section introducing superalgebras. In section 4, we study different
kinds of differential operators on metaabelian algebras. Here, (4.1.2) we also construct a
special tensor product of two metaabelian algebras. Note that the usual tensor product
of metaabelian algebras is not necessarily metaabelian.

Given two metaabelian algebras M and N , let SM and SN be their respective super-

commutative envelopes. Then, their metaabelian tensor product, M
m
⊗ N is defined as a

natural nonhomogeneous subalgebra of SM
s
⊗ SN . Molotkov has already defined a spe-

cial tensor product of two metaabelian alebras (see appendix in [8]). Our constructions
are different but we arrive at isomorphic metaabelian algebras because of the universal
property (Proposition 4.1.3.)

Using the machinery of super differential operators on superalgebras, we define the
Volichenko differential operators V D in section 4.2. That is, let SM denote the supercom-
mutative envelope of a metaabelian algebra M , along with a natural odd derivation d on
SM given by Volichenko. We let Dβ(SM ) denote the algebra of superdifferential (this is a
specialization for the super case of the β-differential introduced in [9]) operators on SM .
Then,

V D(M) = {ϕ0 + [d, ϕ0] | ϕ0 ∈ Dβ(S) is even}.

It then follows (Proposition 4.2.1) that V D(M) = ∪n≥0V D
n(M) is a filtered algebra with

V D0(M) being the subalgebra of left multiplication homomorphisms in M and V D1(M)
the direct sum as vector spaces of V D0(M) and a Volichenko algebra. We also show

that there is a natural homomorphism V D(M)
m
⊗ V D(N) −→ V D(M

m
⊗ N) for M,N

metaabelian algebras.
Finally, in section 4.2.3, we describe the Volichenko differential operators on the metaa-

belian algebra k[Z], the subalgebra of k[X;n]⊗Λ[Y ;n] generated by Z, where zi = xi+yi.

2 Preliminaries from [9]

2.1 Dβ(R), the space of β-differential operators.

Let Γ be an abelian group. Fix a bicharacter β : Γ × Γ −→ k
∗. Let R be a Γ-graded

k-algebra and M a Γ-graded R-bimodule. Let Zβ(M) denote the β-center of M defined
as the k-span of homogeneous elements m ∈M such that

mr = β(dm, dr)rm for any homogeneous r ∈ R,

where dx denotes the degree of x. The β-differential part of M is defined as follows:
Let M0 be the R-bimodule generated by Zβ(M). Having defined Mi, define Mi+1 as the
R-bimodule generated by the homogeneous m ∈M such that

mr − β(dm, dr)rm ∈Mi for any homogeneous r ∈ R.
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Each Mi is called the ith β-differential part of M . The β-differential part of M is the
filtered, Γ-graded R-bimodule

Mβ = ∪i≥0Mβi.

The β-differential operators on R are the β-differential parts of the elements of the
R-bimodule M = grHomk(R,R). The R-bimodule structure on M is as follows:

(rϕs)(t) = rϕ(st) for any r, s, t ∈ R, ϕ ∈ grHomk(R,R).

The R-bimodule of β-differential operators is denoted by Dβ(R); the ith β-differential part
of grHomk(R,R) is denoted by Di

β(R) and the elements in Di
β(R) are called β-differential

operators of order i. One can see that

Di
β(R)Dj

β(R) ⊂ Di+j
β (R).

Thus, Dβ(R) is a k-algebra.

Remark 2.1.1. Let Γ1 and Γ2 be two abelian groups, equipped with their respective
bicharacters βi : Γi × Γi −→ k for i = 1, 2. Let R and S be two finitely generated k-
algebras which are Γ1- and Γ2-graded, respectively, such that elements of k are of degree
0. Then the usual tensor product R ⊗ S is a Γ1 × Γ2-graded k-algebra. Similar to the
proof of Theorem 3.1.1 of [4], we can show that Dβ1(R) ⊗ Dβ2(S) ∼= Dβ1β2(R ⊗ S) as
R⊗ S-bimodules and as k-algebras with the bicharacter given by

β1β2 : (Γ1 × Γ2) × (Γ1 × Γ2) −→ k
∗,

β1β2((a, b), (c, d)) = β1(a, c)β2(b, d) for any a, c ∈ Γ1; b, d ∈ Γ2.

2.2 Dq(R), the space of quantum differential operators.

These operators are defined for the same set-up as before, i.e., β : Γ × Γ −→ k
∗ is a fixed

bicharacter.

Let R be a Γ-graded k-algebra and M be a Γ-graded R-bimodule. Denoted by Zq(M)
the q-center of M defined as the k-span of homogeneous elements m ∈M for which there
exists a d ∈ Γ such that

mr = β(d, dr)rm for any homogeneous r ∈ R .

Note that d depends on m, but is not necessarily the degree of m, and neither does it have
to be unique. The rest of the construction follows as before for β-differential operators.
We denote by Mq = ∪i≥0Mqi the q-differential part of M , where Mqi denotes the ith
q-differential part. Likewise, Dq(R) = ∪i≥0D

i
q(R) is the ring of q-differential operators,

where Di
q(R) is the R-bimodule of q-differential operators of order i on R. For each a ∈ Γ,

we define the grading map σa ∈ D0
q (R) by setting

σa(r) = β(a, dr)r.
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Remark 2.2.1. (1) In the section covering preliminaries in [5], it is shown that D0
q(R)

is a Γ-graded k-algebra generated by homomorphisms given by left multiplications, right
multiplications, and grading (Lemma 1.2.1 of [5]). The R-bimodule Dn+1

q (R) is generated
over D0

q (R) by the k-span of homogeneous ϕ such that (ϕr−rϕ) ∈ Dn
q (R) (Corollary 1.2.1

of [5]).

(2) For the same set-up as that of Remark 2.1.1, we have Dq(R⊗S) ∼= Dq(R)⊗Dq(S)
as R⊗ S-bimodules and as k-algebras.

2.3 D(R), the space of the usual differential operators.

For a non-graded set-up, in the above definitions, we have to merely consider R as trivially
graded. That is, we consider R = R0, β ≡ 1, M is an R-bimodule, and the ring of
differential operators on R, denoted by D(R), is the differential part of Homk(R).

Remark 2.3.1. (1) By Theorem 3.1.1 of [4], if R and S are finitely generated k-algebras,
then D(R⊗ S) ∼= D(R) ⊗D(S) as R⊗ S-bimodules and as k-algebras.

(2) If R is a Γ-graded k-algebra and finitely generated as an algebra by homogeneous
elements, then D(R) ⊂ grHomk(R,R) by Theorem 3.2.1 of [4].

For the rest of this article, we fix a few notations: For any r ∈ R, let λr, ρr ∈ Hom(R,R)
be defined as

λr(s) = rs and ρr(s) = sr for any s ∈ R.

For any homomorphism ϕ ∈ Hom(R,R) and x ∈ R, we denote [ϕ, x] := [ϕ, λx].

3 Superalgebras

Let Z2 := Z/2. A Z2-graded k-algebra R = R0 ⊕R1 is called a superalgebra. Elements of
R0 are called even and those of R1 are called odd. For a homogeneous element a ∈ R, we
let p(a) denote its parity (which is the same as degree in this case). The ring R is called
supercommutative if, for any homogeneous elements a, b ∈ R, we have ab = (−1)p(a)p(b)ba.
Throughout our paper, the underlying field k is trivially Z2-graded, i.e., all the scalars are
even.

We define a bicharacter β : Z2 × Z2 −→ k
∗ by setting β(x, y) = (−1)xy and define the

β-differential operators on supercommutative superalgebras as the elements of k-algebra
Dβ(R).

Remark 3.0.2. (1) The algebra of 0th order β-differential operators on a superalgebra

R is generated by λr, ρ
β
s for homogeneous r, s ∈ R, where

ρβs (t) = (−1)p(t)p(s)ts.

When R is supercommutative, we have ρβs = λs for any homogeneous s ∈ R.

(2) Let ϕ be a left superderivation on a superalgebra R. That is, ϕ is a homogeneous
homomorphism such that

ϕ(rs) = ϕ(r)s+ (−1)p(ϕ)p(r)rϕ(s) for r homogeneous.
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That is,

ϕr − β(p(ϕ), p(r))rϕ = λϕ(r) ∈ D0
β(R).

Hence ϕ ∈ D1
β(R), so first order β-differential operators on a supercommutative super-

algebra form a Lie superalgebra. For preliminaries on (Lie) superalgebras, see [6], [2].
Let

[m,n]β = mn− (−1)p(m)p(n)nm.

Proposition 3.0.1. Let R = R0⊕R1 be a supercommutative superalgebra. A homogeneous
homomorphism ϕ belongs to Dn

β(R) if and only if

[· · · [[ϕ, a1]β, a2]β, · · · , an+1]β = 0 for all homogeneous ai ∈ R.

Proof. Let a homogeneous ϕ ∈ D0
β(R) be a generator. That is, [ϕ, a]β = 0 for any

homogeneous a ∈ R or ϕ = ρβr . But ρβr = λr. Thus, the proposition is true for n = 0. The
rest follows by induction. �

Corollary 3.0.1. Let R = R0 ⊕R1 be a supercommutative superalgebra. Then D1
β(R) =

D0
β(R) ⊕ Derβ(R) as vector spaces where Derβ(R) denotes the left R-module of left su-

perderivations on R.

Proof. The sum is direct because superderivations vanish at 1. Given homogeneous
ϕ ∈ D1

β(R), we let ψ = ϕ− ρβϕ(1). Clearly, ψ is homogeneous with ψ(1) = 0, and

[ψ, r]β = [ϕ, r]β for all r ∈ R.

Hence, ψ ∈ D1
β(R). Since [[ψ, r1]β, r2]β = 0, we see that [ψ, r]β = λfr

. Since ψ(1) = 0, we
have ψ(r) = fr. In particular, [ψ, r] = λψ(r), hence ψ is a left superderivation. �

Lemma 3.0.1. Let {Rα} be a family of supercommutative superalgebras. Let
∏

αRα
denote the unital supercommutative superalgebra, the direct product of the Rα. Then,
Dβ(

∏

αRα) ∼=
∏

αDβ(Rα) as filtered algebras.

Proof. Note, D0
β(
∏

αRα) ∼=
∏

αD
0
β(Rα). By induction we show that Dn(

∏

Rα) ⊂
∏

α Endk(Rα) which inturn will imply the result.

Consider a homogeneous

Φ =
∏

α1,α2

ϕα1,α2 ∈ Endk(
∏

Rα),

where ϕα1,α2 ∈ Hom(Rα1 , Rα2). Fix an aα0 ∈ Rα0 . We have

[Φ, aα0 ]β = [ϕα0,α0 , aα0 ]β +
∏

α2 6=α0

ϕα0,α2aα0 − (−1)c
∏

α1 6=α0

aα0ϕα1,α0 ∈
∏

Endk(Rα)

for some c ∈ {±1}. Hence, ϕα1,α2aα0 = aα0ϕα1,α2 = 0 for all aα0 ∈ Rα0 . In particular, we
have ϕα0,α2 = 0 = ϕα1,α0 for α1 6= α0 and α2 6= α0. Hence the result. �
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4 Metaabelian algebras

Let R be a metaabelian k-algebra. A suitable algebra of differential operators on R is
D(R) computed for R viewed as a non-graded algebra.

Proposition 4.0.2. (1) Let R be a metaabelian k-algebra. If ϕ ∈ Dn(R), then

[· · · [[ϕ, x1], x2], · · · , x2(n+1)] = 0

for all xi ∈ R.
(2) In particular, a homomorphism ϕ belongs to D(R) if and only if

[· · · [[ϕ, x1], x2], · · · , xn] = 0 for some n ≥ 0 and all xi ∈ R.

Proof. By definition of D(R), if [· · · [[ϕ, x1], x2], · · · , xn+1] = 0 for all xi ∈ R, then ϕ ∈
Dn(R). Hence the second statement follows from the first one. We prove the first one by
induction on n. Since D0(R) is generated, as algebra, by {λr, ρs | r, s ∈ R}, we see that
the result holds for n = 0. Assuming that the result holds true for n− 1, let λrϕ ∈ Dn(R)
be such that [ϕ, x] ∈ Dn−1(R) for all x ∈ R. For x1, x2 ∈ R, we have

[[λrϕ, x1], x2] = λ[r,x1][ϕ, x2] + λ[r,x2][ϕ, x1] + λr[[ϕ, x1], x2]

which is in Dn−1(R). Hence the proposition. �

Corollary 4.0.2. Let R be a supercommutative superalgebra. Then

Dβ(R) ⊂ D(R) ⊂ Dq(R).

Proof. The proof of Proposition 3.0.1 shows that D0
β(R) ⊂ D(R). Assume that Dn

β(R) ⊂

D(R). Let ϕ ∈ Dn+1
β (R) be homogeneous. Then, by Proposition 3.0.1, [ϕ, a]β ∈ Dn

β(R) ⊂
D(R). If ϕ is an even morphism (that is, p(ϕ) = 0), then [ϕ, a] = [ϕ, a]β ∈ Dn(R) for all
a ∈ R, hence ϕ ∈ D(R). If ϕ is an odd homomorphism and a homogeneous, then

[ϕ, a] = ((−1)p(a) − 1)aϕ+ [ϕ, a]β

which, in turn, is in D(R) since aϕ is even when p(a) = 1. Hence the first inclusion. The
second inclusion follows from Remark 2.3.1 and the definition of Dq(R). �

Remark 4.0.3. The inclusions in the corollary need not be filtration preserving. In
general, these inclusions can be strict inclusions. For instance, for odd r ∈ R, the operator
ρr lies in D(R) but need not lie in Dβ(R), and σ1 lies in Dq(R) but need not be in D(R)
if R is not finitely generated.

4.1 A special case

Let R = k[X;n]⊗Λ[Y;m] be a supercommutative superalgebra defined by p(xi) = 0 and
p(yi) = 1.

Let us compute Dβ(R), Dq(R) and D(R). Since k[X;n] is trivially graded,

Dβ(k[X;n]) = Dq(k[X;n]) = D(k[X;n]).
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Note, D(k[X;n]) is the Weyl algebra for chark = 0. By Remarks 2.1.1, 2.2.1 and 2.3.1, it
suffices to compute Dβ(Λ[Y;m]), Dq(Λ[Y;m]) and D(Λ[Y;m]). We already know that

Dβ(Λ[Y;m]) ⊂ D(Λ[Y;m]) ⊂ Dq(Λ[Y;m]).

For each i ∈ {1, 2, · · · ,m}, we have λyi
, ∂i ∈ Dβ(Λ[Y;m]), where ∂i(yj) = δij ; extend ∂i as

a superderivation. It is easy to show that the k-algebra generated by λyi
and ∂i generates

Endk(Λ[Y;m]) (the proof requires m to be finite). Hence,

Dβ(R) = D(R) = Dq(R) = D(k[X;n]) ⊗ Endk(Λ[Y;m]).

More is true.

Proposition 4.1.1. Let R be a supercommutative superalgebra such that the number of
odd generators is finite. Then

Dβ(R) = D(R) = Dq(R).

Proof. Let {a1, a2, · · · , am} be the set of odd generators of R. By induction on m we
show that Dm

q (R) ⊂ Dβ(R).

Note that ρr = λr for r even and ρr = λrσ1 for r odd. Since D0
β(R) = {λr|r ∈ R}, it

suffices to show that σ1 ∈ Dβ(R). Since σ1 is an even homomorphism, [σ1, r]β = [σ1, r].
For r even, [σ1, r]β = 0. For r odd, say r = a1, we have [σ1, a1]β = −2a1σ1. Further, for r
even, we see that [a1σ1, r]β = 0 and for r odd, say r = a2, we have [a1σ1, a2]β = −2a1a2σ1.
Proceeding similarly, we see that

[· · · [[σ1, a1]β, a2]β , · · · an]β = (−2)na1a2 · · · anσ1.

From this it follows that σ1 ∈ Dn+1
β (R).

Assume that Dm
q (R) ⊂ Dβ(R). By Remark 2.2.1, we need to consider ϕ ∈ Dm+1

q (R)
such that

[ϕ, r] ∈ Dm
q (R) for all r ∈ R.

If ϕ is an even homomorphism, then [ϕ, r]β = [ϕ, r] ∈ Dm
q (R), and hence ϕ ∈ Dβ(R). If ϕ

is an odd homomorphism, then consider

[ϕ, a1]β = ϕa1 + a1ϕ = [ϕ, a1] + 2a1ϕ

which is an even homomorphism with [ϕ, a1] ∈ Dβ(R). We next see that

[[ϕ, a1]β , a2]β = 4a1a2ϕ + something in Dβ(R).

Proceeding thus, we have

[· · · [[ϕ, a1]β, a2]β, · · · an]β = 2na1a2 · · · anϕ + something in Dβ(R).

One further β-commutator places ϕ in Dβ(R). Hence the proposition. �
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Let R,S be two superalgebras. Then R
s
⊗ S is a superalgebra whose superspace is R⊗ S

with the usual addition, and the multiplication given by

(a⊗ b)(c⊗ d) = (−1)p(b)p(c)(ac⊗ bd). (4.1.1)

If R and S are supercommutative, then R
s
⊗ S is also supercommutative.

The natural maps

Hom(R,R) −→ Hom(R
s
⊗ S,R

s
⊗ S), ϕ 7→ (r ⊗ s 7→ ϕ(r) ⊗ s) (4.1.2)

Hom(S, S) −→ Hom(R
s
⊗ S,R

s
⊗ S), ψ 7→ (r ⊗ s 7→ r ⊗ ψ0(s) + σ1(r) ⊗ ψ1(s)),

(4.1.3)

where ψ0 is the even part and ψ1 is the odd part of ψ, give rise to a map

Hom(R,R)
s
⊗ Hom(S, S) −→ Hom(R

s
⊗ S,R

s
⊗ S).

Note that the tensor product on the left is the tensor product of superalgebras, which is

ensured because of the altered action (4.1.3) of Hom(S, S) on R
s
⊗ S above.

Remark 4.1.1. If dR, dS are superderivations of superalgebras R,S respectively, then the

morphism dR⊗S ∈ Hom(R
s
⊗ S,R

s
⊗ S) defined by

dR⊗S(r ⊗ s) = dR(r) ⊗ s+ r ⊗ (dS)0(s) + σ1(r) ⊗ (dS)1(s)

gives a superderivation of R
s
⊗ S.

The following proposition is similar to Theorem 3.1.1 of [4]. We present it here for
completeness of discussion.

Proposition 4.1.2. If R,S are finitely generated by homogeneous elements, then there is
an isomorphism of filtered superalgebras

Dβ(R)
s
⊗ Dβ(S) ∼= Dβ(R

s
⊗ S).

Proof. For any ϕ ∈ Dβ(R) and ψ ∈ Dβ(S), we have

[ϕ⊗ ψ, r ⊗ s]β = (−1)p(ψ)p(r)
(

[ϕ, r]β ⊗ ψs+ (−1)p(ϕ)p(r)rϕ⊗ [ψ, s]β

)

.

Hence, Da
β(R)

s
⊗ Db

β(S) ⊂ Da+b
β (R

s
⊗ S).

It remains to show that if a homogeneous ϕ ∈ Hom(R
s
⊗ S) is such that [ϕ, r ⊗ s]β ∈

Dβ(R)
s
⊗ Dβ(S) for all r ⊗ s ∈ R

s
⊗ S, then ϕ ∈ Dβ(R)

s
⊗ Dβ(S).

By changing ϕ to ϕ− λϕ(1⊗1), we assume that ϕ(1 ⊗ 1) = 0.

First consider the case where [ϕ, r ⊗ 1]β = 0 for all r ∈ R. Let {s1, · · · , sn} be a finite
set of homogeneous generators of S over k. Let ηi denote [ϕ, 1 ⊗ si]β. For each i, let

ηi =
∑

ηi(1) ⊗ ηi(2) ∈ Dβ(R)
s
⊗ Dβ(S), where ηi(1) and ηi(2) are homogeneous.
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Note that for homogeneous r,

[[ϕ, 1 ⊗ si]β, r ⊗ 1]β = (−1)p(si)p(r)[[ϕ, r ⊗ 1]β , 1 ⊗ si]β = 0.

So, we may assume that [ηi(1), r]β = 0 for all r ∈ R.
Let V1 ⊂ Dβ(R) be the finite dimensional super vector space spanned by the ηi(1).

Every element of V1 commutes with r ∈ R. For s, s′ ∈ S, we have

[ϕ, 1 ⊗ ss′]β = [ϕ, 1 ⊗ s]β(1 ⊗ s′) + (−1)p(ϕ)p(s)(1 ⊗ s)[ϕ, 1 ⊗ s′]β.

Hence, every [ϕ, 1 ⊗ s]β can be expressed as
∑l

i=1 fi ⊗ gsi , where {fi}
l
i=1 ⊂ Dβ(R) is a

homogeneous basis of V1, and gsi ∈ Dβ(S), where p(gsi ) = p(ϕ) + p(s) + p(fi). For each
i = 1, · · · , l, define a function hi : S −→ S setting hi(s) = gsi (1). Since [ϕ, 1⊗ s]β is linear
in s, it follows that hi ∈ Hom(S, S). Also, p(hi) = p(fi) + p(ϕ), and hence is independent
of s.

For s, t ∈ S, consider

[hi, s]β(t) = hi(st) − (−1)p(hi)p(s)shi(t) = gsti (1) − (−1)p(hi)p(s)sgti(1).

Since

[ϕ, 1 ⊗ st]β = [ϕ, 1 ⊗ s]β(1 ⊗ t) + (−1)p(ϕ)p(s)(1 ⊗ s)[ϕ, 1 ⊗ t]β,

we have

∑

i

fi ⊗ gsti =

(

∑

i

fi ⊗ gsi

)

(1 ⊗ t) + (−1)p(ϕ)p(s)(1 ⊗ s)
∑

i

fi ⊗ gti

=
∑

i

fi ⊗ gsi t+ (−1)p(ϕ)p(s)+p(fi)p(s)
∑

i

fi ⊗ sgti

=
∑

i

fi ⊗ gsi t+ (−1)(p(ϕ)+p(fi))p(s)
∑

i

fi ⊗ sgti .

That is, gsti = gsi t + (−1)(p(ϕ)+p(fi))p(s)sgti . Thus, [hi, s]β(t) = gsi ∈ Dβ(S) which further

implies that hi ∈ Dβ(S). Hence, ψ =
∑

fi ⊗ hi ∈ Dβ(R)
s
⊗ Dβ(S). One can see that

[ψ, r ⊗ 1]β = [ϕ, r ⊗ 1]β = 0 and [ψ, 1 ⊗ s]β = [ϕ, 1 ⊗ s]β . Since ψ(1 ⊗ 1) = ϕ(1 ⊗ 1) = 0,

we have ϕ = ψ ∈ Dβ(R)
s
⊗ Dβ(S).

Now consider any ϕ ∈ Dβ(R
s
⊗ S) such that [ϕ, r ⊗ s]β ∈ Dβ(R)

s
⊗ Dβ(S) with

ϕ(1 ⊗ 1) = 0. Let {r1, r2, · · · , rm} be a set of homogeneous generators of R. Let

[ϕ, ri ⊗ 1] = µi =
∑

µi(1) ⊗ µi(2) ∈ Dβ(R)
s
⊗ Dβ(S).

Let V2 ⊂ Dβ(S) denote the finite dimensional super vector space spanned by the µi(2).
Let {g1, g2, · · · , gp} be a basis of homogeneous elements in V2. Let [ϕ, r ⊗ 1] =

∑

i f
r
i ⊗ gi

for f ri ∈ Dβ(R). For each i, let ei ∈ Hom(R,R) denote the homogeneous homomorphism
given by ei(r) = f ri (1). As before, we can see that [ei, r]β = f ri ∈ Dβ(R). Hence,

ψ =
∑

ei ⊗ gi ∈ Dβ(R)
s
⊗ Dβ(S). We have,

(ϕ− ψ)(1 ⊗ 1) = 0, [(ϕ− ψ), r ⊗ 1]β = 0, and [(ϕ− ψ), r ⊗ s]β ∈ Dβ(R)
s
⊗ Dβ(S).

As before, ϕ− ψ ∈ Dβ(R)
s
⊗ Dβ(S) which proves the result. �
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4.1.1 The universal supercommutative envelope

Every metaabelian algebra is a nonhomogeneous subalgebra of a supercommutative su-
peralgebra. Its universal supercommutative envelope was constructed by Volichenko as
follows [8].

For a metaabelian M , let M (+) denote the related Jordan algebra. That is, as a set
M (+) = {m(+) | m ∈M}. The vector space structure on M (+) is given by (m(+) +n(+)) =
(m + n)(+) and αm(+) = (αm)(+) for any α ∈ k and m,n ∈ M . The multiplication on
M (+) is defined as

m(+) ◦ n(+) =
1

2
(mn+ nm)(+).

Let C denote the subalgebra of M generated by the elements [m,n] for any m,n ∈ M .
Let Ω1

M (+)/C
denote the M (+)-module of differentials, i.e., Ω1

M (+)/C
is the quotient of the

free M (+)-module with basis dm where m ∈M , modulo the submodule generated by

d(m+ n) − dm− dn, d(mn) −m(+)dn− n(+)dm, for any m,n ∈M.

Note that dc = 0 for any c ∈ C in Ω1
M (+)/C

. The universal supercommutative envelope

of M is SM = M (+) ⊕ Ω1
M (+)/C

, whose even component is M (+) and the odd component

is Ω1
M (+)/C

; the product of odd elements being dm · dn := 1
2 [m,n](+). The metaabelian

algebra M can be seen as a nonhomogeneous subspace {m(+) + dm | m ∈M} of SM .

4.1.2 Tensor products of metaabelian algebras

A special tensor product of metaabelian algebras was constructed by V Molotkov in an
Appendix to [8]. Here we present another, simpler, construction which also satisfies the
universal property of Proposition 4.1.3.

We first describe metaabelian tensor product of two (possibly nonhomogeneous) sub-
algebras of superalgebras.

Let S and T be two k-superalgebras. Let A ⊂ S and B ⊂ T be subalgebras, possibly

nonhomogeneous. We have an inclusion of vector spaces A⊗B ⊂ S
s
⊗ T . The multiplica-

tion (4.1.1) on S
s
⊗ T with a natural parity makes S

s
⊗ T into a superalgebra. The vector

space A⊗B is not necessarily closed under this multiplication. For instance

(1 ⊗ b)(a⊗ 1) = (a⊗ b− 2a1 ⊗ b1) /∈ A⊗B,

where a1, b1 are the odd parts of a, b, respectively, for a ∈ A and b ∈ B. Therefore,

define the metaabelian tensor product of algebras A and B to be the subalgebra of S
s
⊗ T

generated by A⊗B and denote it by A
m
⊗ B.

There are natural maps of algebras iA : A −→ A
m
⊗ B and iB : B −→ A

m
⊗ B given by

iA(a) = a⊗ 1 and iB(b) = 1 ⊗ b.

Remark 4.1.2. The metaabelian tensor product is dependent on its ambient space. For
instance, consider the following two examples:

(1) Let k[x] and k[y] be purely even. Then, k[x] ⊗ k[y] = k[x, y].
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(2) Let k[z1] = k[x0 + x1] and k[z2] = k[y0 + y1] be metaabelian algebras in their
supercommutative envelopes k[x0] ⊗ Λ(x1) and k[y0] ⊗ Λ(y1). Then,

k[z1, z2] := k[z1]
m
⊗ k[z2] = k[x0 + x1]

m
⊗ k[y0 + y1] = k[x0 + x1, y0 + y1]

is a metaabelian subalgebra in k[x0, y0] ⊗ Λ(x0, y0). Observe that k[z1, z2] is no longer
commutative. Hence, it is not algebraically isomorphic to k[x, y] even though k[x] ∼= k[z1]
and k[y] ∼= k[z2] as algebras.

Let M and N be metaabelian algebras. Let SM and SN be their supercommutative
envelopes.

The supercommutative envelopes are universal constructions. So, we have natural

inclusions M ⊂ SM and N ⊂ SN . By construction M
m
⊗ N is metaabelian. This product

possesses universal properties:

Proposition 4.1.3. Let A,B,C be three metaabelian algebras. Let f : A −→ C and
g : B −→ C be algebra homomorphisms. Then there exists a unique algebra homomorphism

h : A
m
⊗ B −→ C such that f = h ◦ iA and g = h ◦ iB.

Proof. An algebra homomorphism f : A −→ C naturally gives an even algebra homo-
morphism of supercommutative superalgebras Sf : SA −→ SC such that the restriction
of Sf on A is f . Likewise, we have an even algebra homomorphism of supercommutative
superalgebras Sg : SB −→ SC such that the restriction of Sg on B is g.

Since SA
s
⊗ SB is a tensor product with universal properties, we have the unique

map Sh : SA
s
⊗ SB −→ SC . By construction, Sh(a ⊗ 1) = Sf (a) = f(a) ∈ C and

Sh(1 ⊗ b) = Sg(b) = g(b) ∈ C for any a ∈ A and b ∈ B. Denote by h the restriction of Sh

on A
m
⊗ B. Then we have f = iA ◦ h and g = iB ◦ h.

Let a map l : A
m
⊗ B −→ C be given such that f = l ◦ iA and g = l ◦ iB . Then, we have

h(a⊗ 1) = Sf (a⊗ 1) = l(a⊗ 1) and h(1 ⊗ b) = Sg(1 ⊗ b) = l(1 ⊗ b). Hence, h = l. �

Proposition 4.1.4. Let M,N be two metaabelian algebras, SM , SN their corresponding

supercommutative envelopes. Then SM
s
⊗ SN is the supercommutative envelope of M

m
⊗ N .

Proof. We write SM = M (+) ⊕ Ω1
M (+)/CM

and SN = N (+) ⊕ Ω1
N(+)/CN

, where CM and

CN are the commutator subalgebras of M and N respectively. We need to show that

• (M
m
⊗ N)(+) = (SM

s
⊗ SN )0;

• (SM
s
⊗ SN )1 = Ω1

(M
m
⊗N)(+)/C

M
m
⊗N

is the module of differentials over (M
m
⊗ N)(+)

generated by dSM⊗SN
r for r ∈ (M

m
⊗ N);

• C
M

m
⊗N

⊂ Ker(dSM⊗SN
),
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where dSM⊗SN
is the derivation of SM

s
⊗ SN defined in Remark (4.1.1). Note that

dSM⊗SN
is odd and d2

SM⊗SN
= 0. We will use the letter d to mean any of the deriva-

tions dM , dN , dSM⊗SN
as will be clear from the context. We have an isomorphism

(M
m
⊗ N)(+) −→ (SM

s
⊗ SN )0

(m⊗ n)(+) 7→ (m(+) ⊗ n(+)) + (dm⊗ dn)

for any m ∈M,n ∈ N . Similarly, note that

d(m⊗ n) = dm⊗ n(+) +m(+) ⊗ dn.

Hence (SM
s
⊗ SN )1 is generated over (M

m
⊗ N)(+) by dr for r ∈ (M

m
⊗ N). Lastly, we see

that C
M

m
⊗N

is generated by elements of the kind e[r, s] for r, s ∈ (M
m
⊗ N) and e an even

element, multiple of terms of the form dm⊗ dn for m ∈M and n ∈ N . This implies that
d(e) = 0. So, it remains to show that d([r, s]) = 0 for and r = (m ⊗ n) and s = (a ⊗ b)
where m,a ∈M and n, b ∈ N ; this follows from a straightforward calculation. �

Remark 4.1.3. Let S = k[X;n] ⊗ Λ[Y;n] and T = k[A;m] ⊗ Λ[B;m]. Let k[Z] be the
non-graded subalgebra in S generated by all the elements zi = xi + yi and k[C] be the
non-graded subalgebra in T generated by all the elements ci = ai + bi. Then, the tensor
product of the two metaabelian algebras k[Z] and k[C] is the metaabelian algebra k[Z,C]
contained in k[X, A;n +m] ⊗ Λ[Y, B;n +m].

4.2 Volichenko algebras as algebras of differential operators

Volichenko algebras are to Lie superalgebras what metaabelian algebras are to supercom-
mutative superalgebras ([8]): a Volichenko algebra is defined to be a non-homogeneous
subspace of a Lie superalgebra closed under the superbracket. No intrinsic definition of
Volichenko algebras (in terms of defining identities) is available yet, see [1], [8].

Recall that the algebra of usual differential operators on M is

D(M) := {ϕ ∈ Endk(M) | · · · [[ϕ,m1],m2], · · ·mn] = 0 for some n ≥ 0 and any mi ∈M}.

We also introduce other algebras of differential operators on M , Dβ(M) and V D(M).

4.2.1 β-differential operators on M

We define the algebra of β-differential operators on M as

Dβ(M) = Dβ(S) ∩ Endk(M) = {ϕ ∈ Dβ(S) | ϕ(M) ⊂M}.

Remark 4.2.1. The following are immediate:

(1) Dβ(M) ⊂ D(M);

(2) Dβ(M) is a filtered algebra, Dβ(M) = ∪nD
n
β(M), where

Dn
β(M) = {ϕ ∈ Dn

β(S) | ϕ(M) ⊂M}.
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For any ϕ = ϕ0+ϕ1 ∈ Endk(S) and a = a0+a1 ∈ S, we let a = a0−a1 and ϕ = ϕ0−ϕ1.
Consider the β-commutator,

[ϕ, a]β = ϕa− (a0ϕ+ a1ϕ) = ϕa− (aϕ0 + aϕ1).

It is not clear whether [ϕ, a]β ∈ Dβ(M) if ϕ ∈ Dβ(M) and a ∈ M . The situation is
remedied by introducing the Volichenko differential operators.

4.2.2 Volichenko differential operators on M

The construction of a supercommutative envelope of M gives us a natural superderivation
d : S −→ S of parity 1 given on the generators by

d(m(+)) = dm and d(dm) = 0.

Clearly, d2 = 0. For an even ϕ0 ∈ Dn
β(S), one can show by induction on n that [d, ϕ0] ∈

Dn
β(S). Define the algebra of Volichenko differential operators as

V D(M) = {ϕ0 + [d, ϕ0] | ϕ0 ∈ Dβ(S) is even }.

The following proposition justifies the terminology used above.

Proposition 4.2.1. (1) For any even ϕ0 ∈ Dβ(S), we have (ϕ0 + [d, ϕ0])(m) ∈M for all
m ∈M . In particular, V D(M) ⊂ Dβ(M).

(2) The vector space V D(M) is a filtered algebra, V D(M) = ∪n≥0V D
n(M), where

V Dn(M) = {ϕ0 + [d, ϕ0] | ϕ0 ∈ Dn
β(S) is even }.

In particular, V D(M) ⊂ Dβ(M) as filtered algebras.
(3) V D0(M) = {λm | m ∈ M} and V D1(M) = V D0(M) ⊕ V as vector spaces where

V is a Volichenko algebra.
(4) For any ϕ = ϕ0+[d, ϕ0] ∈ V D

n(M), we have [ϕ,m]β ∈ V Dn−1(M) for any m ∈M .
In particular, if ϕ ∈ V Dn(M), then [· · · [ϕ,m0]β ,m

1]β, · · · ,m
n]β = 0, where mi ∈M .

Proof. (1) We write m = m(+) + dm and

(ϕ0 + [d, ϕ0])(m) = (ϕ0(m
(+)) + [d, ϕ0](dm)) + (ϕ0(dm) + [d, ϕ0](m

(+))).

From direct checking it follows that

d(ϕ0(m
(+)) + [d, ϕ0](dm)) = (ϕ0(dm) + [d, ϕ0](m

(+))).

(2) For ϕ0, ψ0 ∈ Dβ(S) even, we see that [d, ϕ0][d, ψ0] is an even homomorphism and
[d, [d, ϕ0][d, ψ0]] = 0. Thus, [d, ϕ0][d, ψ0] ∈ V D(M). Further

(ϕ0 + [d, ϕ0])(ψ0 + [d, ψ0]) = (ϕ0ψ0 + [d, ϕ0ψ0]) + [d, ϕ0][d, ψ0] ∈ V D(M).

Hence, V D(M) is an algebra.
(3) The first part follows from [d, λm(+) ] = λdm. As spaces, D1

β(S) = D0
β(S)⊕Derβ(S),

where Derβ(S) is a Lie superalgebra (see Corollary 3.0.1). The odd derivation d ∈ D1
β(S)
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is homologic (i.e., [d, d]β = 0). Hence, by Example 2.5 of [8], V D1(M) is a Volichenko
algebra.

(4) For m = m0 + dm ∈M and ϕ = ϕ0 + [d, ϕ0], we have

[ϕ,m]β = [ϕ0,m0] + [d, ϕ0]dm+ dm[d, ϕ0]] + [ϕ0, dm] + [[d, ϕ0],m0].

It is easy to check that

[d, [ϕ0,m0] + [d, ϕ0]dm + dm[d, ϕ0]] = [ϕ0, dm] + [[d, ϕ0],m0].

�

Remark 4.2.2. The result (4) of the above proposition, is not an if and only if statement.
That is, if [ϕ,m] ∈ V Dn−1(M), then ϕ need not be in V Dn(M). For example, consider
S = k[x] ⊗ Λ(y) a supercommutative superalgebra with p(x) = 0 and p(y) = 1, and let
M = k[x + y], be the polynomial ring sitting diagonally in S. Let ψ1 = x∂y + y∂x ∈
Derβ(S). We see that [ψ1,m]β = λψ1(m) ∈ V D0(M) and ψ keeps M invariant, but ψ1 is
a nonzero purely odd operator. Hence ψ1 /∈ V D1(M).

Theorem 4.2.1. (1) V D(
∏

αMα) ∼=
∏

α V D(Mα) as filtered algebras, where Mα is a
metaabelian algebra for each α.

(2) There is an inclusion V D(M)
m
⊗ V D(N) −→ V D(M

m
⊗ N) of filtered algebras,

where M,N are finitely generated metaabelian algebras.

Proof. (1) For each α, let Sα denote the supercommutative envelope of Mα with dα
the associated superderivation. The direct product

∏

α Sα along with the superderivation
∏

α dα is the supercommutative envelope of
∏

αMα. The result follows from Lemma 3.0.1.
(2) Let SM , SN be the supercommutative envelopes of M,N respectively. Since M

and N are finitely generated, SM , SN are finitely generated. Let the correspondng natural
derivations be denoted by dM and dN respectively. Consider their tensor derivation dM⊗N :

SM
s
⊗ SN −→ SM

s
⊗ SN given by

dM⊗N (a⊗ b) = dM (a) ⊗ b+ (−1)p(a)a⊗ dN (b).

As in extensions (4.1.2) and (4.1.3), we extend operators in V D(M) and V D(N) to

Hom(M
m
⊗ N,M

m
⊗ N). By the nature of the extension, one can see that these extended

operators are in V D(M
m
⊗ N). Proposition 4.1.2 completes the proof. �

4.2.3 An example

Let k[Z] be the nonhomogeneous subalgebra of S = k[X;n]⊗Λ[Y;n] generated by variables
Z = (z1, z2, · · · , zn), with zi = xi + yi.

Note that Dβ(S) = Dβ(k[X;n]) ⊗ Dβ(Λ[Y;n]). The algebra of differential operators
on k[X;n] is the Weyl algebra. That is,

Dβ(k[X;n]) = k < x1, x2, · · · , xn, ∂x1 , ∂x2 , · · · , ∂xn > /Rel,

where Rel is the set of relations generated by [∂xi
, xj ] = δi,j, [xi, xj ] = 0 = [∂xi

, ∂xj
].

Likewise,

Dβ(Λ[Y;n]) = k < y1, y2, · · · , yn, ∂y1 , ∂y2 , · · · , ∂yn > /Rel′,
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where Rel′ is the set of relations generated by [∂yi
, yj]β = δi,j, [yi, yj]β = 0 = [∂yi

, ∂yj
]β.

Here, the operators ∂yi
and yi = λyi

are odd operators. The operators ∂xi
(and ∂yi

)
is an even (respectively, odd) superderivation on S satisfying ∂yi

(yj) = δij , ∂yi
(xj) = 0

(respectively, ∂yi
(yj) = δij , ∂yi

(xj) = 0).

Note that S is the supercommutative envelope of k[Z], with the natural odd derivation
d =

∑

i yi∂xi
. Hence,

V Dn(k[Z]) = {ϕ0 + [d, ϕ0] | ϕ0 ∈ Dn
β(S) is even }.

The subalgebra (Dβ(S))0 of even elements in Dβ(S) is generated by

{xi, ∂xi
}i ∪ {yiyj , ∂yi

∂yj
}i<j ∪ {yi∂yj

}i,j .

The following formulae are easy to check:

[d, xi] = yi, [d, ∂xi
] = 0, [d, yiyj] = 0;

[d, ∂yi
∂yj

] = ∂xi
∂yj

− ∂yi
∂xj

, [d, yi∂yj
] = −yi∂xj

.

Hence, the Volichenko differential operators on k[Z] are generated by the operators, for
1 ≤ i, j ≤ n,

• xi + yi (this operator acts as left-multiplication by zi on k[Z]),

• ∂xi
(this operator acts as the derivation ∂zi

on k[Z]),

• ∂yi
∂yj

+∂xi
∂yj

−∂yi
∂xj

(this is a second order Volichenko differential operator acting
nontrivially),

• yi∂yj
− yi∂xj

(this is called a ghost operator, since it is a non-zero operator whose
action on k[Z] is 0).
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