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Abstract

Lie group analysis is applied to a core group model for sexually transmitted disease
formulated by Hadeler and Castillo-Chavez [Hadeler K P and Castillo-Chavez C, A
core group model for disease transmission, Math. Biosci. 128 (1995), 41–55]. Several
instances of integrability even linearity are found which lead to the general solution
of the model. A discussion of such solutions is presented and it is shown how they
complement Hadeler and Castillo-Chavez’s qualitative analysis.

1 Introduction

In [8] Hadeler and Castillo-Chavez presented a model for sexually transmitted diseases
which takes into consideration an active and relatively small core group of constant size.
The core group recruits individuals from the non-core group, and the rate of recruitment
may depend on the state of the core group. The non-core group is completely inactive.
The total population has size P (t), and the non-core group has size A. The population of
the core group C is further divided into susceptibles S, educated (or vaccinated) V , and
infecteds I. The birth rate is b > 0, the birth rate of infecteds is b̃ ≤ b, b̃ ≥ 0, the death
rate is µ > 0, the death rate of infecteds is µ̃ ≥ µ, the recovery rate is α ≥ 0, the education
(vaccination) rate is ψ ≥ 0, the transmission rate from infecteds to susceptibles is β ≥ 0,
the transmission rate from infected to educated (vaccinated) is β̃, 0 ≤ β̃ ≤ β. At recovery
individuals may either pass into the educated class at the rate αγ, 0 ≤ γ ≤ 1, or return
to the susceptible class at the rate α(1− γ). Recruitment into the core group is described
by a function r(I, C). Hadeler and Castillo-Chavez focused on the situation where the
disease has no demographic effects and the population size is constant, i.e. P =const,
b = b̃ = µ = µ̃. Thus their model assumes the form

Ȧ = µP −Ar(I, C) − µA, (1.1)

Ṡ = Ar(I, C) − β
SI

C
− ψS + α(1 − γ)I − µS, (1.2)
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V̇ = ψS − β̃
V I

C
+ αγI − µV, (1.3)

İ =
βSI + β̃V I

C
− αI − µI. (1.4)

They point out that this system is closely related to a model for an isolated core population
of constant size C = 1, i.e.

Ṡ = µ− βSI − ψS + α(1 − γ)I − µS, (1.5)

V̇ = ψS − β̃V I + αγI − µV, (1.6)

İ = βSI + β̃V I − αI − µI. (1.7)

In [8] the stationary solutions of system (1.5)-(1.7) are found and their qualitative features
discussed. Then the stationary solutions of system (1.1)-(1.4) are also discussed. Quali-
tative conclusions are finally drawn.
In the present paper we apply Lie group analysis to system (1.5)-(1.7) in order to deter-
mine under which physical conditions on the parameters Lie point symmetries exist and,
when possible, deduce the general solution in closed form. We also discuss the solutions
that we have found and show how our work complements Hadeler and Castillo-Chavez’s
qualitative analysis.

2 Lie group analysis

In January 2001 the first Whiteman prize for notable exposition on the history of math-
ematics was awarded to Thomas Hawkins by the American Mathematical Society. In the
citation, published in the Notices of AMS 48 416-417 (2001), one reads that Thomas
Hawkins “. . . has written extensively on the history of Lie groups. In particular he has
traced their origins to [Lie’s] work in the 1870s on differential equations . . . the idée fixe

guiding Lie’s work was the development of a Galois theory of differential equations”. Also
Hawkins had established “the nature and extent of Jacobi’s influence upon Lie” [9]. This is
particularly noteworthy since 2004 marked two hundred years since Jacobi’s birth. “Given
the fact that the Jacobi Identity is fundamental to the theory of Lie groups, Jacobi’s in-
fluence upon Lie will come as no surprise. But the bald fact that he inherited the Identity
from Jacobi fails to convey fully or accurately the historical dimension of the impact of
Jacobi’s work on partial differential equations” [9].
Lie’s monumental work on transformation groups, [18], [19] and [20], and in particular
contact transformations [21], has provided systematic techniques for obtaining exact solu-
tions of differential equations [22].
Many books have been dedicated to this subject and its generalizations ([1], [3], [33], [32],
[4], [35], [36], [11], [13], [14], [15], [12], [2]).
Lie group analysis is indeed the most powerful tool to find the general solution of ordinary
differential equations. Any known integration technique can be shown to be a particular
case of a general integration method based on the derivation of the continuous group of
symmetries admitted by the differential equation, i.e. the Lie symmetry algebra. The ad-
mitted Lie symmetry algebra can be derived easily by a straightforward although lengthy
procedure. As computer algebra software becomes widely used, the integration of systems
of ordinary differential equations by means of Lie group analysis is becoming easier to
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perform. A major drawback of Lie’s method is that it is useless when applied to systems
of n first-order equations, because they admit an infinite number of symmetries, and there
is no systematic way to find even an one-dimensional Lie symmetry algebra, apart from
trivial groups like translations in time admitted by autonomous systems. One may try to
derive an admitted n-dimensional solvable Lie symmetry algebra by making an ansatz on
the form of its generators but when successful (rarely) it is just a lucky guess.
However, in [27] Nucci has remarked that any system of n first-order equations could be
transformed into an equivalent system where at least one of the equations is of second
order. Then the admitted Lie symmetry algebra is no longer infinite dimensional, and
nontrivial symmetries of the original system could be retrieved [27]. This idea has been
successfully applied in several instances ([27], [37], [30], [23], [28], [31], [17], [29]). Here we
apply this method to system (1.5)-(1.7) and employ ad hoc interactive programs [25], [26]
written in REDUCE language to calculate the admitted Lie algebra.
System (1.5)-(1.7) is composed of three first-order ordinary differential equations which
can be easily reduced to two equations by using the condition

C ≡ 1 = S + V + I. (2.1)

Then we can easily transform the system of two equations so obtained into one equation
of second order. We derive I from (2.1), i.e.

I = 1 − S − V, (2.2)

and then deduce V from equation (1.5), i.e.

V =
Ṡ − µS + ψS − µ

αγ − α+ βS
− S + 1. (2.3)

Then a second order equation for S is obtained, i.e

S̈ = f(t, S, Ṡ), (2.4)

and we search for its Lie symmetry algebra. An operator Γ

Γ = v(t, u)∂t + g(t, u)∂u (2.5)

is said to generate a Lie point symmetry group of an equation of second-order, say

ü = F (t, u, u̇), (2.6)

if its second prolongation

Γ
2

= Γ +

(

dg

dt
− u̇

dv

dt

)

∂u̇ +

[

d

dt

(

dg

dt
− u̇

dv

dt

)

− ü
dv

dt

]

∂ü

applied to equation (2.6), on its solutions, is identically equal to zero, i.e.

Γ
2
(2.6)

∣

∣

∣

(2.6)
= 0. (2.7)

The determining equation (2.7) constitutes an overdetermined system of linear partial
differential equations in the unknowns v(t, u), g(t, u). When we apply Lie group analysis
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to equation (2.4) then we obtain a first-order linear partial differential equation for v(t, S);
its characteristic curves suggests making the following simplifying transformation

S =
−αγ + α+ u

β
, (2.8)

where u(t) is the new dependent variable. Then (2.3) transforms into

V = 1 +
u̇+ α(1 − γ)(µ+ ψ) + (αγ − α+ µ+ ψ − u)u− βµ

βu
, (2.9)

and (2.4) becomes

ü = (α2βγ2µu+ α2βγ2ψu− α2βγµu− α2βγψu + α2β̃γ2µ2 + 2α2β̃γ2µψ

−α2β̃γ2µu+ α2β̃γ2ψ2 − α2β̃γ2ψu− 2α2β̃γµ2 − 4α2β̃γµψ + 2α2β̃γµu

−2α2β̃γψ2 + 2α2β̃γψu+ α2β̃µ2 + 2α2β̃µψ − α2β̃µu+ α2β̃ψ2

−α2β̃ψu+ αβ2γµu+ 2αββ̃γµ2 + 2αββ̃γµψ − 2αββ̃γµu− αββ̃γψu

−2αββ̃µ2 − 2αββ̃µψ + 2αββ̃µu+ αββ̃ψu+ αβγµ2u

+αβγµψu− 2αβγµu2 − αβγµu̇− 2αβγψu2 − αβγψu̇− αβγuu̇− αβµ2u

−αβµψu+ αβµu2 + αβµu̇+ αβψu2 + αβψu̇ − 2αβ̃γµ2u− 4αβ̃γµψu

+2αβ̃γµu2 − 2αβ̃γµu̇− 2αβ̃γψ2u+ 2αβ̃γψu2 − 2αβ̃γψu̇+ αβ̃γuu̇

+2αβ̃µ2u+ 4αβ̃µψu− 2αβ̃µu2 + 2αβ̃µu̇+ 2αβ̃ψ2u

−2αβ̃ψu2 + 2αβ̃ψu̇− αβ̃uu̇+ β2β̃µ2

−β2β̃µu+ β2µ2u− β2µu2 − β2µu̇− 2ββ̃µ2u− 2ββ̃µψu

+2ββ̃µu2 − 2ββ̃µu̇+ ββ̃ψu2 + ββ̃uu̇− βµ2u2 − βµψu2 + βµu3 − βµuu̇

+βψu3 + βu2u̇+ βu̇2 + β̃µ2u2 + 2β̃µψu2 − β̃µu3 + 2β̃µuu̇

+β̃ψ2u2 − β̃ψu3 + 2β̃ψuu̇− β̃u2u̇+ β̃u̇2)/(βu). (2.10)

We apply Lie group analysis to (2.10) and obtain non-trivial Lie point symmetries in five
cases:

Case (1)

β = β̃

In this case we obtain an eight-dimensional Lie symmetry algebra1 which is isomorphic
to sl(3, IR) [22], [7]. This means that equation (2.10) is linearizable [22] by means of
a point transformation. In order to find the linearizing transformation we have to look
for a two-dimensional abelian intransitive subalgebra and, following Lie’s classification of
two-dimensional algebras in the real plane [22], we have to transform it into the canonical
form

∂ũ, t̃∂ũ (2.11)

1We do not list the eight operators because of their length. However we will provide them in MAPLE

format to anyone interested.
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with ũ and t̃ the new dependent and independent variables, respectively. We found that
one such subalgebra is that generated by Γ3 and Γ6, i.e.

Γ3 =
β̃µ− β̃u+ αu− αµ− uψ − αψ + αγψ + αγµ

u(µ+ ψ)(β̃ + ψ − α)(α − β̃ + µ) e(α−β̃+µ)t

[

∂t + (β̃µ− β̃u+ αu

−αµ− uψ − αψ + αγψ + αγµ)∂u

]

, (2.12)

Γ6 =
1

u(µ+ ψ)(−α+ β̃ − µ) e(µ+ψ)t

[

∂t + (β̃µ− β̃u+ αu− αµ− uψ − αψ

+αγψ + αγµ)∂u

]

. (2.13)

In order to find t̃ and ũ we have to solve the following four linear partial differential
equations of first-order:

Γ3(t̃) = 0, Γ6(t̃) = 0, Γ3(ũ) = t̃, Γ6(ũ) = 1. (2.14)

After a lengthy calculation we derive that if β̃ 6= α− ψ then

t̃ =
e(β̃−α+ψ)t

α− β̃ − ψ
(β̃µ− β̃u+ αu− αµ− uψ − αψ + αγψ + αγµ), (2.15)

ũ = e(µ+ψ)t(αγµ+ αγψ − αµ− αψ + β̃µ− µu− ψu) (2.16)

and equation (2.10) becomes

d2ũ

dt̃2
= 0 (2.17)

which can be easily integrated, i.e.

ũ = a1t̃+ a2. (2.18)

with a1, a2 arbitrary constants. Taking into consideration (2.15), (2.16), (2.8), (2.3) and
(2.2) it is easy to obtain the general solution of system (1.5)-(1.7), i.e.

S =
eβ̃t

(

α(γ − 1)(α − β̃ + µ) + β̃µ
)

a1

β̃(β̃ + ψ − α)
(

e(α+µ)t(µ+ ψ) + eβ̃ta1

) +
e(α−ψ)t

(

e(µ+ψ)tβ̃µ− a2

)

β̃
(

e(α+µ)t(µ+ ψ) + eβ̃ta1

) ,(2.19)

V =
eαt

(

eµtβ̃ψ + e−ψta2

)

β̃
(

e(α+µ)t(µ+ ψ) + eβ̃ta1

) +
eβ̃t

(

γ(β̃ − α− µ) + ψ + µ
)

αa1

β̃(β̃ + ψ − α)
(

e(α+µ)t(µ+ ψ) + eβ̃ta1

) ,(2.20)

I =
eβ̃t(β̃ − µ− α)a1

β̃
(

e(α+µ)t(µ+ ψ) + eβ̃ta1

) . (2.21)

If β̃ = α−ψ and γ 6= ψ(α+µ)
α(µ+ψ) , then we obtain that the two-dimensional abelian intransitive

subalgebra of the admitted eight-dimensional Lie point symmetry algebra of equation
(2.10) generated by the operators:

X6 =
e−(µ+ψ)t

u

(

∂t − (αψ + µψ − αγµ− αγψ)∂u

)

, (2.22)

X7 =
u+ t(αψ + µψ − αγµ− αγψ)

e(µ+ψ)tu(αψ + µψ − αγµ− αγψ)

(

∂t − (αψ + µψ − αγµ− αγψ)∂u

)

(2.23)
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can be put into the canonical form (2.11) if

t̃ =
αψ + µψ − αγµ− αγψ

u+ t(αψ + µψ − αγµ− αγψ)
, (2.24)

ũ =
(

u+ t(αψ + µψ − αγµ− αγψ)
)2

+

(

αψ + µψ − αγµ− αγψ + (µ+ ψ)u
)

(αψ + µψ − αγµ− αγψ)

e−(µ+ψ)t
(

u+ t(αψ + µψ − αγµ− αγψ)
)

(µ+ ψ)2
. (2.25)

Thus equation (2.10) transforms into:

d2ũ

dt̃2
= −6

(αψ + µψ − αγµ− αγψ)2

t̃4
, (2.26)

which can be easily integrated, i.e.

ũ = a1 + a2t̃−
(αψ + µψ − αγµ− αγψ)2

t̃2
. (2.27)

Consequently the general solution of (1.5)-(1.7) is:

S = (µ+ ψ)
(a1t+ a2)(αψ + µψ − αγµ− αγψ) − αa1(1 − γ)

(

e(µ+ψ)t(αψ + µψ − αγµ− αγψ) − (µ+ ψ)a1

)

(α− ψ)

+
e(µ+ψ)t(αψ + µψ − αγµ− αγψ)µ

(

e(µ+ψ)t(αψ + µψ − αγµ− αγψ) − (µ+ ψ)a1

)

(µ+ ψ)
, (2.28)

V = −(µ+ ψ)
(a1t+ a2)(αψ + µψ − αγµ− αγψ) + a1(αγ + µ)

(

e(µ+ψ)t(αψ + µψ − αγµ− αγψ) − (µ+ ψ)a1

)

(α− ψ)

+
e(µ+ψ)t(αψ + µψ − αγµ− αγψ)ψ

(

e(µ+ψ)t(αψ + µψ − αγµ− αγψ) − (µ+ ψ)a1

)

(µ+ ψ)
, (2.29)

I =
(µ+ ψ)2a1

(

e(µ+ψ)t(αψ + µψ − αγµ− αγψ) − (µ+ ψ)a1

)

(α− ψ)
. (2.30)

Finally, if β̃ = α−ψ and γ = ψ(α+µ)
α(µ+ψ) then equation (2.10) can be immediately integrated,

i.e.:

u =
1

e(µ+ψ)ta1 + a2
, (2.31)

and consequently the general solution of (1.5)-(1.7) is

S =
µ+ ψ + µ(α− ψ)

(

e(µ+ψ)ta1 + a2

)

(

e(µ+ψ)ta1 + a2

)

(α− ψ)(µ+ ψ)
, (2.32)

V =
e(µ+ψ)t(α− ψ)a1ψ + αa2ψ + a2µ

2 + 2a2µψ − µ− ψ
(

e(µ+ψ)ta1 + a2

)

(α− ψ)(µ+ ψ)
, (2.33)

I =
−(µ+ ψ)a2

(

e(µ+ψ)ta1 + a2

)

(α− ψ)
. (2.34)
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Case (2)

β =
(1 − γ)(µ+ ψ)α

µ
, β̃ =

(αγ − ψ)(µ+ ψ)

ψ
, (ψ < αγ)

Equation (2.10) admits a non-abelian transitive two-dimensional Lie algebra generated by
the following operators:

Γ1 = e(µ+ψ)t
(

∂t − (µ+ ψ)u∂u

)

, Γ2 = ∂t (2.35)

A basis of the differential invariants of order ≤ 1 for operator Γ1 in (2.35) is

t̃ = u e(µ+ψ)t, ũ = (u̇+ uµ+ uψ) e2(µ+ψ)t, (2.36)

and therefore equation (2.10) becomes the following first-order equation:

dũ

dt̃
=

(−αγµ+ αγψ − αψ + µψ)ũ+ (αγµ+ αγψ − αψ − µψ)t̃2

αψ(γ − 1)t̃
, (2.37)

which can be easily integrated, i.e.:

ũ = a1t̃

(αγ − ψ)µ+ (1 − γ)αψ

(1 − γ)αψ + t̃ 2. (2.38)

The integration of (2.37) is not haphazard, but follows from Lie symmetry method itself
[22]. In fact equation (2.37) admits the Lie symmetry generated by Γ2 in (2.35) which is
transformed into

Γ̃2 = (µ+ ψ)
(

t̃∂t̃ + 2ũ∂ũ

)

(2.39)

by means of (2.36). Substitution of (2.36) into (2.38) yields the following first-order
equation:

u̇ = a1u

(αγ − ψ)µ

(1 − γ)αψ
+ 1

e

(

(αγ − ψ)µ

(1 − γ)αψ
− 1

)

(µ+ ψ)t
+ u(u− ψ − µ), (2.40)

which is easy to integrate because it admits the Lie symmetry generated by Γ1 in (2.35). In
fact Lie proved that if one knows a symmetry τ(t, u)∂t + ξ(t, u)∂u of a first-order ordinary
differential equation, say u̇ = f(t, u), then an integrating factor for the corresponding
linear differential form, say du− f(t, u)dt = 0, is 1

ξ−f(t,u)τ [22]. Thus

−e−(µ+ψ)t

a1u

(αγ − ψ)µ

(1 − γ)αψ
+ 1

e

(

(αγ − ψ)µ

(1 − γ)αψ
− 1

)

(µ+ ψ)t
+ u2

(2.41)

is an integrating factor for the linear differential form corresponding to equation (2.40),
i.e.:

du−






a1u

(αγ − ψ)µ

(1 − γ)αψ
+ 1

e

(

(αγ − ψ)µ

(1 − γ)αψ
− 1

)

(µ+ ψ)t
+ u(u− ψ − µ)






dt = 0 .(2.42)

Then the general solution of equation (2.10) could be derived by two quadratures although
in implicit form.
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Case (3)

β = 2β̃, γ =
(α+ 2µ)ψ

(2µ+ ψ)α
, β̃ =

(α− ψ)(µ+ ψ)

2µ+ ψ

Equation (2.10) admits the same two-dimensional Lie algebra as in Case (2). A basis of
the differential invariants of order ≤ 1 for operator Γ1 in (2.35) is given in (2.36) and
equation (2.10) becomes the following first-order equation:

dũ

dt̃
=

3ũ+ t̃2

2t̃
, (2.43)

which can be easily integrated, i.e.:

ũ = a1t̃
√

t̃+ t̃2. (2.44)

Substitution of (2.36) into (2.44) yields the following first-order equation:

u̇ = −a1u
√
u e−(µ+ψ)t/2 + u(u− µ− ψ), (2.45)

which is easy to integrate because it admits the Lie symmetry generated by Γ1 in (2.35),
i.e.:

2

a1
√
u
e−(µ+ψ)t/2 − e−(µ+ψ)t

µ+ ψ
+

1

a2
1

log
(

ue(µ+ψ)t
)

− 2

a2
1

log
(√

ue(µ+ψ)t/2 + a1

)

= a2. (2.46)

This solution is in implicit form and as such we cannot derive the general solution of
(1.5)-(1.7) in explicit form.

Case (4)

β̃ = αγ + µ, γ =
(2µ+ ψ)ψ

αµ
, β =

−(2µ+ ψ)ψ + αµ

µ2
(µ+ ψ)

Equation (2.10) admits the same two-dimensional Lie algebra as in Case (2). A basis of
the differential invariants of order ≤ 1 for operator Γ1 in (2.35) is given in (2.36) and
equation (2.10) becomes the following first-order equation:

dũ

dt̃
=

(αµ+ µ2 − µψ − ψ2)ũ+ (αµ− µ2 − 3µψ − ψ2)t̃2

(αµ− 2µψ − ψ2)t̃
, (2.47)

which can be easily integrated, i.e.:

ũ = a1t̃

−αµ+ ψ2 − µ2 + µψ

2µψ + ψ2 − αµ + t̃2. (2.48)

Substitution of (2.36) into (2.48) yields the following first-order equation:

u̇ = a1e
−t(µ+ ψ)(αµ − ψ2 − µ2 − 3µψ)

−2µψ − ψ2 + αµ u

αµ− ψ2 + µ2 − µψ

−2µψ − ψ2 + αµ + u(u− µ− ψ), (2.49)

which could be integrated although in implicit form because it admits the Lie symmetry
generated by Γ1 in (2.35). As in the previous two cases the general solution of (1.5)-(1.7)
cannot be derived in explicit form.
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Case (5)

β̃ = 0, ψ = αγ, β =
α(1 − γ)(αγ + µ)

µ

Equation (2.10) admits the same two-dimensional Lie algebra as in Case (2), i.e.:

Γ1 = e(µ+αγ)t
(

∂t − (µ+ αγ)u∂u

)

, Γ2 = ∂t (2.50)

A basis of the differential invariants of order ≤ 1 for operator Γ1 in (2.50) is

t̃ = u e(µ+αγ)t, ũ = (u̇+ uµ+ uαγ) e2(µ+αγ)t , (2.51)

and therefore equation (2.10) becomes the following first-order equation:

dũ

dt̃
=
ũ+ t̃2

t̃
, (2.52)

which can be easily integrated, i.e.:

ũ = a1t̃+ t̃ 2. (2.53)

The integration of (2.52) is not haphazard, but follows from Lie symmetry method itself
[22] as stated in Case (2). Substitution of (2.51) into (2.53) yields the following first-order
equation:

u̇ =
u

(

−e(αγ+µ)t(αγ + µ− u) + a1

)

e(αγ+µ)t
(2.54)

which is easy to integrate because it admits the Lie symmetry generated by Γ1 in (2.50).
Thus the general solution of (2.10) is

u =
a1

e(αγ+µ)t(ea1/(e
(αγ+µ)t(αγ+µ)a1a2 − 1)

. (2.55)

and the general solution of (1.5)-(1.7) is:

S =

(

e(αγ+µ)t
(

ea1/(e
(αγ+µ)t(αγ+µ))a1a2 − 1

)

(γ − 1)α − a1

)

µ

e(αγ+µ)t
(

ea1/(e
(αγ+µ)t(αγ+µ))a1a2 − 1

)

(αγ + µ)(γ − 1)α
, (2.56)

V =
e(αγ+µ)tα2γ(γ − 1) − a1µ

e(αγ+µ)t(αγ + µ)(γ − 1)α
, (2.57)

I =
ea1/(e

(αγ+µ)t(αγ+µ))a2
1a2µ

e(αγ+µ)t
(

ea1/(e
(αγ+µ)t(αγ+µ))a1a2 − 1

)

(αγ + µ)(γ − 1)α
. (2.58)

There exist other cases such as

β =
[(1 − γ)α− 2(µ+ ψ)] β̃

β̃ − µ− αγ

that we do not consider because they give rise to unacceptable conditions on parameters,
e.g. β̃ = −β.
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3 Discussion

We now study in detail the solutions in closed form that we have obtained in cases (1) and
(5). We simulate the effectiveness of a disease management program in the core group by
plotting the solutions with the help of the graphing capability of MAPLE. Common sense
would dictate that if the transmission rates are low and the education rate is high, then
both the number of susceptibles and infecteds will decrease leading to a successful disease
management program. However, our analysis singles out several different events, such
as an astonishing one in which at high transmission rate and high vaccination/education
rate the number of infecteds decreases if the initial prevalence of infecteds is high, but
increases if it is low! Also, in some instances a temporary increase of either the number
of infecteds or susceptibles followed by a decrease (quite sharp in certain settings) occurs
despite the presence of the hight vaccination/education rate and low transmission rate.
Note that the qualitative description by Hadeler and Castillo-Chavez is limited to the
study of equilibrium points, their stability and bifurcation diagrams.
We use the same numerical value of α, µ and γ as given in [8], i.e.:

α = 4, µ = 0.2, γ = 0.025. (3.1)

The numerical value of the other parameters are derived from the relationships that Lie
group analysis has discerned.
We simulate the dynamics of the core group taking into consideration two different initial
conditions at time t = 0:

(A) No vaccinated/educated are present and the prevalence of infecteds is relatively small,
i.e. S(0) = 0.9, V (0) = 0, I(0) = 0.1

(B) No vaccinated/educated are present and the prevalence of infecteds is high being
nearly half the size of the core group, i.e. S(0) = 0.6, V (0) = 0, I(0) = 0.4

In all the figures, the solid line represents the plot of S, the lighter dashed line represents
the plot of V , and the darker dashed line represents the plot of I.

Case (1)

β = β̃

In this case the transmission rate between infecteds and susceptibles β and between in-
fecteds and educated/vaccinated β̃ is the same. We simulate the dynamics in the core
group by assuming three different values of β̃ and three different values of ψ within the
range considered in [8], namely

ψ = 0.1







β̃ = 0.3

β̃ = 3.3

β̃ = 6

ψ = 1







β̃ = 0.3

β̃ = 3.3

β̃ = 6

ψ = 2







β̃ = 0.3

β̃ = 3.3

β̃ = 6

(3.2)

In Fig. 1-A1 and in Fig. 1-B1 we show the dynamics in the core group if ψ = 0.1, β̃ =
0.3 and in correspondence of the two initial conditions (A) and (B), respectively. In Fig.
1-A2 and in Fig. 1-B2 we show the dynamics in the core group if ψ = 0.1, β̃ = 3.3
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Fig. 1-B2: β = β̃ = 3.3, ψ = 0.1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A6: β = β̃ = 6, ψ = 1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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and corresponding to each of the two initial conditions (A) and (B), respectively. In Fig.
1-A3 and in Fig. 1-B3 we show the dynamics in the core group if ψ = 0.1, β̃ = 6 and
corresponding to each of the two initial conditions (A) and (B), respectively. In Fig. 1-
A4 and in Fig. 1-B4 we show the dynamics in the core group if ψ = 1, β̃ = 0.3 and
corresponding to each of the two initial conditions (A) and (B), respectively. In Fig. 1-
A5 and in Fig. 1-B5 we show the dynamics in the core group if ψ = 1, β̃ = 3.3 and
corresponding to each of the two initial conditions (A) and (B), respectively. In Fig. 1-A6
and in Fig. 1-B6 we show the dynamics in the core group if ψ = 1, β̃ = 6 and corresponding
to each of the two initial conditions (A) and (B), respectively. In Fig. 1-A7 and in Fig.
1-B7 we show the dynamics in the core group if ψ = 2, β̃ = 0.3 and corresponding to each
of the two initial conditions (A) and (B), respectively. In Fig. 1-A8 and in Fig. 1-B8 we
show the dynamics in the core group if ψ = 2, β̃ = 3.3 and corresponding to each of the
two initial conditions (A) and (B), respectively. In Fig. 1-A9 and in Fig. 1-B9 we show
the dynamics in the core group if ψ = 2, β̃ = 6 and corresponding to each of the two
initial conditions (A) and (B), respectively. We notice the following different outputs of
the vaccination/education program:

Complete Success, i.e. both number of susceptibles and infected decrease, is obtained
in the following cases:

• the transmission rates are either low or in the middle range, the education/vacci-
nation rate is in the middle range, and the initial prevalence of infecteds is low
(Fig. 1-A4), (Fig. 1-A5);

• the transmission rates are high, the education/vaccination rate is in the middle
range, and the initial prevalence of infecteds is high (Fig. 1-B6);

• the transmission rates are low, the education/vaccination rate is high, and the
initial prevalence of infecteds is low (Fig. 1-A7);

• the transmission rates are in the middle range, and the education/vaccination
rate is high, regardless of the initial prevalence of infecteds (Fig. 1-A8), (Fig.
1-B8);

• the transmission rates are high, the education/vaccination rate is high, and the
initial prevalence of infecteds is high (Fig. 1-B9).

Increase of number of susceptibles followed by decrease, while the number of in-
fecteds decreases immediately, is obtained in the following cases:

• the transmission rates are low, the education/vaccination rate is low, regardless
of the initial prevalence of infecteds (Fig. 1-A1), (Fig. 1-B1);

• the transmission rates are in the middle range, the education/vaccination rate
is low, and the initial prevalence of infecteds is low (Fig. 1-A2);

• the transmission rates are either low or in the middle range, the education/vacci-
nation rate is in the middle range, and the initial prevalence of infecteds is high
(Fig. 1-B4), (Fig. 1-B5);

• the transmission rates are low, the education/vaccination rate is high, and the
initial prevalence of infecteds is high (Fig. 1-B7);
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Fig. 1-A7: β = β̃ = 0.3, ψ = 2, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B7: β = β̃ = 0.3, ψ = 2, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A9: β = β̃ = 6, ψ = 2, S(0) = 0.9, V (0) = 0, I(0) = 0.1

Increase of number of susceptibles to a steady state, while the number of infect-
eds decreases immediately, is obtained in the following cases:

• the transmission rates are either in the middle range or high, the education/vacci-
nation rate is low, and the initial prevalence of infecteds is high (Fig. 1-B2),
(Fig. 1-B3);

Increase of number of infecteds followed by decrease, while the number of suscep-
tibles decreases immediately, is obtained in the following case:

• the transmission rates are high, the education/vaccination rate is in the middle
range, and the initial prevalence of infecteds is low (Fig. 1-A6);

Increase of number of infecteds, while the number of susceptibles decreases immedi-
ately, is obtained in the following cases:

• the transmission rates are high, the education/vaccination rate is either low or
high, and the initial prevalence of infecteds is low (Fig. 1-A3), (Fig. 1-A9).

In summary, the worst scenario occurs when the initial prevalence of infecteds is low.
This paradoxical behavior has already been noticed in [8] and [6], but not with the same
quantitative details that we have shown here, thanks to Lie group analysis.
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Fig. 1s1-B1: β = β̃ = 3.3, ψ = 0.7, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1s2-B: β = β̃ = 3.9951, ψ = 0.004878, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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In the case β̃ = α−ψ = 4−ψ we simulate the dynamics of the core group by assuming
three different values for ψ, which correspond to values of β̃ considered in [8] namely

ψ = 0.7 (β̃ = 3.3), ψ = 2.2 (β̃ = 1.8), ψ = 3.7 (β̃ = 0.3). (3.3)

In Fig. 1s1-A1 and Fig. 1s1-B1 we show the dynamics in the core group if ψ = 0.7 (β̃ =
3.3) and corresponding to each of the two initial conditions (A) and (B), respectively. In
Fig. 1s1-A2 and Fig. 1s1-B2 we show the dynamics in the core group if ψ = 2.2 (β̃ = 1.8)
and corresponding to each of the two initial conditions (A) and (B), respectively. In Fig.
1s1-A3 and Fig. 1s1-B3 we show the dynamics in the core group if ψ = 3.7 (β̃ = 0.3) and
corresponding to each of the two initial conditions (A) and (B), respectively. One can ob-
viously notice that the smaller the transmission rate (the higher the education/vaccination
rate) the steeper the increase of the number of educated/vaccinated (Fig. 1s1-A1, Fig.
1s1-A2, Fig. 1s1-B2, Fig. 1s1-A3, Fig. 1s1-B3). Less obvious is the temporary increase
of the number of susceptibles followed by a decrease in the case of a relatively high initial
prevalence of infecteds (I(0) = 0.4) and a relatively high transmission rate (β̃ = 3.3) as
seen in Fig. 1s1-B1.

If β̃ = α− ψ and γ = ψ(α+µ)
α(µ+ψ) which imply2

ψ = 0.004878, β̃ = 3.9951 (3.4)

then in Fig. 1s2-A and Fig. 1s2-B we show the dynamics in the core group corresponding
to each of the two initial conditions (A) and (B), respectively. Note that the educa-
tion/vaccination rate is very small (ψ = 0.004878). If the initial prevalence of infecteds is
high (I(0) = 0.4) then the number of susceptibles increases up to a steady state as seen
in Fig. 1s2-B. Note that the time at which the steady state is reached can be exactly cal-
culated from the solution (2.32). If the initial prevalence of infecteds is small (I(0) = 0.1)
then the dynamics is nearly steady, as seen in Fig. 1s2-A.

Case (5)

β̃ = 0, ψ = αγ = 0.1, β =
α(1 − γ)(αγ + µ)

µ
= 5.85

In this case of high transmission rate and low vaccination/education rate, it is note-
worthy that if the initial prevalence of infecteds is small (I(0) = 0.1), then there is a delay
in the effectiveness of the vaccination/education program in targeting the infecteds as can
be seen in Fig. 5-A, while if the initial prevalence of infecteds is high (I(0) = 0.4), then
the vaccination/education program is immediately effective with the infecteds but has no
effect on the susceptibles (Fig. 5-B) who slightly increase to a steady state.

4 Final remarks

We were able to find that system (1.5-1.7) possesses enough Lie symmetries to yield inte-
gration by quadrature if certain relationships among the involved parameters are imposed.
In particular, if β = β̃, system (1.5-1.7) is actually linearizable, namely it can be trans-
formed into a linear equation of second order. We would like to add that, although in

2We have allowed MAPLE to use up to five digits when calculating with software floating-point numbers.
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Fig. 5-A: β̃ = 0, ψ = 0.1, β = 5.85, S(0) = 0.9, V (0) = 0, I(0) = 0.1

some cases we were unable to write down the solution in closed form, first integrals were
explicitly derived such as (2.40), (2.45), (2.49), (2.54). This raises the question of what
is the epidemiological meaning of conservation laws. They may also be good candidates
for Lyapunov’s functions. Also we have shown that Lie group analysis gives deeper quan-
titative insight into the dynamics of epidemics. We have studied the dynamics of the
core group by plotting the obtained solutions. One could easily perform an analytical
study; for example, calculate for which values of the involved parameters the number of
infecteds increases instead of decreasing, or the number of susceptibles increases instead
of decreasing, or the number of vaccinated/educated decreases instead of increasing. It
is obvious that if the general solution of a mathematical model is obtained, then all the
mathematical properties of that model are trivially revealed.
It is a well-know fact that when Lie group analysis is applied to physical models then
integrable cases can be found (e.g., [23], [28]). The same is true in the case of epidemio-
logical models [37],[31], although the meaning of integrability is somewhat blurred in this
context. One can easily object that our cases correspond to very particular values of the
parameters, and therefore Lie group analysis will give you a limited number of possible
cases. Nevertheless we may reply that very little is known about those parameters a priori,
and that nature has shown (e.g., the ubiquitous presence of Fibonacci numbers in biology)
a predisposition to favor certain values more than others.
In the Introduction to his Principia [24], [5], Newton stated

I wish we could derive the rest of the phenomena of nature by the same kind
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of reasoning from mechanical principles.

However, Pulte [34] has reminded us that in his lectures on analytical mechanics Jacobi
said [16]:

Wherever Mathematics is mixed up with anything, which is outside its field,
you will find attempts to demonstrate these merely propositions a priori,
and it will be your task to find out the false deduction in each case. . .

Mathematics cannot invent how the relations of system of points depend on
each other.
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[7] González-Gascón F and González-López A, Symmetries of differential equations. IV,
J. Math. Phys. 24 (1983), 2006–2021

[8] Hadeler K P and Castillo-Chavez C, A core group model for disease transmission, Math.

Biosci. 128 (1995), 41–55.

[9] Hawkins T, Jacobi and the birth of Lie’s theory of groups, Arch. Hist. Exact Sciences 42
(1991), 187–278.

[10] Hawkins T, The Emergence of the Theory of Lie Groups: An Essay in the History of
Mathematics 1869-1926, Springer-Verlag, New York, 2000.

[11] Hill J M, Differential Equations and Group Methods for Scientists and Engineers, CRC
Press, Boca Raton, 1992.

[12] Hydon P E, Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge
University Press, Cambridge, 2000.

[13] Ibragimov N H, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. I:
Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton, 1994.

[14] Ibragimov N H, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. II:
Applications in Engineering and Physical Sciences, CRC Press, Boca Raton, 1995.



Lie group analysis of a core group model 229

[15] Ibragimov N H, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley,
New York, 1999.

[16] Jacobi C G J, Vorlesungen über Analytische Mechanik (1847-1848), Editor: Pulte H, Braun-
schweig/Wiesbaden, Vieweg, 1996.

[17] Leach P G L and Nucci M C, Reduction of the classical MICZ-Kepler problem to a two-
dimensional linear isotropic harmonic oscillator, J. Math. Phys. 45 (2004), 3590–3604.

[18] Lie S, Theorie der Transformationsgruppen. Erster Abschnitt, B G Teubner, Leipzig, 1888.

[19] Lie S, Theorie der Transformationsgruppen. Zweiter Abschnitt, B G Teubner, Leipzig, 1890.

[20] Lie S, Theorie der Transformationsgruppen. Dritter und Letzter Abschnitt, B G Teubner,
Leipzig, 1893.
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Fig. 1-A1: β = β̃ = 0.3, ψ = 0.1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B1: β = β̃ = 0.3, ψ = 0.1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A2: β = β̃ = 3.3, ψ = 0.1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-A3: β = β̃ = 6, ψ = 0.1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B3: β = β̃ = 6, ψ = 0.1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A4: β = β̃ = 0.3, ψ = 1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B4: β = β̃ = 0.3, ψ = 1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A5: β = β̃ = 3.3, ψ = 1, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B5: β = β̃ = 3.3, ψ = 1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-B6: β = β̃ = 6, ψ = 1, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-A8: β = β̃ = 3.3, ψ = 2, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1-B8: β = β̃ = 3.3, ψ = 2, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1-B9: β = β̃ = 6, ψ = 2, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1s1-A1: β = β̃ = 3.3, ψ = 0.7, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1s1-A2: β = β̃ = 1.8, ψ = 2.2, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1s1-B2: β = β̃ = 1.8, ψ = 2.2, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1s1-A3: β = β̃ = 0.3, ψ = 3.7, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 1s1-B3: β = β̃ = 0.3, ψ = 3.7, S(0) = 0.6, V (0) = 0, I(0) = 0.4
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Fig. 1s2-A: β = β̃ = 3.9951, ψ = 0.004878, S(0) = 0.9, V (0) = 0, I(0) = 0.1
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Fig. 5-B: β̃ = 0, ψ = 0.1, β = 5.85, S(0) = 0.6, V (0) = 0, I(0) = 0.4


