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Abstract

We introduce an integrable differential-difference KdV equation with a source. A
bilinear Backlund transformation and the associated nonlinear superposition formula
are thereby obtained. And the multisoliton solution of the equation is also presented.

1 Introduction

Soliton equations with self consistent sources constitute an important class of integrable
equations. Some of such type of equations have found physical applications. For example,
the KdV equation with a source

g + Gttty + gy — —/ K’ (|62)a, (1.1)

—00

bz + (u+E?)p =0 (1.2)

describes the interaction of long and short capillary-gravity waves [1, 2], where u = u(z,t)
and ¢ = ¢(x,t; k') are real and complex functions respectively, k¥’ is a real parameter
and 7 = p(k',t) is a given real function. By the dependent variable transformation
uw = 2(In faz, ¢ = Goe®*g/f, (1.1) and (1.2) are transformed into the following bilin-
ear equation [3, 4]

D.(Dy+DY)f f=— / dk' 716029l — £2), (13)

—00

(D% +2ik'D,)g - f =0, (1.4)

where ¢g = ¢o(k’,t) is a given function.

In recent years, there has been active research on soliton equations with self consistent
sources, see, e.g. [5]-[22]. A variety of methods have been proposed to deal with these
soliton equations with sources, such as via IST method , O-method, Gauge transformations,
Darboux transformations, Wronskian technique, Hirota’s bilinear method etc. However,
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most results have been achieved just in continuous case. Comparatively less work has
been done in discrete case.

In view of this unsatisfactory situation, it would be of interest to produce new discrete
soliton equations with self consistent sources. The purpose of this paper is to give a
differential-difference version to the KdV equation with a source.

We now propose the following bilinear differential-difference equation with a source:

(D3P — D) f(n) - f(n) =

- /OO dk v|ol* cosh(Dy)[g(n) - g*(n) — f(n) - f(n)), (1.5)

—00

(D} + 2ikDy)g(n) - f(n) =0, (1.6)

where f(n) = f(n,t) and g(n) = g(n,t;k) are real and complex functions respectively,
v =v(k) and ¢g = ¢o(k) are real and complex functions of k respectively, and the bilinear
operators Dy and exp(dD,,) [23, 24] are defined by

Di"a-b= (% - %) a(t)b(t')
exp(6Dy,) a-b=a(n+ §)b(n — 9),

)
t'=t

respectively. We can show that under some condition the continuous analogue of (1.5) and
(1.6) is the KdV equation with a source (1.3) and (1.4). In fact, setting D; = eDx, D,, =
2¢Dx — 83Dy and k = ek’ v(ek')|¢o(ek')|> = 330 (K)o (K')|* + O(€?) in (1.5) and (1.6)
and letting ¢ — 0, we obtain the KdV equation with a source (1.3) and (1.4) under the
condition 7 = v(k'), po = ¢o(K').

By making dependent variable transformation u = (In f);,v = e**¢o(k)g/f, the equa-
tions (1.5-1.6)are transformed into the following nonlinear system:

ug(n +1) +uy(n —1) + 2(u(n+1) —un—1)) — %](ut(n +1) —w(n—1))

= —% /OO dkv(k)[ve(n + 1, k)v*(n — 1,k) + v(n + 1, k)v; (n — 1, k)
+o(n — L k)o*(n+ 1,k) +v(n — 1,k)v; (n + 1, k)], (1.7)
vie(n, k) + (K + 2ug(n))v(n, k) = 0, (1.8)

or equivalently, under the transformation U = (In f)y,v = e ¢y(k)g/f, the equations
(1.5-1.6) become:

Un+1)+Un—1)+
+ P/tUW+LO%—2/

U(n —1,€)de — %](U(n +1) = U(n— 1)

= —% /oo dkv(k)[ve(n + 1, k)v*(n — 1,k) + v(n + 1, k)vy (n — 1, k)
+o(n — L kv (n+ 1,k) +v(n — 1, k)v; (n + 1, k)], (1.9)

vie(n, k) + (k2 + 2U(n))v(n, k) = 0, (1.10)
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2 Bilinear Backlund transformation and the nonlinear su-
perposition formula

In this section, we devote to deriving the bilinear Backlund transformation and the associ-
ated nonlinear superposition formula for the equations (1.5-1.6). The multisoliton solution
of the equation is also given.

Proposition 1. The bilinear equations (1.5) and (1.6) have a Bdicklund transformation

Dyg- f'=—\+ik)(d f+af), (2.1)
Dy - f=(A—ik)(d f +gf"),
(D —2\Dy)f' - f =0,

Dy Prf - f'+ [pePr + (i + e P f - f

o0 1 1 _ . 1 1 "
:/ dk‘ V|¢0|2{—Zm€ Dngg/ ——weDng/‘g }a (24)

—00

where X\ and pu are arbitrary real constants.

Proof. Let (f(n),g(n)) be a solution of equation (1.5) and (1.6). If we can show that
(f'(n),d' (n)) given by equations (2.1)-(2.4) satisfies the relation

P = (DRePr — SDieP) f'(n) - f'(n) +

/OO dkv|go|* cosh(Dn)[g' (n) - " (n) — f'(n) - f'(n)] = 0,

—00

Py = (D? + 2ikDy)g (n) - f'(n) = 0.

then equations (2.1)-(2.4) form a BT. In fact, similar to the proof in [3, 4], we know that
P, =0 can be proved by using (2.1)-(2.2). Thus it suffices to show that P; = 0. For this,
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by making use of (A1)-(A5) and (2.1)-(2.4), we have

— [P f(n) - f(n) Py

= (DD — S0P () )+ [ dk vl cosh(Dy)gn) - ()]

[P /() - £/ ()] = [P fn) - F)][(DFP — S DiePn) f'(n) - F'(n)
+ [ dk vl cosh(D,)g ) ()
=2Dy(Die= " f - f) - (e f - [) + 2sinh(Dy) (D} f - [) - £
~snb(D D 1) 1 = [ dk vl (e gt £

+ 57 fg" = geT gl gt = gePraf - fg7

=2D;(Dye P f - f) - (P f - f1) + 2sinh(Dy) (D7 f - f') - ff — sinh(Dy)(Def - f1) - ff
= [ dk vl e P Drg ) £ = af (D 9)

+ %/\ _1 =g f - (Duf' - g") = (Dug'- ) - 971}
=2D(Dye P f - f) - (P f - f') + 2sinh(Dp ) (DY f - f') - ff' = sinh(Dy)(Dif - f) - ff
- /Z dk y|¢0|2{—%Ajith(eD"g g") (P f e f)
- E%Dt(BDnQI -g*) - (e P f - 1)}
= 2sinh(D,)[(D? — %Dt)f f = 2D+ i)(e*D"f f) (P f)

= 2sinh(D,,)[(D? — %Dt)f AN+ i) sinh(Dy)(Def - ) - ff
=0.

Thus we have completed the proof of proposition 1. |

Proposition 2. Let (fo, go) be a solution of (1.5-1.6) and suppose that (f1,g1) and (f2, g2)
are solutions of (1.5-1.6) given by the Bdcklund transformation 2.1-2.4 with starting so-
lution (f,g) = (fo,90) and Bdcklund parameters (A\,pu) = (A1, 1) and (A, 1) = (Ao, p2),

respectively. i.c., (fo,g0) ™ (Fig) (i = 1,2), Mda # 0,/ # 0 (j = 0,1,2). Then
(f12,912) defined by

fofiz = c[Dy — (A1 = M) f1 - fo, (2.5)
gogi2 = c[Dy — (A1 — A2)lg1 - g2,

is a new solution to (1.5) and (1.6). Here c is a nonzero real constant.
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Proof. Similar to the deduction in [4], we can show that

Difo- frz = —c(A1 + A2) Dif1 - fo, (2.7)

c(A\3 = M) fife = [Di + (M + M)l f2 - fro, (2.8)
(Dt —2XoDy) f12- f1 =0, (2.9)
(D? —2X\1Dy)f12 - fo =0, (2.10)
[Dy + (A1 +ik)]g2 - fi2 + (M1 +ik)giafo =0, (2.11)
[Dy + (A2 +ik)]g1 - fi2 + (A2 +ik)giaf1 =0, (2.12)
[Dy — (A1 —ik)]g12 - fo — (M —ik)gaf12 = 0, (2.13)
[Dy — (A2 —ik)]g12 - f1 — (A2 —ik)g1 f12 = 0. (2.14)

From (2.11) , (2.12) or (2.13) and (2.14), we know that (fi2,¢12) is a solution of (1.6).
Besides, we have

0= {[(Dt + (M1 +ik))go - f1 + (A1 + ik)g1 folg2 fr2
—g0f1[(Dt + (M1 +ik))g2 - frz + (A1 + ik)g12 f2]

= Digofi2 - g2f1 + (M1 +ik)g1g2 fof12 — (M + ik)gogi2 f1f2
= Digofi2 - f192 + (M + ik)[g192 D f1 - f2 — f1faDrgr - g2
= Digofi2 - fige + c(M +ik) Dy frg2 - fagn

= Dilgofi2 — c(A1 + 1K) fag1] - f192

which implies that

gofi2 = c(A\1 +ik) fagr + Cf1go, (2.15)

with ¢ being some constant. Similarly, we have

gofi2 = —c(A2 +ik) fig2 + €fag1, (2.16)

where ¢ is some constant. From (2.15) and (2.16), we deduce

gofi2 = c(A1 +ik) fagr — c(A2 + ik) f1go. (2.17)

Furthermore, in a similar way, we may obtain

fogi2 = —c(A2 — ik) fagr + (A1 — ik) f1go. (2.18)

In the following we will show that (fi2,¢12) is a solution of (1.5). In fact, since (f1,91)
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and (f2, g2) are solutions of (1.5-1.6), by using (A1)-(A5), (2.5)-(2.18), we have:

0= [ePnfo- fo){(DEePr — %DteDn)fl “fi+ /OO dk v|¢o|? cosh(Dy)[g1 - gf — f1 - fil}
—[ePr fr - (D7 — %DteD”)fz - fa
+ / "k vlgol? cosh(Do)lgs - g — fo- fol}

= 2Dy cosh(Dy,) (Dt f1 - f2) - fifo — sinh(Dy)(Dif1 - f2) - fife
—/ dk v|go|* cosh(Dy)(g2.f1 - f195 — g1f2 - f297)

—00
1

= 3 o 12Drcosh(Dy)(Difo - fi2) - fofiz — sinh(Dyn)(Difo - fi2) - fofi2
c (>‘2 - >‘1)

—/ dk v|go|? cosh(Dy)(g12fo - fodis — gofr2 - f1298)

—00
1

= m[e[)”ﬁ) - fol{(DFePr — %DtBD”)fm - fi2

o0
+/ dk v|¢o|* cosh(Dy)[g12 - gty — fr2 - fi2]}

—00
which means that (f12,¢12) is a solution of (1.5). Thus we have completed the proof of
proposition 2. |

As an application of the propositions 1 and 2, we may obtain the soliton solutions of
equations (1.5) and (1.6). For example, using BT (2.1-2.4) with p(A\) = A — X — 1 where
+oo v|go|?

A is arbitrary real constant and A = %)\ | dk, we have, from the starting solution

F=1 | —00 A2+k?
=Lg=—1,
fr=14¢e"
g/ — 1+ en—i—ia’
or
ff=1—¢"
g/ —1_ en—i—ia’
where

n=2\+pn+0

m_k+z’>\
ok —i
1. A-(A+1
p:—lnli
2 (A -1)-4

and ¢ is a real phase constant. Furthermore, using the nonlinear superposition formula
(2.5-2.6) with ¢ = ﬁ, we have
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(1+em, 1+ ention)

(f12,912)
with (1—em, 1 —emtioz)
A1+ A2 A1+ Ao
1 m o mAm 2.19
fro =14 e e e, (2.19)
A1+ A , AL+ A ; vy i
where

nj = 2\t + pjn + 45, (2.21)

. k4i\;
¢l — k%; (2.22)

J

1. A-—(y+1h

= —-Ip——J 47 i =1,2 2.23
p=gh Ty T (2.23)

and Aj, d; are real constants. We notice that (fi2, g12) given by (2.19-2.20) with (2.21-2.23)
is a 2-soliton solution. If we take

)\1 = 1.26, )\2 = 174, pP1 = —ln(7), D2 = 111(7), A=15

in (2.21-2.23), we can show the behaviors of U = (In f12)y and |v|? = [e*¢o(k)gr2/ f12|> =
|g12/ f12|? (here we assume |¢o(k)| = 1) in equations (1.9-1.10) graphically:

1 n 1 n

(a) (b)

Figure 1. The 2-soliton solution: (a) U — field , (b) behavior of |v|? with k = 2.
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A general determinantal representation of N-soliton solution can be derived using BT
(2.1-2.4) and nonlinear superposition formula (2.5) :

i EE+A 0 £+ A
c fo (=S +X)fo o (S 4+ XN
Ly : : : ’
O . . . .
v (L4 v o (LN Y
where f;(i =1,2,--- ,N) is obtained from starting solution fy using BT, i.e. fy (Raotts) fi

Similar to the proof in [25], this result can be proved by induction. For example, when
N = 2, we have

J— fi (V& +M)A _clh (=L + M) fu
N e (=5 | fol fo (m5 M) f
= %[Dt—m—m)]fl-fﬂ.

From the nonlinear superposition formula, we know that F5 is a two-solition solution.

Particularly, if we take

4 1
szliema gjzlienj+zaj (j:1’25'”7N)7 c= )
A2 — A1
where 7; and €' are given in (2.21-2.23), then the N-soliton solution of the equations
(1.5-1.6) can be expressed as:

i CE+x)A o (L4 A)N A
po_ 1 fo (=%4X)f 0 (CE+A)Nf
AP VIEDVE : : : ’
v (L4 o (LN
and
g CF+Ma o CE+HM)N
O — (~DHN-1] g2 (—% +X2)g2 - (—% +A2)V gy
AW : : :
g (=L +AN)gy 0 (L 4 AN lgn

3 Conclusion

In this paper, we proposed a differential-difference version of the kdv equation with a
source (1.5-1.6) and presented a bilinear Backlund transformation as well as a nonlinear
superposition formula for it. As an application of the obtained results, N-soliton solution
is derived.
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Appendix

A

Hirota’s bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, ¢ and d.

(DiePra - a)(ePb-b) — (ePra - a)(DieP b - b) = 2sinh(D,,)(Dya - b) - ab. (A1)
(D2ePma - a)(ePb - b) — (ePra - a)(DE2ePrb - b)
=2Dy(Die Pra-b) - (ePra- b) + 2sinh(D,)(D?a - b) - ab

= 2Dy cosh(D,,)(Dya - b) - ab. (A.2)

e Pr[(Dia-b)-cd —ab- (Dic-d)] = Dy(e Pra-d) - (ePre-b). (A.3)

ePr[(Dsa - b) - ed — ab - (Dyc - d)] = Dy(ePa - d) - (e Pme - b). (A.4)

2sinh(D,,)(Dsa - b) - ab = Dy(ePma - b) - (e7Pra - b). (A.5)
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