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Abstract

The Hamiltonian formalism of the Landau-Lifschitz equation for a spin chain with
full anisotropy is formulated completely, which constructs a stable base for further
investigations.

1 Introduction

The Landau-Lifschitz(L-L) equation for a spin chain with full anisotropy is one of the most
important completely integrable nonlinear evolution equations[1]. It is a universal model
for integrable magnetic systems that contains the sine-Gordon, nonlinear Schrödinger and
the Heisenberg model equations as particular or limiting cases[2]. The compatibility pair
were first given by E.K.Sklyanin[3] in terms of elliptic functions. From the general view
point, the complete integrability of a nonlinear equation means it describes a Hamiltonian
system with action-angle variables as canonical conjugate variables[4]. The Hamiltonian
formalism of the L-L equation with full anisotropy was also examined in the ref.[3], but
the reduction procedure and results have some open points so that the final results are
not conclusive. On the other hand, there were some works trying to solve the equation
based upon these compatibility pair, but exact solutions were not found until now[5, 6].
Because these problems are more basic, it is worth to putting a lot of work. In this paper
the Hamiltonian formalism is formulated to provide a base for further investigations.

2 Landau-Lifschitz equation

The L-L equation for anisotropic spin chain is in the form of

St = S × Sxx + S × JS, |S| = 1 (2.1)

in which J = diag(J1, J2, J3), J1 ≤ J2 ≤ J3, describing nonlinear spin waves propagat-
ing in a direction orthogonal to the anisotropic axis, and the suffices x and t denote the
corresponding partial derivatives. Though spin is a quantum quantity satisfying quantum
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bracket relation, but if one introduces Lie-Poisson bracket for classical spin, all the proce-
dure of disposal is the same as the usual classical one[1]. The Lie-Poisson bracket is given
by

{Sa(x), Sb(y)} = −ǫabcSc(x)δ(x − y) (2.2)

where ǫabc is a fully anti-symmetric tensor, a, b, c = 1, 2, 3. By using it we write eq.(2.1)
in the form of the canonical equation

∂tSa(x) = {Sa(x),H} (2.3)

in which the Hamiltonian is

H =

∫ ∞

−∞

dxH(x), H(x) =
1

2

∑

a

[

(

∂xSa(x)
)2

− JaSa(x)
2
]

(2.4)

3 Jost solutions

The compatibility pair of the equation are a couple of 2×2 matrices given by E.K.Sklyanin[3],

L = −i
∑

a

ωa(λ)Saσa (3.1)

and

M = −i
∑

a,b,c

ωa(λ)SbScxσaǫabc + i
∑

a,b,c

ωb(λ)ωc(λ)Saσa|ǫabc| (3.2)

in which

ω1(λ) = ρ
1

sn(λ, κ)
, ω2(λ) = ρ

dn(λ, κ)

sn(λ, κ)
, ω3(λ) = ρ

cn(λ, κ)

sn(λ, κ)
(3.3)

and sn(λ, κ), etc., are elliptic functions with modulus κ:

κ =

√

J2 − J1

J3 − J1
, ρ =

1

2

√

J3 − J1 (3.4)

Since the coefficients ωa(λ) are double-periodic functions of the parameter λ:

ωa(λ+ 4mK + i4nK ′) = ωa(λ) (3.5)

where n,m are integers, K and K ′ are quarter-periods. It is sufficient to consider λ in the
fundamental period parallelogram Ω:

Ω : |Reλ| < 2K, |Imλ| < 2K ′ (3.6)

The first compatibility equation is now written as

∂xF (x, λ) = L(x, λ)F (x, λ) (3.7)
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In the limit of |x| → ±∞, S → (0, 0, 1), and the asymptotic solution corresponding is
E(x, λ) = e−iω3xσ3 . The Jost solutions of eq.(11) are then defined by

Ψ(x, λ) =
(

ψ̃(x, λ), ψ(x, λ)
)

→ e−iω3xσ3 , as x→ ∞

Φ(x, λ) =
(

φ(x, λ), φ̃(x, λ)
)

→ e−iω3xσ3 , as x→ −∞ (3.8)

The monodromy matrix T (λ) is given by

Φ(x, λ) = Ψ(x, λ)T (λ), T (λ) =

(

a(λ) −b̃(λ)

b(λ) ã(λ)

)

(3.9)

Furthermore, from the periodic properties of sn(λ) and sn(λ̄) = sn(λ), etc., the compati-
bility pair (5) and (6) have the following reduction transformation properties:

L(λ+ 2K) = σ3L(λ)σ3, M(λ+ 2K) = σ3M(λ)σ3 (3.10)

L(λ̄+ i2K ′) = σ3L(λ)σ3, M(λ̄+ i2K ′) = σ3M(λ)σ3 (3.11)

4 Lie-Poisson bracket

¿From the first compatibility equation, it is found that

δT (λ)

δSa(z)
= Ψ−1(z, λ) (iωaσa)Φ(z, λ) (4.1)

and

δT−1(λ)

δSb(z)
= −Φ−1(z, λ) (iωbσb) Ψ(z, λ) (4.2)

Defining5

{T (λ)⊗, T−1(λ′)}ik,jl = {T (λ)ij , T
−1(λ′)kl} (4.3)

the Lie-Poisson bracket of the monodromy matrix is now simply given in the form

{T (λ)⊗, T−1(λ′)} = −ǫabc

∫

dx
δT (λ)

δSa(x)
⊗
δT−1(λ′)

δSb(x)
Sc(x) (4.4)

in which the symbol ⊗ in the right hand side is the usual direct product. After substituting
eqs.(4.1) and (4.2), the explicit expression of eq.(19) is

{T (λ)⊗, T−1(λ′)} =

∫

dxΨ−1(x, λ)Φ−1(x, λ′)RΦ(x, λ)Ψ(x, λ′) (4.5)

where

R = S3{iω1ω
′
2σ1 ⊗ iσ2 − iω2ω

′
1iσ2 ⊗ σ1} + S1{iω2ω

′
3iσ2 ⊗ σ3 − iω3ω

′
2σ3 ⊗ iσ2}

+ S2{−ω3ω
′
1σ3 ⊗ σ1 + ω1ω

′
3σ1 ⊗ σ3} (4.6)
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The eq.(4.5) has a simple result if the integrand in the right hand side is a full derivative
of some function with respect to x. In order to do so, we take into account of

∂x

(

Ψ−1(x, λ)σαΨ(x, λ′) ⊗′ Φ−1(x, λ′)σαΦ(x, λ)
)

(4.7)

where σ0 = I, and σa is Pouli’s matrix for a = 1, 2, 3. Here another type of direct product
is introduced

AimBlj = (A⊗′ B)il,jm (4.8)

Using eqs.(3.1) and (3.7), it is obvious that

Ψ−1(x, λ)Φ−1(x, λ′)WαΦ(x, λ)Ψ(x, λ′) (4.9)

in which

W0 = i(ωa − ω′
a)Sa(σa ⊗

′ I − I ⊗′ σa) (4.10)

Wa = iSb(ωbσbσa + ω′
bσaσb) ⊗

′ σa + iSbσa ⊗
′ (ω′

bσbσa + ωbσaσb) (4.11)

In fact, eq.(4.5) can be expressed as a linear combination of terms in eq.(4.7), since R in
eq.(4.6) is expressed as a linear combination of Wα in eqs.(4.10) and (4.11):

R = f0W0 + f3W3 + f1W1 + f2W2 (4.12)

Writing R and Wα in bigger matrices, e.g. 4×4−matrices, and comparing the correspond-
ing matrix elements, a group of equations for fα are given in the Appendix A.

Eq.(4.5) is then

{T (λ)⊗, T−1(λ′)} =
∑

α

fα∆α (4.13)

where

∆α ≡ Ψ−1(x, λ)σαΨ(x, λ′) ⊗′ Φ−1(x, λ′)σαΦ(x, λ)
∣

∣

∣

x=L

x=−L
(4.14)

5 Explicit expression of Lie-Poisson bracket

On the other hand, we have

3
∑

α=0

fα∆α = f0(∆0 + ∆3 + ∆1 + ∆2) + (f3 − f0)∆3 + (f1 − f0)∆1 + (f2 − f0)∆2 (5.1)

Since {T (λ)⊗, T−1(λ′)} is definite and only the differences f3 − f0, f1 − f0, f2 − f0 can
be determined from eqs.(A.4)∼(A.6), we should see that ∆0 + ∆3 + ∆1 + ∆2 = 0, which
means that the value of f0 is of no importance and may be assumed to be 0. Thus we
have

{T (λ)⊗, T−1(λ′)} = f3(∆(b)−∆(b0)) + f1(−∆(b) + ∆(b1)) + f2(−∆(b)−∆(b1)) (5.2)
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in which

f3 =
ω1ω

′
2 + ω2ω

′
1

2(ω3 − ω′
3)

, f1 =
ω2ω

′
3 + ω3ω

′
2

2(ω1 − ω′
1)

, f2 =
ω3ω

′
1 + ω1ω

′
3

2(ω2 − ω′
2)

(5.3)

and the explicit expressions of ∆(b), ∆(b0) and ∆(b1) are given in the Appendix B.
Because of properties shown in (3.10), λ can be restricted in the region Ω+:

Ω+ : 0 < Reλ < 2K, 0 < Imλ < 2K ′ (5.4)

In this restriction, ∆(b1) has no contribution, and (5.2) reduces to

{T (λ)⊗, T−1(λ′)} = f3(∆(b) − ∆(b0)) (5.5)

= −
ω1ω

′
2 + ω2ω

′
1

2











0 − 1
ω3−ω′

3
+i0ab̃

′ − 1
ω3−ω′

3
+i0 ã

′b̃ 0

− 1
ω3−ω′

3
+i0b

′a 0 i2πδ(ω3 − ω′

3)|a|
2 1

ω3−ω′

3
−i0 b̃a

′

− 1
ω3−ω′

3
+i0bã

′ −i2πδ(ω3 − ω′

3)|a|
2 0 1

ω3−ω′

3
−i0 b̃

′ã

0 1
ω3−ω′

3
−i0a

′b 1
ω3−ω′

3
−i0 ãb

′ 0











where ωj, ω
′
j mean ωj(λ), ωj(λ

′).
From eq.(5.5), there are

{a(λ), b(λ′)} =
ω1ω

′
2 + ω2ω

′
1

2

1

ω3 − ω′
3 + i0

ab′

=
ω1ω

′
2 + ω2ω

′
1

2(ω − ω′)
ab′ −

ω1ω
′
2 + ω2ω

′
1

2
iπδ(ω3 − ω′

3)ab
′ (5.6)

{ã(λ), b(λ′)} = −
ω1ω

′
2 + ω2ω

′
1

2

1

ω3 − ω′
3 − i0

ãb′

= −
ω1ω

′
2 + ω2ω

′
1

2(ω − ω′)
ab′ −

ω1ω
′
2 + ω2ω

′
1

2
iπδ(ω3 − ω′

3)ab
′ (5.7)

and then

{|a(λ)|2, b(λ′)} = −i2πδ(ω3 − ω′
3)ω1ω2|a|

2b′ (5.8)

Furthermore, in the restriction Ω+, there are

δ(ω3 − ω′
3) =

1
dω3(λ)

dλ

δ(λ− λ′) (5.9)

as λ = λ′, and

ω1ω
′
2 + ω2ω

′
1

2
= ρ2 dn(λ)

sn2(λ)
= −ρ

dω3(λ)

dλ
(5.10)

As a result, eqs.(5.6), (5.7) and (5.8) become

{a(λ), b(λ′)} =
ω1ω

′
2 + ω2ω

′
1

2(ω − ω′)
a(λ)b(λ′) + iπρδ(λ − λ′)a(λ)b(λ′) (5.11)

{ã(λ), b(λ′)} = −
ω1ω

′
2 + ω2ω

′
1

2(ω − ω′)
ã(λ)b(λ′) + iπρδ(λ− λ′)ã(λ)b(λ′) (5.12)

and

{|a(λ)|2, b(λ′)} = i2πρδ(λ − λ′)|a(λ)|2b(λ′) (5.13)
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6 Action-angle variables in continuous spectrum

As known in inverse scattering transform, a(λ) and ã(λ) are independent of t, and the
phase of b(λ) and b̃(λ) is a function of t, which is determined by the asymptotic form of
M in eq.(3.2). We have

b(t, λ) = b(0, λ)e−i4ω1ω2t (6.1)

and then the angle variable is defined as

Q(λ) = arg b(λ) =
1

i
ln b(λ) (6.2)

The action variable P (λ) is a function of a(λ) and ã(λ), and usually assumed to be

P (λ) = F (|a(λ)|2) (6.3)

where F is an unknown function. As these two variables are canonical variables, it should
be

{P (λ), Q(λ′)} = −δ(λ − λ′) (6.4)

By eq.(42), we find

{F (|a(λ)|2), Q(λ′)} = F ′(|a(λ)|2)2πρδ(λ − λ′)|a(λ)|2 (6.5)

where F ′ is derivative of F with respect of its argument. Comparing it with eq.(46), we
obtain

F ′(|a(λ)|2)2πρ|a(λ)|2 = −1 (6.6)

and thus

P (λ) = F (|a(λ)|2) = −
1

2πρ
ln |a(λ)|2 (6.7)

Eq.(44) yields

Q(λ, t) = Q(λ, 0) − 4ω1ω2 (6.8)

Hence the Hamiltonian is

H =

∫ 2K

0
dλ4ω1ω2P (λ) = −

2

π

∫ 2K

0
dλ

ρdn(λ)

sn2(λ)
ln |a(λ)|2 (6.9)

Therefore, the Hamiltonian has two kinds of expressions: one is an integral with respect
to x in eq.(2.4), and the other is an integral with respect to the spectral parameter in
eq.(6.9). Now it is necessary to derive a conservative quantity which has two integral
forms compatible with the Hamiltonian.
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7 Conservative quantities

In the inverse scattering transform, the conservative quantities are derived from the asymp-
totic form of the first compatibility equation. In the limit |λ| → 0 or |k| → ∞ (k = ρλ−1),
by using the asymptotic expansion of elliptic functions, we have

L→ −i(k + k−1ra)Saσa + · · · (7.1)

and

{r1, r2, r3} = 4ρ2 1

6
{(1 + κ2), (1 − 2κ2), (−2 + κ2)} (7.2)

¿From the first compatibility equation in this limit, writing

ψ̃2(x, k) = eikx+g (7.3)

and expanding

gx = η0 + (i2k)−1η1 + (i2k)−2η2 + ... (7.4)

we obtain

η0 = S3x +
(−iS1 + S2)x
−iS1 + S2

(1 − S3) (7.5)

and

−2η1 = η0x + 2η2
0 −

(−iS1 + S2)x
−iS1 + S2

(η0) + 2raS
2
a (7.6)

etc.[9]. In general, η0 6= 0. This situation appears also in the case of isotropic spin chain.
In that case, an additional phase in the transmission coefficient a(k) was introduced[7] to
cancel the non-vanishing η0. However, Takhtajan and Zakharov pointed out that this is
unreasonable[8]. Any way, η1 in eq.(7.6) does not give an expression compatible with the
Hamiltonian in eq.(2.4).

It was formerly shown that the gauge equivalence between the isotropic spin chain
and the nonlinear Schrödinger equation, which means, by choosing a suitable gauge, the
gauge-transformed compatibility pair of isotropic spin chain has the same form of that of
NLS equation. Therefore, the conservative quantities for the isotropic spin chain can be
derived from those for the NLS equation by revised gauge transformation and all results
expected are naturally found[8].

After Takhtajan and Zakharov[8], it was tried to find some equations that are gauge-
equivalent to the L-L equations for a spin chain with axial symmetry. However, such
equations seem not existent. From a careful analysis of the gauge equivalence between
the isotropic spin chain and the NLS equation, only the leading terms of the first one of
compatibility pair are essentials, while other terms corresponding and the second one of
compatibility pair are of no importance. That is, a gauge is chosen such that it turns the
spin in the first order of spectral parameter of the first one of compatibility pair into the
3− axis in the spin space[9].
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The explicit expression of the gauge B was given(see Ref.[6]). After the gauge trans-
formation, eq.(7.1) turns to

L′ = −i(k + 2raS
2
a)σ3 + U + k−1V + · · · (7.7)

where U ≡ BxB
−1 =

(

0 u

−ū 0

)

and V is an 2 × 2 matrix with vanishing diagonal

elements.
Replacing L by L′, the similar procedure for eq.(7.5) and (7.6) yields

η′0 = 0, η′1 = −|u|2 + 2(r1S
2
1 + r2S

2
2 + r3S

2
3) (7.8)

Noticing (3.4), there are

{r1, r2, r3} =
1

6
{J3 + J2 − 2J1, J3 − 2J2 + J1,−2J3 + J1 + J2} ∼ −

1

2
{J1, J2, J3} (7.9)

since common constant is immaterial[10]. As shown in the case of isotropic spin chain[8]

4|u|2 = −SaxSax (7.10)

We finally obtain

η′1 =
1

2

(

SaxSax − (J1S
2
1 + J2S

2
2 + J3S

2
3)
)

(7.11)

which is just the density of the Hamiltonian in eq.(4).

8 Expression of a(λ)

Eq.(7.8) indicates a(k) → 0 as k → ∞, so that in this domain

lna(k) =
1

iπ

∫

dk′
ln|a(k′)|2

k′ − k
(8.1)

We have

lna(k) = I0 + I1(i2k)
−1 + · · · (8.2)

I0 = 0, I1 = −
2

π

∫

dk′ln|a(k′)|2 (8.3)

In terms of λ(k = 2ρλ−1), eq.(8.1) is re-written in the domain of λ ≈ 0

lna(λ) =
1

iπ

∫

dλ′
ln|a(λ′)|2

(λ′ − λ)

λ

λ′
(8.4)

so that

I1 = −
2

π

∫

dλ′
ρ

λ′2
ln|a(λ′)|2 (8.5)

It is equal to eq.(6.9) in this domain, since dn(λ) ≈ 1 and sn(λ) ≈ λ−1.
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Since the general formula in this case is invariant with double-periodic transformation,
eq.(8.4) may be rewritten as

lna(ω3(λ)) =
1

iπ

∫

Ω+

dω3(λ
′)

ln|a(ω3(λ
′))|2

ω3(λ′) − ω3(λ)
(8.6)

where the integral domain is real axis in Ω+ given in eq.(5.4). We obtain

lna(ω3(λ)) = I0 − iI1
λ

2ρ
+ · · · (8.7)

where I0 = 0 and

I1 =
2

π

∫

Ω+

dω3(λ
′)ln|a(ω3(λ

′))|2 =
2

π

∫

Ω+

dλ′
dω3

dλ′
ln|a(ω3(λ

′))|2 (8.8)

It approaches to eq.(6.9) in the domain of |λ| ≈ 0.

9 Discrete spectrum

Eq.(7.8) should include the discrete part

ad(k) =
∏

j

k − kj

k − k̄j

(9.1)

where kj in the complex k−plane. It can be transformed into λ−plane, that is

ad(λ) =
∏

j

λ− λj

λ− λ̄j

λ̄j

λj

(9.2)

In general, we write

ad(ω3(λ)) =
∏

j

ω3(λ) − ω3(λj)

ω3(λ) − ω3(λj)
(9.3)

In the limit of |λ| ≈ 0, it coincides with eq.(9.2) since ω3(λ) → ρλ−1 in the limit of |λ| → 0.
Extending analytically into Ω+, the left hand side of eq.(5.6) is

{lna(ω3(λ)), b(λk)} = · · · +
∑

j

{
(

ln(ω3(λ) − ω3(λj)) − ln(ω3(λ) − ω3(λj))
)

, b(λk)}

= · · · −
∑

j

1

ω3(λ) − ω3(λj)
{ω3(λj), b(λk)} +

∑

j

1

ω3(λ) − ω3(λj)
{ω3(λj), b(λk)}(9.4)

where λk, λj ∈ Ω+ and the right hand side is

ω1(λ)ω2(λk) + ω2(λk)ω1(λ)

2

1

ω3(λ) − ω3(λk)
b(λk) (9.5)

Eq.(9.5) has a pole at ω3(λ) = ω3(λk) so that

{ω3(λj), b(λk)} = −
ω1(λj)ω2(λk) + ω2(λk)ω1(λj)

2
b(λk)δjk = ρ

dω3

dλ

∣

∣

∣

λj

b(λk)δjk (9.6)

as seen in eq.(5.10). Then eq.(9.6) gives

{λj , b(λk)} = b(λk)δjk (9.7)
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10 Action-angle variables in discrete spectrum

We introduce the action-angle variables in discrete spectrum

Pj = F (ω3(λj)), Qj = lnb(ω3(λj)) (10.1)

Then we find

{Pj , b(λk)} =
dF

dω3(λj)
{ω3(λj), b(λk)} =

dF

dω3(λj)

dω3

dλj

b(λk)δjk (10.2)

namely,

dF

dω3(λj)

dω3

dλj

= 1 (10.3)

and then

P (ω3(λj)) = λj (10.4)

From eq.(9.3) the discrete part of Hamiltonian is

Hd = i4ρ
∑

n

(

−ω3(λn) + ω3(λn)
)

(10.5)

Here λn lies in Ω+, and the factor 4 stands for four zeros of a(λ) in Ω for a single soliton
case. We thus obtain

{Hd, b(λk)} = i4ρ
dω3

dλj

{λj , b(λk)} = −i4ω1ω2b(λk) (10.6)

which is just canonical equation for b(λk).

11 Concluding remarks

The Hamiltonian theory to the L-L equation for a spin chain with full anisotropy was
examined by E.K.Sklyanin[3]. As mentioned, the conservative quantities derived by him
are not compatible with the usual conservative quantities, such as the Hamiltonian, which
affirmatively concludes that his procedure is unreasonable. Moreover, some other results
may not be beyond doubt. For example, his eq.(2.15) written in the present notation is

{a(λ), b(λ′)} = −ω3(λ− λ′ + i0)a(λ)b(λ′) (11.1)

which is questionable, as comparing with eqs.(5.6) or (5.11).
Mikhailov and Rodin tried to solve the Landau-Lifschitz equation for a spin chain with

full anisotropy based upon the compatibility pair given by Sklyanin. But explicit solutions
were not given. In the isotropic spin case, the Jost solutions do not approach to the free
Jost solutions as spectral parameter |k| → ∞. To construct the equations of the inverse
scattering transform by Cauchy contour integral, Takhtajan introduced a redundant factor
k−1 to ensure the integral having vanishing contribution of the integral along the big circle
in complex k−plane when the radius reaches infinity. In the case of spin chain with full
anisotropy, the behaviors of the Jost solutions do not approach to the free Jost solutions
when |λ| ≈ 0. Rodin and Mikhailov are unable to overcome this difficulty[5, 6]. But in
order to solve the equation, it is necessary to propose a way to do so.



312 N N Huang, H Cai, T Yan and F R Xu

Acknowledgments. The National Natural Science Foundation of China under Grant

No. 10375041 supports the project.

Appendix

A

To calculate fα in 4.10, the terms involving S3, S1, S2 in 4.10 are

−(ω1ω
′

2σ1 ⊗ σ2 − ω2ω
′

1σ2 ⊗ σ1) = (f3 − f0)i(ω3 − ω′

3)(I ⊗
′ σ3 − σ3 ⊗

′ I)

+(f1 − f2)i(ω3 + ω′

3)(iσ1 ⊗
′ σ2 + iσ2 ⊗

′ σ1) (A.1)

−(ω2ω
′

3σ2 ⊗ σ3 − ω3ω
′

2σ3 ⊗ σ2) = (f1 − f0)i(ω1 − ω′

1)(I ⊗
′ σ1 − σ1 ⊗

′ I)

+(f2 − f3)i(ω1 + ω′

1)(iσ2 ⊗
′ σ3 + iσ3 ⊗

′ σ2) (A.2)

−(ω3ω
′

1σ3 ⊗ σ1 − ω1ω
′

3σ1 ⊗ σ3) = (f2 − f0)i(ω2 − ω′

2)(I ⊗
′ σ2 − σ2 ⊗

′ I)

+(f3 − f1)i(ω2 + ω′

2)(iσ3 ⊗
′ σ1 + iσ1 ⊗

′ σ3) (A.3)

among which one equation turns to one another by simple circular permutation of 1, 2, 3.
Noticing the direct products in two sides are different, and writing them in 4 × 4 matrix
form, we obtain

ω1ω
′
2 − ω2ω

′
1 = 2(f1 − f2)(ω3 + ω′

3), ω1ω
′
2 + ω2ω

′
1 = 2(f3 − f0)(ω3 − ω′

3) (A.4)

ω2ω
′
3 − ω3ω

′
2 = 2(f2 − f3)(ω1 + ω′

1), ω2ω
′
3 + ω3ω

′
2 = 2(f1 − f0)(ω1 − ω′

1) (A.5)

ω3ω
′
1 − ω1ω

′
3 = 2(f3 − f1)(ω2 + ω′

2), ω3ω
′
1 + ω1ω

′
3 = 2(f2 − f0)(ω2 − ω′

2) (A.6)

B

Denoting

Aα(L) = Ψ−1(L, λ)σαΨ(L, λ′), Aα(−L) = Ψ−1(−L, λ)σαΨ(−L, λ′) (B.1)

Cα(L) = Φ−1(L, λ′)σαΦ(L, λ), Cα(−L) = Φ−1(−L, λ′)σαΦ(−L, λ) (B.2)

We can see

∆0 ≡ A0(L) ⊗′ C0(L) −A0(−L) ⊗′ C0(−L) = ∆(b) + ∆(b0) (B.3)

∆3 ≡ A3(L) ⊗′ C3(L) −A3(−L) ⊗′ C3(−L) = ∆(b) − ∆(b0) (B.4)

∆1 ≡ A1(L) ⊗′ C1(L) −A1(−L) ⊗′ C1(−L) = −∆(b) + ∆(b1) (B.5)

∆2 ≡ A2(L) ⊗′ C2(L) −A2(−L) ⊗′ C2(−L) = −∆(b) − ∆(b1) (B.6)

where

∆(b) ≡











0 −ab̃′ −ã′b̃ 0

−b′a 0 0 b̃a′

−bã′ 0 0 b̃′ã

0 a′b ãb′ 0











(B.7)
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∆(b0) ≡















C11,11 b̃a′ei2(ω3−ω′

3)L b̃′ãe−i2(ω′

3−ω3)L 0

a′be−i2(ω′

3
−ω3)L 0 C12,21 −ab̃′e−i2(ω3−ω′

3
)L

ãb′ei2(ω3−ω′

3
)L C21,12 0 −ã′b̃ei2(ω

′

3
−ω3)L

0 −b′aei2(ω
′

3
−ω3)L −bã′e−i2(ω3−ω′

3
)L C22,22















(B.8)

C11,11 = b̃′be−i2(ω′

3−ω3)L − b̃b′ei2(ω3−ω′

3)L

C12,21 = a′ãe−i2(ω′

3
−ω3)L − aã′e−i2(ω3−ω′

3
)L

C21,12 = ã′aei2(ω
′

3−ω3)L − ãa′ei2(ω3−ω′

3)L

C22,22 = b′b̃ei2(ω
′

3
−ω3)L − bb̃′e−i2(ω3−ω′

3
)L (B.9)

and

∆(b1) ≡















0 ã′bei2(ω3+ω′

3
)L ab′e−i2(ω3+ω′

3
)L C11,22

b̃ã′ei2(ω3+ω′

3)L C12,12 0 −b′ãei2(ω3+ω′

3)L

b̃′ae−i2(ω3+ω′

3
)L 0 C21,21 −ba′e−i2(ω3+ω′

3
)L

C22,11 −ãb̃′ei2(ω3+ω′

3)L −a′b̃e−i2(ω3+ω′

3)L 0















(B.10)

C11,22 = ã′ãei2(ω3+ω′

3
)L − aa′e−i2(ω3+ω′

3
)L

C12,12 = −b′bei2(ω3+ω′

3
)L + b̃b̃′ei2(ω3+ω′

3
)L

C21,21 = −b̃′b̃e−i2(ω3+ω′

3)L + bb′e−i2(ω3+ω′

3)L

C22,11 = a′ae−i2(ω3+ω′

3
)L − ãã′ei2(ω3+ω′

3
)L (B.11)

Here we show the procedure for obtaining eq.(B.3) as an example. Firstly, there is

A0(L) ⊗′ C0(L) =

(

ei(ω3−ω′

3
)L 0

0 e−i(ω3−ω′

3
)L

)

(B.12)

⊗′

(

ã′aei(ω′

3
−ω3)L + b̃′be−i(ω′

3
−ω3)L −ã′b̃ei(ω′

3
−ω3)L + b̃′ãe−i(ω′

3
−ω3)L

−b′aei(ω′

3
−ω3)L + a′be−i(ω′

3
−ω3)L b′b̃ei(ω′

3
−ω3)L + a′ãe−i(ω′

3
−ω3)L

)

According to the definition of ⊗′ in eq.(4.8), the terms involving vanishing exponent e0

and the terms involving non-vanishing exponent e±i2(ω3−ω′

3
)L are collected separately,









ã′a 0 −ã′b̃ 0

−b′a 0 b′b̃ 0

0 b̃′b 0 b̃′ã

0 a′b 0 a′ã









+









b̃′be−i2(ω′

3
−ω3)L 0 b̃′ãe−i2(ω′

3
−ω3)L 0

a′be−i2(ω′

3
−ω3)L 0 a′ãe−i2(ω′

3
−ω3)L 0

0 ã′aei2(ω
′

3
−ω3)L 0 −ã′b̃ei2(ω

′

3
−ω3)L

0 −b′aei2(ω
′

3−ω3)L 0 b′b̃ei2(ω
′

3−ω3)L









(B.13)
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Secondly,

A0(−L) ⊗′ C0(−L) =

(

aã′e−i(ω3−ω
′

3
)L + b̃b′ei(ω3−ω

′

3
)L ab̃′e−i(ω3−ω

′

3
)L − b̃a′ei(ω3−ω

′

3
)L

ba′e−i(ω3−ω
′

3
)L − ãb′ei(ω3−ω

′

3
)L bb̃′e−i(ω3−ω

′

3
)L + ãa′ei(ω3−ω

′

3
)L

)

⊗′

(

e−i(ω′

3
−ω3)L 0

0 ei(ω
′

3
−ω3)L

)

(B.14)

is equal to








aã′ ab̃′ 0 0

0 0 b̃b′ −b̃a′

bã′ bb̃′ 0 0
0 0 −ãb′ ãa′









+









b̃b′ei2(ω3−ω′

3
)L −b̃a′ei2(ω3−ω′

3
)L 0 0

0 0 aã′e−i2(ω3−ω′

3)L ab̃′e−i2(ω3−ω′

3)L

−ãb′ei2(ω3−ω′

3)L ãa′ei2(ω3−ω′

3)L 0 0

0 0 bã′e−i2(ω3−ω′

3
)L bb̃′e−i2(ω3−ω′

3
)L









(B.15)

Finally, combining (B.13) and (B.15), we have shown eq.(B.3).
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