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Abstract

For the first time we show that the quasiclassical limit of the symmetry constraint of
the Sato operator for the KP hierarchy leads to the generalized Zakharov reduction of
the Sato function for the dispersionless KP (dKP) hierarchy which has been proved to
be result of symmetry constraint of the dKP hierarchy recently. By either regarding the
symmetry constrained dKP hierarchy as its stationary case or taking the dispersionless
limit of the KP hierarchy with self-consistent sources directly, we construct a new
integrable dispersionless hierarchy, i.e., the dKP hierarchy with self-consistent sources
and find its associated conservation equations (or equations of Hamilton-Jacobi type).
Some solutions of the dKP equation with self-consistent sources are also obtained by
hodograph transformations.

1 Introduction

The dispersionless integrable hierarchies provide us an interesting type of nonlinear
integrable models which have important applications from complex analysis to topological
field theory (see [1-16]). In [14, 25, 6, 7, 22], a standard procedure of dispersionless limit of
integrable dispersionfull hierarchies is proposed. In this procedure, dispersionless hierar-
chies arise as the quasiclassical limit of the original dispersionfull Lax equations performed
by replacing operators by phase space functions, commutators by Poisson brackets and
the role of Lax pair equations by conservation equations (or equations of Hamilton-Jacobi
type ). A ∂̄ scheme of dispersionless hierarchies has been proposed by Konopelchenko et al
in [13-16]. Recently, from this point of view, some important reductions of dispersionless
hierarchies are shown to be nothing but results of symmetry constraints [3]. Also sev-
eral methods for solving dispersionless hierarchies have been formulated such as twistorial
method [21, 22, 16] and hodograph transformation [6, 7]. In [6, 7], from the conservation
equations of the dispersionless KP equation, Kodama and Gibbons found exact solutions
of it and its reductions by hodograph transformations and obtained general hodograph
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equations for hydrodynamical type equations.

The soliton equations with self-consistent sources (SESCS) are another type of impor-
tant integrable models in many fields of physics, such as hydrodynamics, state physics,
plasma physics, etc (see [18-24]). For example, the KP equation with self-consistent sources
(KPESCS) describes the interaction of a long wave with a short-wave packet propagat-
ing on the x,y plane at an angle to each other (see [17] and the references therein). We
proposed a general approach to construct SESCS by regarding the constrained integrable
hierarchy as stationary system of the corresponding hierarchy with self-consistent sources,
and found the Lax representation for the latter naturally from that for the former [21-24].
In this sense, the soliton hierarchies with self-consistent sources may be viewed as inte-
grable generalizations of the original soliton hierarchies.

In contrast with the dispersionfull integrable hierarchies with self-consistent sources,
the dispersionless integrable hierarchies with self-consistent sources have not been studied
yet. In this paper, we first investigate the quasiclassical limit of the symmetry constraint
of the Sato operator for the KP hierarchy which leads to the generalized Zakharov re-
duction of the Sato function for the dKP hierarchy. The latter has recently been proved
to be result of symmetry constraint of the dKP hierarchy using the ∂̄ method by Bog-
danov and Konopelchenko [3]. So, we find the relation that the symmetry constraint of
the Sato function for the dispersionless hierarchy can be obtained by the quasiclassical
limit of the symmetry constraint of the Sato operator for the corresponding dispersionfull
hierarchy. The key point for the quasiclassical limit here is to use the asymptotic forms of
the Baker and adjoint Baker functions and regard the quantities qi and ri as Baker and
adjoint Baker functions when the spectral parameter λ evaluated at some points λi. By
either regarding the symmetry constrained dKP hierarchy as its stationary case or taking
the dispersionless limit of the KP hierarchy with self-consistent sources directly, we con-
struct a new dispersionless hierarchy, i.e., the dKP hierarchy with self-consistent sources.
This hierarchy is also integrable since we can find its associated conservation equations
(or equations of Hamilton-Jacobi type). So in this sense, the dKP hierarchy with self-
consistent sources may be viewed as an integrable generalization of the dKP hierarchy.
Compared with the case of a nonlocal term appearing in the t-part of the Lax pair for the
KP equation with self-consistent sources [23], the t-part of the conservation equations for
the dKP equation with self-consistent sources possesses rational terms with poles. From
the obtained conservation equations, we can solve the dKP hierarchy with self-consistent
sources by hodograph transformations.

The paper will be organized as follows. In section 2, we briefly review some definitions
and results about the KP hierarchy with self-consistent sources. In section 3, we take the
quasiclassical limit to the symmetry constraint of the Sato operator for the KP hierarchy
to obtain the symmetry constraint of the Sato function for the dKP hierarchy. The
dKP hierarchy with self-consistent sources and its associated conservation equations are
obtained. Section 4 is devoted to solving the dKP hierarchy with self-consistent sources by
hodograph transformations and some solutions for the dKP equation with self-consistent
sources are presented.
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2 The KP hierarchy with self-consistent sources

We first review some definitions and results about the KP hierarchy with self-consistent
sources in the framework of Sato theory [23-26]. Given a pseudo-differential operator
(PDO) of the form

L = ∂ + u1(t)∂
−1 + u2(t)∂

−2 + ..., (2.1)

where ∂ = ∂x, ∂∂−1 = ∂−1∂ = 1, t = (t1 = x, t2, · · · ), the KP hierarchy is defined as

∂tnL = [Bn, L], (2.2)

where Bn = (Ln)≥0 is the differential part of Ln. The Lax euqation (2.2) is equivalent to
the existence of the Baker function ψ such that

Lψ = λψ, (2.3a)

∂tnψ = Bnψ, (2.3b)

and ψ also satisfies

∂λψ = Mψ, (2.4)

where M is the Orlov operator of the KP hierarchy. The adjoint Baker function ψ∗ satisfies

L∗ψ∗ = λψ∗, (2.5a)

∂nψ
∗ = −B∗

nψ
∗, (2.5b)

∂λψ
∗ = −M∗ψ∗. (2.5c)

Making a constraint of the PDO L (2.1) as [19]

Ln = (Ln)≥0 +

N
∑

1

qi(t)∂
−1ri(t), n ∈ N (2.6)

where qi(t) and ri(t) satisfying

qi,tm = Bmqi, ri,tm = −B∗
mri, Bm = [(Ln)

m

n ]≥0, i = 1, ...,N,∀m ∈ N, (2.7)

we will get the n-constrained KP hierarchy as

(Ln)tm = [Bm, L
n], (2.8a)

qi,tm = Bmqi, (2.8b)

ri,tm = −B∗
mri, i = 1, ..., N. (2.8c)

If we add the term (Bm)tn to the right side of equation (2.8a), the KP hierarchy with
self-consistent sources will be obtained as [23]

(Bm)tn − (Ln)tm + [Bm, L
n] = 0, (2.9a)
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qi,tm = Bmqi, (2.9b)

ri,tm = −B∗
mri, i = 1, ..., N. (2.9c)

As many cases in (1+1)-dimension (see [27, 28] and the references therein), the n-constrai-
ned KP hierarchy may be considered as the stationary one of the KP hierarchy with self-
consistent sources if ”tn” is viewed as the evolution variable and the Lax representation
for the KP hierarchy with self-consistent sources can be obtained naturally from that for
the constrained KP hierarchy [23]. The most important equation in the hierarchy is the
KP equation with self-consistent sources obtained when n = 3, m = 2 in (2.9), [17, 18]

[u1,t − 3u1u1,x − 1

4
u1,xxx +

N
∑

i=1

(qiri)x]x − 3

4
u1,yy = 0, (2.10a)

qi,y = qi,xx + 2u1qi, (2.10b)

ri,y = −ri,xx − 2u1ri, i = 1, ..., N (2.10c)

where t = t3, y = t2. With (2.10b) and (2.10c), (2.10a) will be obtained by the compati-
bility of the following linear equations (Lax pair)[23]

ψy = ψxx + 2u1ψ, (2.11a)

ψt = ψxxx + 3u1ψx +
3

2
(u1,x + (∂−1u1,y))ψ +

N
∑

i=1

qi∂
−1(riψ). (2.11b)

3 Dispersionless limit

Following the standard procedure of dispersionless limit introduced in [14, 25, 6, 7,
22], we will get the dispersionless counterpart of (2.9) which can be regarded as the
dispersionless KP hierarchy with self-consistent sources. Simply taking Tn = ǫtn and
thinking of un(T

ǫ
) = Un(T ) +O(ǫ) as ǫ→ 0, L in (2.1) changes into

Lǫ = ǫ∂+
∞
∑

i=1

ui(
T

ǫ
)(ǫ∂)−i = ǫ∂+

∞
∑

i=1

(Ui(T )+O(ǫ))(ǫ∂)−i, ∂ = ∂X , X = ǫx. (3.1)

The constraint (2.6) now changes into

Ln
ǫ = Bǫn +

N
∑

i=1

qi(
T

ǫ
)(ǫ∂)−1ri(

T

ǫ
), Bǫn = (Ln

ǫ )≥0, (3.2)

where qi(
T
ǫ
) and ri(

T
ǫ
) satisfy

ǫ[qi(
T

ǫ
)]Tm

= Bǫmqi(
T

ǫ
), ǫ[ri(

T

ǫ
)]Tm

= −B∗
ǫmri(

T

ǫ
), Bǫm = [(Ln

ǫ )
m

n ]≥0, i = 1, ...,N,

(3.3)

and the counterpart of (2.8) is

ǫ(Ln
ǫ )Tm

= [Bǫm, L
n
ǫ ], (3.4a)
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ǫ[qi(
T

ǫ
)]Tm

= Bǫmqi(
T

ǫ
), (3.4b)

ǫ[ri(
T

ǫ
)]Tm

= −B∗
ǫmri(

T

ǫ
), i = 1, ...,N. (3.4c)

It is proved in [22] that

L = σǫ(Lǫ) = p+
∞
∑

i=1

Ui(T )p−i. (3.5)

is a solution of the dKP hierarchy, i.e., satisfies

∂Tn
L = {Bn,L}, (3.6)

where σǫ denotes the principal symbol [22], the Poisson bracket is defined as

{A(p, x), B(p, x)} =
∂A

∂p

∂B

∂x
− ∂A

∂x

∂B

∂p
, (3.7)

and Bn = (L)n≥0 now refers to powers of p.
The dKP hierarchy can be also written in the zero-curvature form

∂Bn

∂Tm
− ∂Bm

∂Tn
+ {Bn,Bm} = 0. (3.8)

In [22], from (2.3) and (2.4) (with L, Bn, M and ∂n replaced by Lǫ, Bǫn, Mǫ and ǫ∂Tn

respectively ), it has been proved that ψ(T
ǫ
) has the following WKB asymptotic expansion

as ǫ→ 0

ψ(
T

ǫ
) = exp[

1

ǫ
S(T, λ) +O(1)], ǫ→ 0. (3.9)

In order to take the quasiclassical limit of the constraint (3.2), we also need to find the
asymptotic form of the adjoint Baker function. Similarly like the proof in [22], from (2.5),
we can find ψ∗(T

ǫ
) has the following WKB asymptotic expansion

ψ∗(
T

ǫ
) = exp[−1

ǫ
S(T, λ) +O(1)], ǫ→ 0. (3.10)

¿From (2.3b) and (3.9), we obtain a hierarchy of conservation equations for the momentum
function p = ∂S

∂X
,

∂p

∂Tn
=
∂Bn(p)

∂X
, (3.11)

the compatibility of which, i.e., ∂2p
∂Tn∂Tm

= ∂2p
∂Tm∂Tn

implies the dKP hierarchy (3.8).
Regarding

qi(
T

ǫ
) = ψ(

T

ǫ
, λ = λi) ∼ exp[

S(T, λi)

ǫ
+ αi1 +O(ǫ)], ǫ→ 0, (3.12a)

ri(
T

ǫ
) = ψ∗(

T

ǫ
, λ = λi) ∼ exp[−S(T, λi)

ǫ
+ αi2 +O(ǫ)], ǫ→ 0, i = 1, ...,N, (3.12b)
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we will find that

qi(
T
ǫ
)(ǫ∂)−1ri(

T
ǫ
)

= eαi1+αi2 [(ǫ∂)−1 + (∂S(T,λi)
∂X

+O(ǫ))(ǫ∂)−2 + ((∂S(T,λi)
∂X

)2 +O(ǫ))(ǫ∂)−3 + · · · ], ǫ→ 0.

Taking the principal symbol of both sides of (3.2), we have

Ln = Bn +
N
∑

i=1

eαi1+αi2 [p−1 + SX(T, λi)p
−2 + S2

X(T, λi)p
−3 + · · · ]

= Bn +

N
∑

i=1

vi

p− pi
(3.13)

where Bn = (Ln)≥0 and

vi = eαi1+αi2 , pi = SX(T, λi). (3.14)

The constraint of L (3.13) is well known and is often called Zakharov reduction when
n = 1 [25, 11, 1, 3]. In [3], using the ∂̄ method, the authors demonstrated that (3.13) is a
result of symmetry constraint of the dKP hierarchy. Here we have shown that (3.13) can
be obtained by the dispersionless limit of (2.6), i.e., the dispersionless limit of symmetry
constraint of the Sato operator for the dispersionfull hierarchy leads to the symmetry
constraint of the Sato function for the dispersionless hierarchy. From (3.3), (3.12), (3.14)
and by a tedious computation, we obtain the following equations of hydrodynamical type

pi,Tk
= [Bk(p)|p=pi

]X , (3.15a)

vi,Tk
= [vi(

∂

∂p
Bk(p))|p=pi

]X , i = 1, · · · ,N. (3.15b)

Taking the dispersionless limit of (3.4), we will get the constrained dKP hierarchy reduced
by (3.13)

(Ln)Tk
= {Bk,Ln}, (3.16a)

pi,Tk
= [Bk(p)|p=pi

]X , (3.16b)

vi,Tk
= [vi(

∂

∂p
Bk(p))|p=pi

]X , i = 1, ...,N. (3.16c)

Adding the term (Bk)Tn
to the right hand side of (3.16a), or taking the dispersionless limit

of (2.9) directly, we will obtain the dKP hierarchy with self-consistent sources as

(Bk)Tn
− (Ln)Tk

+ {Bk,Ln} = 0, (3.17a)

pi,Tk
= [Bk(p)|p=pi

]X , (3.17b)

vi,Tk
= [vi(

∂

∂p
Bk(p))|p=pi

]X , i = 1, ...,N. (3.17c)

If ”Tn” is viewed as the evolution variable, (3.16) may be regarded as the stationary
system of (3.17) like the dispersionfull case. It is not difficult to prove that under (3.17b)
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and (3.17c), the equation (3.17a) will be obtained by the compatibility of the following
conservation equations

pTk
= (Bk(p))X , (3.18a)

pTn
= (Ln(p))X = [Bn(p) +

N
∑

i=1

vi

p− pi

]X . (3.18b)

For example, when n = 3, k = 2,

L3 = p3 + 3U1p+ 3U2 +

N
∑

i=1

vi

p− pi
, B2 = p2 + 2U1,

(3.17) becomes the dKP equation with self-consistent sources (U2 is eliminated by U2,X =
1
2U1,Y and T = T3, Y = T2)

(U1,T − 3U1U1,X +

N
∑

i=1

vi,X)X =
3

4
U1,Y Y , (3.19a)

pi,Y = (p2
i + 2U1)X , (3.19b)

vi,Y = 2(vipi)X , i = 1, ..., N. (3.19c)

Under (3.19b) and (3.19c), the compatibility of the following conservation equations give
rise to (3.19a)

pY = (p2 + 2U1)X = 2ppX + 2U1,X , (3.20a)

pT = (p3 + 3U1p+ 3U2 +

N
∑

i=1

vi

p− pi
)X

= 3p2pX + 3(U1p)X + 3U2,X +

N
∑

i=1

vi,X

p− pi
−

N
∑

i=1

vi(pX − pi,X)

(p− pi)2
. (3.20b)

where U2,X = 1
2U1,Y .

4 Hodograph solutions

Motivated by the dKP case, we would like to solve (3.17) by hodograph transforma-
tion provided the conservation equations (3.18). Following [6], one can consider the M -
reductions of (3.18) so that the momentum function p and vi, pi,i = 1, ...,N depend only
on a set of functions W =(W1,...,WM ) with W1 = U1 and (W1,...,WM ) satisfy commuting
flows

∂W

∂Tn
= An(W )

∂W

∂X
, n ≥ 2 (4.1)

where the M ×M matrices An are functions of (W1, ...,WM ) only. In the following, we
shall take the dKP equation with self-consistent sources (3.19) for example and show its
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solutions in the cases of M = 1 and M = 2.
1. M = 1
In this case, p = p(U1), vi = vi(U1), pi = pi(U1) and (4.1) becomes

U1,Y = A(U1)U1,X , U1,T = B(U1)U1,X . (4.2)

¿From (3.19b), (3.19c) and (3.20), we will get the following relations respectively

dpi

dU1
(
A(U1)

2
− pi) = 1, (4.3a)

dvi

dU1
(
A(U1)

2
− pi) = vi

dpi

dU1
, (4.3b)

dp

dU1
(
A(U1)

2
− p) = 1, (4.3c)

dp

dU1
B(U1) = 3p2 dp

dU1
+ 3p+ 3U1

dp

dU1
+ 3

dU2

dU1
+

N
∑

i=1

dvi

dU1

p− pi
−

N
∑

i=1

vi

( dp
dU1

− dpi

dU1
)

(p − pi)2
, (4.3d)

which implies

B = 3U1 +
3

4
A2 −

N
∑

i=1

dvi

dU1
, A = 2

dU2

dU1
. (4.4)

It is easy to verify that with (4.3) and (4.4), (4.2) are compatible. Making the hodograph
transformations with the change of variables (X,Y, T ) → (U1, Y, T ) and X = X(U1, Y, T ),
we will get the following hodograph equations for X,

∂X

∂Y
= −A, ∂X

∂T
= −B = −3U1 −

3

4
A2 +

N
∑

i=1

dvi

dU1
, (4.5)

which can be easily integrated as follows

X +A(U1)Y + (3U1 +
3

4
A(U1)

2 −
N
∑

i=1

dvi

dU1
)T = F (U1), (4.6)

where F (U1) is an arbitrary function of U1.
If we choose A(U1) = C0 = const, F (U1) = βU1, from (4.6), (4.3a) and (4.3b), we get an
implicit solution as

X + C0Y + [3U1 +
3

4
C2

0 −
N
∑

i=1

ci(
C2

0

4
− 2(U1 + di))

− 3

2 ]T = βU1, (4.7a)

vi = ci[
C2

0

4
− 2(U1 + di)]

− 1

2 , (4.7b)

pi =
C0

2
±
√

C2
0

4
− 2(U1 + di), i = 1, ...,N, (4.7c)
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where ci,di,i = 1, ..., N are constants. If d1 = d2 = · · · = dN and
∑N

i=1 ci = 0, (4.7a)
degenerates to the solution of dKP equation [6].
If we assume v1 = v2 = · · · = vN and

∑N
i=1

dvi

dU1
= 3U1, i.e., dvi

dU1
= 3

N
U1, and taking

F (U1) = 0, by a direct computation, we will obtain an explicit solution of the dKP
equation with self-consistent sources (3.19) as follows

U1 =
4Y 2 − 6TX ± 4Y

√
Y 2 − 3TX

225T 2
,

vi =
3

2N
U2

1 ,

pi = 2
√

2U1, i = 1, ..., N.

2. M = 2
In this case we denote W1 = U1, W2 = W , then vi = Vi(U1,W ), pi = pi(U1,W ) and
p = p(U1,W ) with the commuting flows

(

U1

W

)

Y

= A

(

U1

W

)

X

,

(

U1

W

)

T

= B

(

U1

W

)

X

, (4.8)

where A = (Aij) and B = Bij are 2 × 2 matrix functions of U1 and W . Requiring U1,x

and Wx are independent, (3.19b), (3.19c) and (3.20) give rise to the following relations
respectively

(
∂pi

∂U1
,
∂pi

∂W
)A = (2 + 2pi

∂pi

∂U1
, 2pi

∂pi

∂W
), (4.9a)

(
∂vi

∂U1
,
∂vi

∂W
)A = (2

∂(vipi)

∂U1
, 2
∂(vipi)

∂W
), (4.9b)

(
∂p

∂U1
,
∂p

∂W
)A = 2p(

∂p

∂U1
,
∂p

∂W
) + (2, 0), (4.9c)

( ∂p
∂U1

, ∂p
∂W

)B = 3p2( ∂p
∂U1

, ∂p
∂W

) + 3(∂(U1p)
∂U1

,
∂(U1p)

∂W
) + 3(∂U2

∂U1
, ∂U2

∂W
)

+
∑N

i=1
1

p−pi
( ∂vi

∂U1
, ∂vi

∂W
) −∑N

i=1
vi

(p−pi)2
( ∂p

∂U1
− ∂pi

∂U1
, ∂p

∂W
− ∂pi

∂W
),

(4.9d)

which implies A(U1,W ) and B(U1,W ) must satisfy

B =
3

4
A2 + 3U1I −

N
∑

i=1

∂vi

∂U1
I −

(

0
∑N

i=1
∂vi

∂W
A11

A12

∑N
i=1

∂vi

∂W
A22−A11

A12

∑N
i=1

∂vi

∂W

)

(4.10)

with A11 = 2∂U2

∂U1
and A12 = 2∂U2

∂W
.

For simplicity we assume ∂vi

∂W
= 0, i = 1, ...,N . Then

B =
3

4
A2 + 3U1I −

N
∑

i=1

∂vi

∂U1
I =

3

4
(trA)A+ 3(U1 −

1

4
detA− 1

3

N
∑

i=1

∂vi

∂U1
)I, (4.11)
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where the formula A2 = (trA)A− (detA)I is used.
With (4.11), the compatibility for (4.8) requires A to satisfy

( 1
4

∂detA
∂W

∂(U1−
1

4
detA−

1

3

∑

N

i=1

∂vi

∂U1
)

∂U1

)

= A

( 1
4

∂trA
∂W

−1
4

∂trA
∂U1

)

. (4.12)

Using the hodograph transformation changing the independent variables (X,Y, T ) to
(U1,W, T ) with X = X(U1,W, T ) and Y = Y (U1,W, T ), we get

(

−XW

XU1

)

= A

(

YW

−YU1

)

,

(

∂(X,Y )
∂(W,T )

− ∂(X,Y )
∂(U1,T )

)

= B

(

YW

−YU1

)

, (4.13)

where ∂(X,Y )
∂(W,T ) = XWYT −XTYW . It is not difficult to see that (4.13) has solutions in the

form

X + 3(U1 −
1

4
detA− 1

3

N
∑

i=1

∂vi

∂U1
)T = F (U1,W ), (4.14a)

Y +
3

4
(trA)T = G(U1,W ), (4.14b)

where we have required that YU1
and YW are independent, while F and G satisfy the linear

equations

(

−FW

FU1

)

= A

(

GW

−GU1

)

. (4.15)

An example of solution is given by

A =

(

W U1

4 W

)

, (4.16)

and

vi = ciU1, pi =
W

2
, i = 1, · · · , N, (4.17)

with ci,i = 1, · · · , N are constants.
(4.14) now becomes

X + 3[U1 −
1

4
(W 2 − 4U1) −

1

3

N
∑

i=1

ci]T = F (U1,W ), (4.18a)

Y +
3

4
2WT = G(U1,W ). (4.18b)

¿From (4.15) and FWU1
= FU1W , G must satisfy

2GU1
+ U1GU1U1

− 4GWW = 0.
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Taking G = −W and from (4.15), F = 1
2W

2 − 4U1 and we obtain a solution of (3.19) as
follows

U1 =
Y 2

2(3T + 2)2
+

(
∑N

i=1 ci)T −X

2(3T + 2)
, (4.19a)

vi = ciU1 = ci[
Y 2

2(3T + 2)2
+

(
∑N

i=1 ci)T −X

2(3T + 2)
], (4.19b)

pi =
W

2
= − Y

3T + 2
. i = 1, ..., N. (4.19c)

(4.19) is a global solution for T > −2
3 and (4.19a) degenerates to the solution of the dKP

equation [6] when
∑N

i=1 ci = 0.
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