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Abstract

We classify (up to an isomorphism in the category of affine groups) the complex
crystallographic groups Γ generated by reflections and such that dΓ, its linear part, is
a Coxeter group, i.e., dΓ is generated by “real” reflections of order 2.

Introduction

Let X be a connected complex manifold. An automorphism of X is said to be a reflection

if the set of its fixed points is a non-empty subset of X of complex codimension 1.
The groups generated by reflections with the discrete action on “nice” complex man-

ifolds are the source of various tempting conjectures. For instance, in many cases the
quotient space with respect to the action of such a group possesses a simple structure
from the point of view of algebraic geometry.

The classification of finite linear groups generated by reflections being completed ([10],
[4]; for an excellent review, see [9]), it is natural to study the actions of reflection groups
on Hermitian symmetric spaces of constant holomorphic curvature.

The first on the agenda is the zero curvature space C
ℓ.

Let V be a finite dimensional affine space over C and L the linear space of translations
of V . We denote by Aut(V ) the group of affine transformations of V .

A discrete subgroup Γ ⊂ Aut(V ) is said to be a complex crystallographic group if its
translation subgroup T = Γ ∩ L is a lattice of full rank in L.

By definition, a complex crystallographic reflection group is a complex crystallographic
group generated by (complex) reflections.

If Γ is a complex crystallographic reflection group, then the group dΓ ⊂ GL(L) of linear
parts of elements of Γ is a finite linear reflection group.

In this note we present a classification of complex crystallographic reflection groups Γ
such that the linear part dΓ is a Coxeter group, i.e., it is generated by “real” reflections
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of order 2 (we call them complex crystallographic Coxeter groups). Namely, we show that
any such group is isomorphic to a product of irreducible complex crystallographic Coxeter
groups and classify all such irreducible groups.

The results of our classification are contained in Theorems 1.3 and 1.4 and, in other
terms, in Theorems 3.1 and 3.2.

It seems to us that the statements here are much more instructive and suggestive than
the proofs. The classification in terms of affine root system (Theorems 3.1 and 3.2) gives
us a particular satisfaction. To make this important part of our work more lucid, we have
summarized in §2 most of the known to us relevant facts about affine root systems.

Among the new1 results, we mention here the invariant description of the dual root
system and of the weight lattice for the affine root systems. The rest of §2 consists of
Macdonald’s results [8] represented in a form convenient to us (see also [6]).

The classification (especially Theorems 1.3 and 1.4) implies that complex crystallo-
graphic Coxeter groups have moduli, i.e., the groups admit deformations that holomor-
phically depend on one variable. That is why the object of our investigation is closely
related to the classical automorphic forms, Cartan’s domains of type IV, Macdonald’s
identities and many other wonders.

If Γ is a complex crystallographic reflection group such that the group dΓ is not of
Coxeter type, i.e., is a Shephard–Todd group, then it is easy to prove the rigidity of the
group Γ. Due to this fact the classification of such groups is more simple, see [9]. Observe
that, together with the results of V. L. Popov [9], our results complete the classification
of affine complex reflection groups.

The results were announced in [1] and the details were deposited in [2]. Delivered at
Leites’ Seminar on Supersymmetries in 1976, these details were preprinted in [7], v. 2.
Recently our results became of interest in topological field theory, see, e.g., [5].

§1 Complex crystallographic Coxeter groups

1.1. Complex crystallographic groups

Let V be a finite dimensional affine space over C and L the linear space of translations of V .
Consider the group Aut(V ) of affine transformations of V and denote by d : Aut(V ) −→
GL(L) the morphism which to every affine transformation g assigns its linear part dg. The
kernel of d is naturally isomorphic to the group L of translations.

Definition. Let Γ be a discrete subgroup in Aut(V ). The group Γ is said to be a complex

crystallographic group if the subgroup T = Γ ∩ L is of full rank in L.

Let Γ be a complex crystallographic group. Then the action of Γ on V has a compact
quotient and admits an invariant Hermitian metric H (we always assume that the metric
H is translation invariant). This follows from the fact that the group dΓ := Γ/T ⊂ GL(L)
is finite, and hence preserves some Hermitian positive definite form on L.

Conversely, if Γ is discrete subgroup of Aut(V ) which preserves an Hermitian metric
and such that the space V/Γ is compact, then Bieberbach’s theorem implies that Γ is a
complex crystallographic group.

1At least they were new when discovered, in 1975–76; in English the proofs were only preprinted as [7].
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Let Γ and Γ′ be complex crystallographic groups acting in V and V ′, respectively. By
definition, a morphism Γ −→ Γ′ is an isomorphism ϕ : V −→ V ′ of complex affine spaces
such that the induced map Γ −→ Γ′ given by w 7→ ϕwϕ−1 is an isomorphism.

A point x ∈ V is said to be special (with respect to Γ) if the map d : Γx −→ dΓ is
an isomorphism (here: Γx is the stabilizer of x). Equivalently, x is special if Γ = T · Γx,
cf. sec. 2.3.

The complex crystallographic group Γ possessing a special point is said to be splittable.
The choice of a splittable point defines a splitting of Γ.

A pair (Γ, x) consisting of a complex crystallographic group Γ and its splitting is called
a split complex crystallographic group; morphisms of split complex crystallographic groups
are assumed to preserve splitting.

Given a splitting x ∈ V , we will usually identify L(V ) with V by setting l 7→ l + x.

Remark. Clearly, isomorphisms of complex crystallographic groups transform special points
into special points. Moreover, it is easy to verify that if x and x′ are special points for a
complex crystallographic group Γ and ϕ : V −→ V is a translation which sends x to x′,
then ϕ is an automorphism of the complex crystallographic group Γ. Thus, two split com-
plex crystallographic groups are isomorphic if and only if they are isomorphic as complex
crystallographic groups.

1.2. The complex crystallographic Coxeter groups

Let r be an affine transformation of the space V . It is easy to see that r is a reflection if
and only if the fixed point set of r is a hyperplane. This hyperplane is called the mirror

of r and is denoted by π(r).

For any transformation group Γ of V , denote:

Ref(Γ), the set of reflections belonging to Γ;

Π(Γ), the set of hyperplanes which are mirrors of these reflections.

A complex crystallographic group Γ generated by reflections is said to be a complex

crystallographic reflection group (or briefly, a ccr-group). Clearly, for any ccr-group, the
finite group dΓ of linear transformations of the space L(V ) is generated by reflections.

If dΓ is a Coxeter group (i.e., in some basis it is represented by real matrices), then Γ
will be called a complex crystallographic Coxeter group (or briefly, a ccc-group). Clearly,
in a complex crystallographic Coxeter group, all reflections are of order two.

We will see that, for any ccc-group Γ, the finite group dΓ is always a Weyl group. For
this reason we will use notation W for complex crystallographic Coxeter groups.

1.2.1. Lemma. Each complex crystallographic Coxeter group W is splittable.

Proof. Set R′ = dRef(W ). Clearly, the subset R′ ⊂ Ref(dW ) satisfies the following
conditions:

a) R′ is invariant with respect to inner automorphisms of the group dW ;

b) R′ generates dW .

Since dW is a finite group generated by reflections, properties a) and b) imply that
R′ = Ref(dW ), i.e., any reflection s ∈ dW belongs to R′ (see, for example, [4]).
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By assumption, dW is a Coxeter group. Let us choose a system of positive roots for
the group dW and consider the corresponding system of simple reflections s1, . . . , sℓ in
dW (see [3]). Choose reflections r1, . . . , rℓ ∈ Ref(W ) such that dri = si. Then the mirrors
π(ri) intersect at some point x, since they are parallel to transversal mirrors π(si). Clearly,
ri ∈Wx; hence, si ∈ dWx.

Since the reflections si generate the group dW , it follows that dWx = dW , i.e., x is a
special point for W . �

1.2.2 Decomposition of a given ccc-group into the product of irreducible

ccc-groups

The product of complex crystallographic groups W ′ and W ′′ is naturally defined as the
group W ′ ×W ′′ acting on the space V ′ × V ′′. A complex crystallographic group is said to
be irreducible if it is not isomorphic to any non-trivial product of complex crystallographic
groups.

Proposition. If a complex crystallographic Coxeter group W is irreducible, then the rep-

resentation of the group dW in the space L(V ) is irreducible.

Proof. Let L1 be a non-trivial dW -invariant subspace in L(V ) and L2 = L⊥
1 , the orthog-

onal complement of L1.
Since dW is a Coxeter group, it is the product of two Coxeter groups, (H1, L1) and

(H2, L2).

Consider the space V2 = V/L1 as an affine space associated with the vector space L2.
Consider a reflection r ∈W and its image dr ∈ dW .

There are two possibilities:

(i) dr ∈ H1. In this case r acts trivially on V2.
(ii) dr ∈ H2. In this case the action of r on V2 is a reflection.

Let (W2, V2) be a group generated by reflections {r ∈ Ref(W ) | dr ∈ H2}. It is clear, that
the group W2 acts as a complex reflection group on V2; moreover W2 acts trivially on V1.

In a similar way we construct a reflection group (W1, V1).

Since W is generated by W1 and W2 it follows that W = W1 ×W2. And we have a
natural morphism V → V1 × V2 compatible with the action of W = W1 ×W2. The group
W is cocompact. This implies that the groups W1 and W2 are also cocompact. �

1.3. A construction of irreducible complex crystallographic Coxeter groups

Fix an irreducible reduced root system R; we consider R as a finite system of linear
functionals on a complex linear space L (see [3]). For any α ∈ R, let hα ∈ L be the
corresponding coroot.

Let W0 denote the Weyl group of R; fix a W0-invariant Hermitian metric on L. We
know (see [3]) that R contains roots of not more than two distinct lengths (long and short:

ll and ls); let p = p(R) be

(

ll
ls

)2

(i.e., p = 1, 2, 3).

Let us assign to every root α ∈ R a cocompact lattice aα ∈ C in such a way that

(i) If |α| = |β|, then aα = aβ ;
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(ii) If |α| < |β|, then aβ ⊂ aα is a sublattice of index ≤ p.

A root system R together with assignment α −→ aα for any α ∈ R of such lattices is said
to be an equipped root system a = {(R, aα) | α ∈ R}.

Let V be the affine space with special point x0 = 0 corresponding to the linear space
L. For any pair (α ∈ Randτ ∈ aα), consider the hyperplane

π(α, τ) = {z ∈ V | α(z) = τ}.

Let
Π(a) be the set of all hyperplanes of the form π(α, τ).

Denote by W (a) the group generated by the reflections in hyperplanes from Π(a). We will
consider W (a) as the split ccc-group with splitting point x0.

Theorem. a) The group W = W (a) is an irreducible complex crystallographic Coxeter

group and x0 is its special point. Moreover, Π(W ) = Π(a).
b) Any irreducible split complex crystallographic Coxeter group is isomorphic to a group

of the form W (a).

For the proof, see sec. 1.5.

1.4. Classification of complex crystallographic Coxeter groups

We wish to describe complex crystallographic Coxeter groups up to an isomorphism.
Lemma 1.2.1 and Remark 1.1 show that it suffices to classify split complex crystallo-
graphic Coxeter groups. By Theorem 1.3 any irreducible split complex crystallographic
Coxeter group is isomorphic to a group of the form W (a). Hence, it suffices to describe
all isomorphism between these groups.

Let a = {(R, aα) | α ∈ R} and a
′ = {(R′, a′β) | β ∈ R′} be two equipped root systems. A

similitude of a with a
′ is a pair (ψ, λ), where ψ : R −→ R′ is the root system isomorphism

and λ ∈ C
∗ is such that λaα = a

′
ψ(α) for any α ∈ R.

A similitude (ψ, λ) defines an isomorphism of split complex crystallographic Coxeter
groups ϕ : W (a) −→ W (a′) from the expression

ϕ = λψ : L −→ L.

For any equipped root system a = {(R, aα) | α ∈ R}, define the dual equipped root system

a
inv = {(Rinv , ainvα ) | α ∈ R} in the same space L by assigning to any root α ∈ R the root
αinv and the lattice a

inv
α as follows (see sec. 1.3):

if α is a long root, then αinv = α and a
inv
α = aα,

if α is a short root, then αinv = pα and a
inv
α = paα, where p = p(a) = [as : al].

It is clear that p(ainv) = p(a) and if p = 1, then a
inv = a.

It is quite straightforward that Π(ainv) = Π(a), hence, W (ainv) = W (a). In particular,
any similitude (ψ, λ) of a

inv with a
′ defines an isomorphism ϕ : W (a) = W (ainv)−̃→W (a′).

Theorem. Any isomorphism ϕ : W (a) −→ W (a′) of split complex crystallographic Cox-

eter groups is of the form ϕ = λψ, where (ψ, λ) is either a similitude of a with a
′ or a

similitude of a
inv with a

′. The similitude (ψ, λ) is defined uniquely up to replacement of

(ψ, λ) by (−ψ,−λ).
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1.5.1. Proof of Theorem 1.3

Proof of Theorem 1.3a). (i) Let a = {(R, aα) | α ∈ R} be an equipped root system, W0

the Weyl group of R. Clearly, W0 normalizes T (see 1.1) and TW0 is contained in W (a).
Since TW0 contains all the reflections r(α, τ), we see that TW0 = W (a).

(ii) Let α1, . . . , αℓ be the base (system of simple roots) of R. Denote: Tα = {aαhα}.
Let us prove that the group T ′ = ⊕Tα coincides with T . Each root α ∈ R is of the form
α = wαi, where w ∈ W0, and Twαi

= wTαi
; and hence it suffices to verify that T ′ is

W0-invariant. Since reflections rα, where α is a simple root, generate W0, it suffices to
verify that rα(T

′) ⊂ T ′.
If τ ∈ aβ , then

(1 − rα)(τhβ) = (α(hβ)τ)hα ∈ aαhα

by property of any equipped root systems. Hence, (1 − rα)Tβ ⊂ Tα implying rαT
′ ⊂ T ′.

(iii) It follows from (ii) that T is a lattice in L of full rank. Since W = T ⋉W0, where
W0 is a finite group, we deduce that W is a complex crystallographic group. Since W is
generated by reflections and dW ∼= W0, it follows that W is a complex crystallographic
Coxeter group.

Now, let us prove that Π(W ) ⊂ Π(a). Let r ∈ Ref(W ). It is straightforward that r has
the unique decomposition as r = trα, with α ∈ R and t ∈ Tα. Without loss of generality
we may assume that α is a simple root. Then step (ii) implies that t ∈ Tα, and hence
π(r) ∈ Π(a).

Proof of Theorem 1.3b). Let W be a complex crystallographic Coxeter group, x0 ∈ V
its special point, L = L(V ) and W0 = Wx0

.
(i) Since W0 is a Coxeter group, there exists a real W0-invariant subspace LR such that

L = C ⊗R LR. Multiplying LR by a number λ ∈ C
∗ we may assume that T ∩ LR 6= 0.

This follows from the fact that, for any reflection r ∈ R(W ), the intersection of each of
the groups T and LR with the one-dimensional space Lr := (1 − r)L is non-zero. Indeed,

T ⊃ (1 − r)T 6= 0 and LR ⊃ (1 − r)Lr 6= 0.

Denote:
N = T ∩ LR.

Clearly, N is a W0-invariant discrete subgroup of LR. Since the W0-action on LR is
irreducible, we have LR = R ⊗Z N .

(ii) Let r ∈ R(W0). Set
Nr = N ∩ Lr.

Since
0 6= (r − 1)N ⊂ Nr ⊂ (r − 1)LR,

we have Nr
∼= Z. Let h be any generator of Nr and α the functional on L such that

α(π(r)) = 0 and α(h) = 2. (1)

For all pairs (r, h), denote by R the set of all functionals α satisfying (1). For the functional
α ∈ R corresponding by means of (1) to the pair (r, h), we will write

rα = r, hα = h, πα = π(r), Nα := Nr, Tα := Tr = T ∩ Lr.
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By definition

rα(x) = x− α(x)hα and rα(f) = f − f(hα)α for any x ∈ L, f ∈ L∗.

(iii) Let us prove that R is a root system in L∗
R

with the Weyl group W0. Since the
lattice N is W0-invariant, so is R. Hence, it suffices to verify that β(hα) ∈ Z for any
α, β ∈ R. Indeed,

β(hα) =
1

2
β((1 − rβ)hα) ∈

1

2
β(Nβ) = Z.

For each root α ∈ R, set
Πα = {π ∈ Π(W ) | π ‖ πα}.

Define a subset of C:
aα := {α(π) | π ∈ Πα}.

Lemma 1.2.2 implies that aα = {τ ∈ C | τhα ∈ Tα}, hence aα is a rank 2 lattice in C.
If |α| = |β|, then β = wα for some w ∈ W0. But then hβ = whα and Tβ = wTα, so

aβ = aα.
Let now |β|2 = p|α|2, where p = 2, 3. By replacing the root α by a root of the same

length, we may assume that

β(hα) = p and α(hβ) = 1.

Since

(1 − rα)Tβ ⊂ Tα, (1 − rβ)Tα ⊂ Tβ, (1 − rα)hβ = hα, (1 − rβ)hα = phβ,

it follows that paα ⊂ aβ ⊂ aα. Furthermore, by construction, aα ∩ R = aβ ∩ R = Z, so
aβ 6= paα. Thus, a = {(R, aα) | α ∈ R} is an equipped root system.

(iv) By definition, Π(a) = Π(W ), implying W = W (a). �

1.5.2. Proof of Theorem 1.4

Let ϕ : V −→ V ′ be a group isomorphism of W (a) and W (a′). Since ϕ transforms the fixed
special point into the fixed one, we may assume that ϕ is a linear operator ϕ : L −→ L′.

Fix a long root β ∈ R. Since ϕ is an isomorphism, ϕ(πβ) ∈ Π(W (a′)). Hence there is
a root β′ ∈ R′, such that πβ′ = ϕ(πβ). This means that

λϕ(hβ) = hβ′ for some λ ∈ C
∗.

Since W0(hβ) generates LR over R, we see that λϕ(LR) = L′
R
.

Having identified LR with L′
R

by means of λϕ and having replaced aα′ by λaα′ we may
assume that from the very beginning

L = L′, LR = L′
R
, ϕ = id, W = W (a) = W (a′), β′ = β ∈ R′.

Let us show that either a
′ = a or a

′ = a
inv. Clearly, since rα ∈ W (a′), it follows that

α′ = λα ∈ R′ for some λ > 0; moreover, for this λ, we have

aα′ = α′(Πα) = λα(Πα) = λaα.
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If R′ = R, then a
′ = a. Let now R′ 6= R. Since R and R′ are W0-invariant, have the

same number of roots, and β ∈ R′, it follows that none of the short roots α ∈ R belongs
to R′. Let α be a short root such that α(hβ) = 1.

Let us prove that aα 6= aβ . Indeed, let λ > 0 be such that α′ = λα ∈ R′. Then, since

λ = α′(hβ) = 0, ±1, ±p(R),

it follows that λ = p(R) > 1. Hence, aα′ = paα, where p = p(R). If aα = aβ, then
aα′ = paα = paβ = paβ′ contradicting the definition of equipped root systems.

Thus, aα 6= aβ, i.e., p(a) = p > 1. Consider the system Rinv. We see that βinv = β and
αinv = pα belong to R′. By W0-invariance this implies Rinv = R′. As above, we deduce
that a

inv = a
′. �

§2 Affine root systems

Let V be a real ℓ-dimensional affine space, L = L(V ) the linear space of translations of
V . Let Aff(V ) be the space of affine-linear functions on V , i.e., polynomial functions of
degree ≤ 1. Let Const ⊂ Aff(V ) be the subspace of constant functions. The action of the
group L on V and on Aff(V ) is given by the formulas

t(x) = x+ t, (tϕ)(x) = ϕ(x− t) for any x ∈ V and ϕ ∈ Aff(V ).

For any ϕ ∈ Aff(V ), let ϕ̃ denote the linear part of ϕ, i.e., ϕ̃ ∈ L∗. We will assume that
V is endowed with a Euclidean space structure. Then L and L∗ are also endowed with a
Euclidean space structure. We define a semi-norm on Aff(V ) by setting |ϕ| = |ϕ̃|.

2.1. Root systems

For any non-constant function α ∈ Aff(V ), denote by

πα = {x ∈ V | α(x) = 0}

the hyperplane corresponding to α and by rα the reflection in πα. Let hα ∈ L be the
vector orthogonal to πα and such that α̃(hα) = 2. Then rα is defined by the formulas

rα(x) = x− α(x)hα, rα(ϕ) = ϕ− ϕ̃(hα)α, for any x ∈ V , ϕ ∈ Aff(V ).

A root system is a finite subset R ⊂ L∗ \ {0} satisfying the following condition:

rα(β) ∈ R and β(hα) ∈ Z for any α, β ∈ R. (2)

Denote by WR the group generated by reflections rα, where α ∈ R. This group is called
the Weyl group of the root system R.

The root system R is said to be irreducible if WR irreducibly acts on L and R is said
to be reduced if R ∩ 2R = ∅.

For any root α ∈ R, set

α∨ =

{

p(R)α if α is short,

α if α is long.

The system R∨ = {α∨ | α ∈ R} is called the dual root system. Observe that (R∨)∨ =
p(R)R.
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2.2. Affine root systems

An affine root system is a subset S ⊂ Aff(V ) \ Const satisfying the following conditions:

a) if α, β ∈ S, then rα(β) ∈ S and β̃(hα) ∈ Z;
b) the group WS generated by reflections rα, where α ∈ S, discretely acts on V and

the quotient space V/WS is compact.

The group WS is called the Weyl group of the affine root system S.
For an affine root system S, set dS = {α̃ | α ∈ S}. Then dS is a root system.
An affine root system S is called irreducible if so is dS, reduced if S ∩ 2S = ∅ and

completely reduced if dS is reduced.
Denote by Γ(S) the subgroup in Aff(V ) generated by S. The group Γ(S) always

contains a non-zero constant function. The system S is said to be normalized if Γ(S) ∩
Const = Z · 1. Any irreducible system S may be multiplied by a constant to make it
normalized (see [8]).

In what follows, all affine root systems S are assumed to be irreducible and normalized.

2.3. Special points

A point x ∈ V is said to be special for S if Sx = {α ∈ S | α(x) = 0} is isomorphic to
dS. Note, that this definition differs somewhat from the definition in [8]. Any completely
reduced system S has a special point x (see [8]). Usually, to identify V with L and Sx
with dS, we fix a special point x.

Let R be an irreducible reduced root system, let p be either 1 or p(R). We construct
an affine root system S = S(R, p) as follows. For any root α ∈ R, define pα by setting:

pα =

{

1 if α is short,

p if α is long.

Observe that V ≃ L and set

S = {α+ pαl | α ∈ R, l ∈ Z} ⊂ Aff(V ).

It is easy to verify that S is a normalized affine root system, dS = R and 0 is a special
point for S.

Conversely, let S be an irreducible completely reduced normalized affine root system,
and fix x0, a special point for S. Let R = Sx0

= dS and let p = p(S) be the least positive
number such that S + p = S. Then p = 1, 2, or 3 and S = S(R, p).

For S = S(R, p), define the root system Sinv as follows. Set

pinv
α =

p

pα
, αinv = pinv

α α, Rinv = {αinv | α ∈ R},

Sinv = S(Rinv, p) = {αinv + pinv
α l | αinv ∈ Rinv, l ∈ Z}.

If p = 1, then Sinv = S and if p > 1, then Rinv = R∨.
These statements follow from Macdonald’s results [8]. In Macdonald’s terms, we have,

up to a similitude,

S(R, 1) ∼ S(R), S(R∨, p(R)) ∼ (S(R))∨,

S(R)inv ∼ S(R), (S(R)∨)inv ∼ S(R∨)∨.
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2.4. Bases and chambers

For the proof of statements of this subsection, see [8].

Let S be an irreducible affine root system. Fix a chamber C, i.e., a connected component
of the set V \ ∪

α∈S
πα. Then C is an open simplex (and the closure C̄ of C is a closed

simplex). Denote the vertices of C̄ by x0, x1, . . . , xℓ.

Let B(S) := B(S,C) be the set of indecomposable roots α ∈ S such that α(C) > 0 and
let πα be the facets of C. The set B(S) consists of ℓ+ 1 elements α0, . . . , αℓ numbered so
that αi(xj) = 0 for i 6= j. Let S+ be the subset of positive roots.

The set B(S) is called a base of S; the elements of B(S) are called simple roots. Set
hi = hαi

and ri = rαi
. The reflections ri are called simple reflections. Here are several

properties of simple roots and simple reflections:

a) The reflections ri generate WS.

b) WSC̄ = V .

c) If wC = C, then w = 1. Moreover,

|x− y| ≤ |x− wy| for any x ∈ C, y ∈ C̄, w ∈WS

and the equality is only attained when wy = y.

d) Any indecomposable root α ∈ S can be represented in the form wαi, where w ∈WS

and αi ∈ B(S).

e) The roots αi are linearly independent and any root α ∈ S is representable in the
form

∑

kiαi, where ki ∈ Z, and, for all i, either ki ≥ 0 (then α is said to be a positive

root) or ki ≤ 0 (then α is said to be a negative root).

Example. Let R be an irreducible reduced root system, α1, . . . , αℓ the system of simple
roots in R. Consider a root ϕ ∈ R such that ϕ(hαi

) ≥ 0 for i = 1, . . . , ℓ. Each orbit of the
group WR in R has exactly one such root; choose among them the long and short roots
ϕl and ϕs respectively.

The set {α0 = 1 − ϕl, α1, . . . , αℓ} is a base of S(R, 1).

The set {α0 = 1 − ϕs, α1, . . . , αℓ} is a base of S(R, p(R)).

The chamber C is singled out by conditions αi(x) > 0, where i = 0, 1, . . . , ℓ.

2.5. Dual affine root systems

Let S be an irreducible normalized affine root system. Denote by Q = QS(V ) the space
of quadratic functions U on V satisfying

(wU − U) ∈ Aff(V ) for any w ∈WS

and set

Q̄ = Q/Const.

Clearly, Q ⊃ Aff(V ). By assigning to any U ∈ Q the corresponding quadratic form Ũ
on L we establish an isomorphism of Q/Aff(V ) with the space of dW -invariant quadratic
forms on L.
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Since the dW -action on L is irreducible, all dW -invariant quadratic forms on L are
proportional to a fixed form B that determines the metric on V . The proportionality
coefficient

κ(U) = −
Ũ

B

(here the minus sign is chosen to simplify the subsequent formulas) determines a functional
κ on the space Q; the kernel of κ coincides with Aff(V ).

Let α ∈ S and U ∈ Q. Then U − rαU ∈ Aff(V ) is a multiple of α since both vanish on
the hyperplane πα.

Define the linear functional α∨ ∈ Q∗ by setting

α∨(U) =
U − rαU

α
∈ R.

Observe that, on the subspace Aff(V ) ⊂ Q, the functional α∨ is given by the formula

α∨(ϕ) = ϕ̃(hα).

Since α∨(Const) = 0, we may consider α∨ as a functional on Q̄ = Q/Const. Set

S∨ = {α∨ | α ∈ S} ⊂ Q̄∗.

Set

V ∨ ≃ {U ∈ Q̄ | κ(U) = 1}.

The spaces L(V ∨) and Aff(V ∨) are naturally identified with L∗ and Q̄∗, respectively. We
have

rα(U) = U − α∨(U)α̃ for any U ∈ V ∨.

This implies that S∨ ⊂ Q̄∗ = Aff(V ∨) is an affine root system on V ∨.

It is easy to verify that the root system S∨ is irreducible (since WS∨ = WS). Hence
by replacing the form B that determines the metric on V by the form λB for some
λ > 0 we may assume that S∨ is normalized (see sec. 2.2). The normalization condition
uniquely determines the form λB. The corresponding metric is called the canonical metric

associated with the affine root system S and denoted by ‖ · ‖.

In the sequel we will always assume that the Euclidean metric on V is canonical and κ
is defined with respect to this metric.

§3 Complex crystallographic Coxeter groups and affine root

systems

We have classified complex crystallographic Coxeter groups in terms of equipped root
systems. Let us now describe another classification: in terms of affine root systems.

Let S be an irreducible completely reduced normalized affine root system in a real
affine space VR (see sec. 1.2). Consider S as a system of affine-linear functions on the
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complexification V of the space VR. Fix τ ∈ C such that Im τ > 0. For any α ∈ S and
k ∈ Z, set

π(α, k) = {z ∈ V | τα(z) = k};

Π(S, τ) = {all the hyperplanes π(α, k)};

W (S, τ) = the group generated by the reflections in hyperplanes π(α, k).

3.1. Theorem. a) W (S, τ) is a complex crystallographic Coxeter group, and Π(S, τ) =
Π(W (S, τ)). If x0 ∈ VR is a special point for S, then it is a special point for W (S, τ), too.

b) Any irreducible complex crystallographic Coxeter group W is isomorphic to a group

of the form W (S, τ).

To describe groups of the form W (S, τ) up to an isomorphism, introduce several no-
tations. Fix a special point x0 for the system S which defines the splitting of W (S, τ).
With the help of this point we will identify LR with VR and L with V . Define the num-
ber p = p(S) (= 1, 2 or 3) and the affine root system Sinv as in sec. 1.3. In the group

GL+(2; R) of 2×2 matrices with positive determinant, consider the element γp =

(

0 1
−p 0

)

and the subgroup

Γ0(p) =

{(

a b
c d

)

| a, b, c, d ∈ Z, c ∈ pZ, ad− bc = 1

}

.

It turns out that W (S, τ) ∼= W (S′, τ ′) if and only if, for some γ ∈ Γ0(p),

either S′ ∼= S and τ ′ = γτ

or S′ ∼= Sinv and τ ′ = γ(γpτ),
(3)

where

γτ =
aτ + b

cτ + d
for any γ =

(

a b
c d

)

∈ GL(2; R).

Let us make the statement (3) more precise.

3.2. Theorem. a) If γ =

(

a b
c d

)

∈ Γ0(p), then the operator

ϕγ : L −→ L, ϕγ(z) =
z

a+ bτ−1

defines an isomorphism of split complex crystallographic Coxeter groups

ϕγ : W (S, τ)−̃→W (S, γτ).

The operator

ϕγp : L −→ L, ϕγp(z) = τz

determines an isomorphism of split complex crystallographic Coxeter groups

ϕγp : W (S, τ)−̃→W (Sinv, γpτ).
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b) Any isomorphism ϕ : W (S1, τ1) −→ W (S2, τ2) of split complex crystallographic

Coxeter groups factorizes into the composition

W (S1, τ1)
ϕ′

−→ W (S′, τ2)
ψ

−→ W (S2, τ2),

where ψ is an isomorphism induced by the isomorphism of affine root systems ψ : S′ −→ S2

and, for some γ ∈ Γ0(p),

either S′ = S1, τ2 = γ(τ1), ϕ′ = ϕγ

or S′ = Sinv1 , τ2 = γ(γp(τ1)), ϕ′ = ϕγϕγp .

Remark. In sec. 4.2 we will assign to any affine root system S the set of numbers
(n0, n1, . . . , nℓ). It is easy to verify that for systems S and Sinv these sets coincide:

Sinv ≃ S if S 6≃ S(Bℓ, 2) or S(Cℓ, 2),

Sinv(Bℓ, 2) ≃ S(Cℓ, 2)

and, for these systems,
(n0, . . . , nℓ) = (1, 1, 2, 2, . . . , 2),

see Appendix 1 to [8]; the numbers ni for the systems S(Bℓ, 2) and S(Cℓ, 2) are the numbers
assigned there to Dynkin diagrams of the systems Cℓ ≃ S(Bℓ, 2)

∨ and Cℓ ≃ S(Cℓ, 2)
∨.

Therefore, Theorem 3.2 implies that, for the group W = W (S, τ), the set {n0, . . . , nℓ}
depends only on W .

3.3.1. Proof of Theorem 3.1

Proof of 3.1a). Let x0 be a special point for S and R = {α ∈ S | α(x0) = 0}. If we
identify V with L = L(V ) taking x0 for the origin 0, we see that R is a finite irreducible
reduced root system.

Let us construct an equipped root system a = a(S, τ) = {R, aα | α ∈ R} such that
Π(S, τ) = Π(a). Due to sec.2.3 S is of the form

S(R, p) = {α+ pαl | α ∈ R, l ∈ Z}, where p = 1 or p(R).

Set
aα = pαZ + τ−1

Z.

It is clear that a = {(R, aα) | α ∈ R} is an equipped root system (such that p(a) = p(S)).
The hyperplanes from Π(S, τ) are described by equations of the form

τ(α(z) + pαl) = k, where l, k ∈ Z

or, equivalently, by equations
α(z) = −pαl + τ−1k.

This means that Π(S, τ) = Π(a).
Heading a) follows now from Theorem 1.3a) and the equality Π(S, τ) = Π(a).
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Proof of 3.1b). Let W be an indecomposable complex crystallographic Coxeter group.
Then by Theorem 1.3b), W ∼= W (a). First, consider the case p(a) = 1, i.e., the case
where all the lattices aα coincide. Let {λ, µ} be a basis of aα. By multiplying aα by λ−1

(this replaces W (a) by an isomorphic group) we may assume that λ = 1. Furthermore, by
replacing, if necessary, µ by −µ we may assume that Imµ > 0. Thus,

aα = Z + τ−1
Z, where τ = −µ−1 and τ belongs to upper half plane H.

Hence a = a(S, τ), where S = S(R, 1).

If p = p(a) = 2, 3, then there are lattices of the two types: as and al such that
pas ⊂ al ⊂ as, where the inclusions are strict.

Since p is prime, there is a basis (λ, µ) of as, such that {pλ, µ} is a basis of al. The
same arguments as above enable us to assume that as = Z + τ−1

Z and al = pZ + τ−1
Z.

Then a = a(S, τ), where S = S(R, p).

Thus, we have shown that Π(a) is isomorphic to Π(S, τ) for suitable S and τ , so that
W ≃W (a) ≃W (S, τ).

3.3.2. Proof of Theorem 3.2

(i) Let S = S(R, p). Then Sinv = S(Rinv, p), where

Rinv = {αinv | α ∈ R} for αinv = pinv
α α, pinv

α = p
pα

(see sec. 2.3). At the proof of Theorem 3.1a) we constructed an equipped root system

a(S, τ) = {(R, aα) | aα = pαZ + τ−1
Z}

with the property

Π(S, τ) = Π(a(S, τ)).

Define the inverse equipped system

a
inv(S, τ) = {(Rinv, ainv

α ) | α ∈ R and a
inv
α = pinv

α aα = pZ + pinv
α τ−1

Z};

it has the same property. On the other hand, we have

a(Sinv, γp(τ)) = {(Rinv, a′α) | α ∈ R and a
′
α = pinv

α Z + γp(τ)
−1

Z = pinv
α Z + pτZ}.

(ii) Let S = S(R, p). Then

a(S, τ) = {(R, aα) | α ∈ R and aα = pαZ + τ−1
Z}.

Let us describe all the triples (λ, τ, τ ′), where λ ∈ C
∗ and τ, τ ′ ∈ H, such that

(id, λ) : a(S, τ) ≃ a(S, τ ′).

i.e.,

λ(pαZ + τ−1
Z) = pαZ + τ ′

−1
Z for any α. (4)
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Since the values of pα are 1 and p, the condition (4) is equivalent to the following conditions:

λ = a+ bτ−1 and λ(τ ′)−1 = c+ dτ−1, where a, b, c, d ∈ Z, c ∈ pZ, ad− bc = ±1.

This implies that

τ ′ =
a− bτ−1

c+ dτ−1
=
aτ + b

cτ + d
= γ(τ) for γ =

(

a b
c d

)

.

Since Im τ > 0 and Im τ ′ > 0, we see that ad− bc = 1, and hence γ ∈ Γ0(p).

Conversely, to each pair (γ, τ), where γ =

(

a b
c d

)

∈ Γ0(p) and τ ∈ H, there corre-

sponds the triple (λ, τ, τ ′), where λ = a+ bτ−1 and τ ′ = γ(τ).
(iii) It follows from (ii) that the multiplication by λ−1 = (a + bτ−1)−1 determines an

isomorphism ϕγ : W (S, τ) −→W (S, γ(τ)) for any γ ∈ Γ0(p). This and (i) imply Theorem
3.2a).

(iv) Let Si = S(Ri, pi) for i = 1, 2 and let ϕ : W (S1, τ1) −→ W (S2, τ2) be an isomor-
phism. By Theorem 1.4 ϕ is determined by either

(1) the similitude (ψ, λ) of a(S1, τ1) with a(S2, τ2)
or by

(2) the similitude (ψ, λ) of a
inv(S1, τ1) with a(S2, τ2).

In case (1), ψ defines the isomorphism ψ : R1 −→ R2, hence, the isomorphism ψ :
S1 −→ S2, because

p(S1) = p(a(S1, τ1)) = p(a(S2, τ2)) = p(S2).

Having corrected ϕ with the help of this isomorphism, we may assume that S1 = S2,
ψ = id and ϕ is the multiplication by λ. Step (ii) implies that ϕ = ϕγ for some γ ∈ Γ0(p).

In case (2), consider the homomorphism ϕ′ = ϕ0(ϕγp)
−1 determined by the similitude

of a(Sinv
1 , γp(τ1)) with a(S2, τ2). Hence, ϕ′ is of the form ψ ◦ϕγ for some γ ∈ Γ0(p). Thus,

ϕ = ψ ◦ ϕγ ◦ ϕγp . �

Appendix

The results collected in this Appendix will be needed in the sequel to this paper, but are
also of independent interest.

A Root systems and their dual

Fix a quadratic function U ∈ Q\Aff(V ). Clearly, U takes its extremal value (the maximal
for κ(U) > 0, the minimal for κ(U) < 0) at some uniquely defined point of V . Denote this
point by xU and call it the center of U . Set MU = U(xU ). By definition

U(x) = −κ(U) ‖ x− xU ‖2 +MU .

Observe that xU only depends on the image of U in Q̄, so xU is defined for any U ∈ Q̄\L∗.
The map U 7→ xU defines an affine-linear isomorphism V ∨ ∼= V . If we identify V with V ∨
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with respect to this isomorphism, then, for any α ∈ S, the function α∨ is defined by the
formula

α∨ =‖ hα ‖2 α.

Indeed,

α∨(xU ) = α∨(U) =
‖ x− rα(xU ) ‖2 − ‖ x− xU ‖2

α(x)
=

‖ xU − rα(xU ) ‖2

α(xU )
= α(xU ) ‖ hα ‖2 .

Example. Let S be completely reduced. Then S = S(R, p), and we may set

B(S) = α0 = 1 − ϕ, α1, . . . , αℓ,

where α1, . . . , αℓ is a base (system of simple roots) of R (see sec. 2.4). Since WS = WS∨,
we see that the roots α∨

0 , α
∨
1 , . . . , α

∨
ℓ form a base of S∨. Since α∨

i =‖ hα ‖2 αi and S∨ is
normalized, it follows that the canonical metric on V is defined by the condition

‖ hα0
‖=‖ hϕ ‖= 1.

Equivalently, ‖ hα ‖2= 1
p

for any long root α. The above formulas imply that

S∨ := S(R, p)∨ = S

(

1

p
R∨,

p(R)

p

)

and the canonical metrics for S and S∨ coincide (with respect to the described identifica-
tion of V with V ∨).

B The fundamental weights

Let S be a completely reduced root system. We call λ ∈ Q̄ a weight If α∨(λ) ∈ Z for any
α ∈ S; let Λ be the group of all weights. Let λ be a weight such that κ(λ) > 0. Denote by
Uλ ∈ Q the quadratic function representing the weight λ and normalized by the condition
Uλ(xλ) = 0.

Fix a base B(S) = {α0, α1, . . . , αℓ} of S. Then Λ is defined by the system of equations

Λ = {λ ∈ Q̄ | α∨
i (λ) ∈ Z for i = 0, 1, . . . , ℓ}.

Indeed, this system of equations is invariant with respect to simple reflections, hence, with
respect to WS , and, since WS(B(S)) = S, this system is equivalent to the initial system

Λ = {λ ∈ Q̄ | α∨(λ) ∈ Z for any α ∈ S}.

Thus, the weights λ0, . . . , λℓ defined by the equations α∨
i (λj) = δij form a base of Λ.

These weights are called fundamental. Define the numbers ni, where i = 0, 1, . . . , ℓ, from
the condition

∑

niα
∨
i = 1.

Then sec. 3.2 implies that n0 = 1 and, for i > 0, the numbers ni are determined from the
decomposition

ϕ∨ =
∑

niα
∨
i .
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In particular, all the ni are positive integers. The equation
∑

niα
∨
i = 1 on V ∨ turns on

Q̄ into equality of two functionals:
∑

niα
∨
i = κ.

This fact gives another expression for the ni:

ni = κ(λi).

Set

ρ =
∑

λi (5)

and

g = κ(ρ) =
∑

ni. (6)

These numbers, by definition, coincide with Macdonald’s parameters of S∨, see [8], except
that Macdonald’s definition of g depends on the metric. As a result, Macdonald’s g differs

from ours by the factor
α∨

0

α0
.

C Lattices and orbits in root systems

In L∗, consider the lattice ΛR of weights of the root system R:

ΛR = {λ ∈ L∗ | λ(hα) ∈ Z for any α ∈ R}.

Let us identify L∗ with the subspace Aff(V )/Const ⊂ Q̄, and thus consider ΛR as a
subgroup of Q̄. Since λ(hα) = α∨(λ) for λ ∈ L∗, it follows that ΛR = L∗ ∩ Λ.

Let us prove that Λ = Zλ0 ⊕ ΛR. For this, to each weight λ we assign the functional
δλ ∈ L∗ by the formula

δλ = λ− κ(λ)λ0.

Clearly, δλ lies in the subspace L∗ ⊂ Q̄ since κ(δλ) = 0, and δλ may be viewed as the
differential at x0 of the quadratic function U corresponding to λ. Since δλ ∈ Λ, it follows
that δλ ⊂ ΛR yielding the decomposition desired:

λ = κ(λ)λ0 + δλ.

It is easy to verify that δλ1
, . . . , δλℓ

∈ ΛR are fundamental weights of R.
Further on, denote by Λ+ the group generated by λ0, . . . , λℓ. For any k > 0, set

Λk = {λ ∈ Λ | κ(λ) = k} = kλ0 + ΛR

and
Λ+
k := Λk ∩ Λ+ = {λ = kiλi ∈ Λk | ki ∈ Z

+}.

Clearly, the set Λk is WS-invariant and the set Λ+
k is finite.

Lemma. Each WS-orbit in Λk has exactly one element of Λ+
k .

Proof. It is easy to verify that, for any function U ∈ Q such that κ(U) > 0, the sign
of α∨(U) coincides with the sign of α(xU ). Hence if λ ∈ Λk, then λ ∈ Λ+

k if and only if
xU ∈ C̄. Since λ ∈ Λk is defined by its center xλ and since C̄ is a fundamental domain for
WS (see sec. 2.4), Lemma follows. �
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D The Freudenthal-de Vries formula. Corollaries

Let R be an irreducible reduced root system, let p be equal to either 1 or p(R) and
S = S(R, p) (see sec. 2.3). Let tl and ts be the number of long and short roots among
simple roots α1, . . . , αℓ; hence, tl+ ts = ℓ. (Then the total number of long and short roots
in R is equal to htl and hts, respectively, see [3], [12].) Set

r(S) =
∑

1≤i≤ℓ

pαi
= ptl + ts = ℓ+ (p− 1)tl.

Define a quadratic form on L:

UR(x) =
∑

α∈R

α2(x).

Set (compare with (5))

σ =
1

2

∑

α∈R+

α,

where R+ is the set of positive roots in R (with respect to α1, . . . , αℓ).

Claim. Let h be the Coxeter number of R. We have

Uρ =
ℓ

4r(S)
UR − σ +

1

24
(h+ 1)r(S).

Proof. Set
S0 = {α ∈ S | 0 ≤ α(C) ≤ pα̃}.

(recall that α̃ = dα It is clear that if α ∈ S0, then pα̃ − α ∈ S0 and α + mpα̃ 6∈ S0 for
m 6= 0. On V , consider the quadratic function

U0(x) =
1

4

∑

α∈S0

(α(x))2

pα̃
.

It is easy to verify that
riU

0 = U0 + αi for i = 0, 1, . . . , ℓ.

In other words, U0 = Uρ + c, where c is a constant. Clearly, S0 = {α, pα − α | α ∈ R+}.
Hence,

U0 =
1

2

∑

α∈R+

α2

pα
− σ + c = Uρ + c,

where c is a constant. For any quadratic form Q on L, set

tr Q =
∑

Q(li),

where {l1, . . . , lℓ} is a basis in L orthonormal with respect to the canonical metric Ũ0 (see
2.5). Clearly,

trα2 =
4

‖ hα ‖2
=







4p if α is a long root,
4p

p(R)
if α is a short root.
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Since the forms Ũ0, UR and Ũρ are W (R)-invariant, they are proportional. We have

trŨ0 = ℓ,

trUR = 4h

(

tl +
ts
p(R)

)

;

trŨρ = h

(

tl +
pts
p(R)

)

.

This implies that

g =
Ũρ

Ũ0
=
h

ℓ

(

tl +
p

p(R)ts

)

,

Ũρ
UR

=

1

4p

(

tl +
p

p(R)
ts

)

tl +
ts
p(R)

=
ℓ

4r(S)
.

Thus,

Uρ =
ℓ

4r(S)
UR − σ + c,

where c is a constant. It only remains to show that

Uρ(0) =
h+ 1

24
r(S). (7)

Let U be a positive definite form on L and r ∈ L. Set

Ur(x) = U(x− r).

It is easy to verify that

Ur(x) =
1

4
Û(dUr(x)),

where Û is the quadratic form on L∗ dual to U and dUr(x) is the differential of Ur at x.

Applying this fact in our case, we see that

Uρ(0) =
r(S)

ℓ
ΦR(σ),

where ΦR is the form on L∗ dual to UR. Due to the Freudenthal–de Vries formula (see
[8]) we have

ΦR(σ) =
1

24
(h+ 1)ℓ

implying (7). �
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