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Abstract

It is proved that among the finite groups of order less than 32 only the tetrahedral
group and the binary tetrahedral group are not determined by their endomorphism
semigroups in the class of all groups.

1 Introduction

It is well-known that all endomorphisms of an Abelian group form a ring and many of its
properties can be characterized by this ring. An excellent overview of the present situation
in the theory of endomorphism rings of groups is given by P.A.Krylov, A.V.Mikhalev
and A.A.Tuganbaev in their book [3]. All endomorphisms of an arbitrary group form
only a semigroup. The theory of endomorphism semigroups of groups is quite modestly
developed. In many of our papers we have made efforts to describe some properties of
groups by the properties of their endomorphism semigroups. For example, it is shown in
[4] and [7] that a direct product of groups and some semidirect products of groups can be
characterized by the properties of the endomorphism semigroups of these groups. In [7] it
was shown that in many cases the question of the summability of two endomorphisms of
a group can be fully characterized by the properties of its endomorphism semigroup. It is
also shown that groups of many well-known classes are determined by their endomorphism
semigroups in the class of all groups. Some of such groups are: finite Abelian groups ([4],
Theorem 4.2), generalized quaternion groups ([5], Corollary 1). On the other hand, there
exist many examples of groups that are not determined by their endomorphism semigroups:
the alternating group A4 of order 12 ([11], Theorem), some semidirect products of finite
cyclic groups ([9], Theorem), some Schmidt’s groups ([10], Theorem 3.3). Therefore, it is
useful to know much more examples of groups which are or are not determined by their
endomorphism semigroups. In this paper we give the full answer to this problem for the
groups of order less than 32. We will prove the following theorem.

Copyright c© 2006 by P Puusemp

1This work was supported in part by the Estonian Science Foundation Research Grant 5900.



94 Peeter Puusemp

Theorem. Let G be a group of order less than 32 and G∗ be a group such that the
endomorphism semigroups of G and G∗ are isomorphic. Then

10 if G =< a, b | b3 = 1, aba = bab > (the binary tetrahedral group), then G∗ ∼= G or G∗

is isomorphic to the alternating group A4 (the tetrahedral group);
20 if G is not isomorphic to the tetrahedral group or to the binary tetrahedral group, then
G∗ ∼= G.

We shall use standard notations of group theory and the following notations:
o(g) – order of the element g of the group G;
End(G) – the endomorphism semigroup of the group G;
G = H ⋋ K – G is a semidirect product of a normal subgroup H and a subgroup K;
Cn – the cyclic group of order n;
Dn =< a, b | b2 = an = 1, b−1ab = a−1 >=< a > ⋋ < b > – the dihedral group of order
2n (n ≥ 2);
Q =< a, b | a4 = 1, b2 = a2, b−1ab = a−1 > – the quaternion group;
Sn – the symmetric group of degree n;
A4 – the alternatic group of order 12 (the tetrahedral group);
K(x) = { y ∈ End(G) | yx = xy = y }, (x ∈ End(G)).

Let G be a fixed group and G∗ an arbitrary group. We say that the group G is
determined by its endomorphism semigroup in the class of all groups if the isomorphism
of semigroups End(G) and End(G∗) always implies the isomorphism of groups G and G∗.

2 Preliminaries

For convenience of reference, let us recall some known facts that will be used in the proofs
of our main results.

If x is an idempotent of End(G), then G decomposes into the semidirect product
G = Ker x ⋋ Imx and Im x = { g ∈ G | gx = g }.

Lemma 2.1 ([4], Lemma 1.6). If x is an idempotent of End(G), then

K(x) = { y ∈ End(G) | (Imx)y ⊂ Imx, (Ker x)y = 〈1〉 }

and K(x) is a subsemigroup with the unity x of End(G) which is canonically isomorphic
to End(Imx). Under this isomorphism element y of K(x) corresponds to its restriction
on the subgroup Imx of G.

Lemma 2.2 ([4], Theorem 4.2). Every finite Abelian group is determined by its endo-
morphism semigroup in the class of all groups.

Lemma 2.3 ([4], Theorem 1.13). If groups A and B are determined by their endomor-
phism semigroups in the class of all groups, then so is their direct product A × B.

Lemma 2.4 ([5], Corollary 1). The quaternion group Q is determined by its endomor-
phism semigroup in the class of all groups.

Lemma 2.5 ([6], Theorem 2). The symmetric group Sn is determined by its endomor-
phism semigroup in the class of all groups for each n ≥ 1.
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Lemma 2.6 ([11], Section 5). The dihedral group Dn is determined by its endomorphism
semigroup in the class of all groups.

Lemma 2.7 ([8], Theorem). Let G decompose into a semidirect product G = Cpn ⋋Cm,
where p is a prime, n and m are some positive integers. Then G is determined by its
endomorphism semigroup in the class of all groups.

Lemma 2.8 ([12], Theorem). Any group of order 16 is determined by its endomorphism
semigroups in the class of all groups.

Lemma 2.9 ([11], Theorem). Let G be a group of order 24 and G∗ be another group
such that the endomorphism semigroups of G and G∗ are isomorphic. Then

10 if G is the binary tetrahedral group, then G∗ ∼= G or G∗ is isomorphic to the tetrahedral
group A4;
20 if G is not isomorphic to the binary tetrahedral group, then G∗ ∼= G.

Let G be a group and G1, G2, K be subgroups of G such that G decomposes as follows

G = (G1 × G2) ⋋ K = G1 ⋋ (G2 ⋋ K) = G2 ⋋ (G1 ⋋ K), (2.1)

where < Gi, K >= Gi ⋋ K (i = 1, 2). Denote by x, x1 and x2 the projections of G onto
its subgroups K, G1 ⋋ K and G2 ⋋ K, respectively. Then

Im x = K, Im x1 = G1 ⋋ K, Imx2 = G2 ⋋ K, (2.2)

Ker x = G1 × G2, Kerx1 = G2, Ker x2 = G1. (2.3)

Assume that G∗ is another group such that the endomorphism semigroups of G and G∗ are
isomorphic and x∗, x∗

1
, x∗

2
correspond to x, x1, x2 in this isomorphism. In [7], Theorems

2.1 and 3.1, it was proved that under these assumptions the group G∗ decomposes similarly
to (2.1), i.e.,

G∗ = (G∗

1 × G∗

2) ⋋ K∗ = G∗

1 ⋋ (G∗

2 ⋋ K∗) = G∗

2 ⋋ (G∗

1 ⋋ K∗), (2.4)

where < G∗

i , K∗ >= G∗

i ⋋ K∗ (i = 1, 2) and

Im x∗ = K∗, Im x∗

1 = G∗

1 ⋋ K∗, Imx∗

2 = G∗

2 ⋋ K∗, (2.5)

Ker x∗ = G∗

1 × G∗

2, Ker x∗

1 = G∗

2, Kerx∗

2 = G∗

1. (2.6)

3 Non-abelian groups of order < 32

All non-Abelian groups of order < 32 are described in [2] (table 1 at the end of the book).
The number of these groups is 44 and they are:

• G1 = S3, o(G1) = 6 • G2 = D4, o(G2) = 8.

• G3 = Q, o(G3) = 8. • G4 = D5, o(G4) = 10.

• G5 = D6, o(G5) = 12. • G6 = A4, o(G6) = 12.
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• G7 =< a, b | a3 = b2 = (ab)2 >, o(G7) = 12.

• G8 = D7, o(G8) = 14. • G9 = C2 × D4, o(G9) = 16.

• G10 = C2 × Q, o(G10) = 16. • G11 = D8, o(G11) = 16.

• G12 = C8 ⋋ C2 =< a, b | b2 = a8 = 1, b−1ab = a3 >, o(G12) = 16.

• G13 = C8 ⋋ C2 =< a, b | b2 = a8 = 1, b−1ab = a5 >, o(G13) = 16.

• G14 = C4 ⋋ C4 =< a, b | b4 = a4 = 1, b−1ab = a−1 >, o(G14) = 16.

• G15 =< a, b | a4 = b4 = (ba)2 = (b−1a)2 = 1 >, o(G15) = 16.

• G16 =< a, b, c | a2 = b2 = c2 = 1, abc = bca = cab >, o(G16) = 16.

• G17 =< a, b | a4 = b2 = (ab)2 >, o(G17) = 16.

• G18 = C3 × D3, o(G18) = 18. • G19 = D9, o(G19) = 18.

• G20 =< a, b, c | a2 = b2 = c2 = (abc)2 = (ab)3 = (ac)3 = 1 >, o(G20) = 18.

• G21 = D10
∼= C2 × D5, o(G21) = 20.

• G22 =< a, b | a2baba−1b = b2 = 1 >, o(G22) = 20.

• G23 =< a, b | a5 = b2 = (ab)2 >, o(G23) = 20.

• G24 =< a, b | b3 = 1, b−1ab = a2 >, o(G24) = 21.

• G25 = D11, o(G25) = 22. • G26 = C2 × A4, o(G26) = 24.

• G27 = C2 × D6, o(G27) = 24. • G28 = C3 × D4, o(G28) = 24.

• G29 = C3 × Q, o(G29) = 24. • G30 = C4 × D3, o(G30) = 24.

• G31 = C2 × G7, o(G31) = 24. • G32 = D12, o(G32) = 24.

• G33 = S4, o(G33) = 24.

• G34 =< a, b | b3 = 1, aba = bab >, o(G34) = 24.

• G35 =< a, b | b4 = a6 = (ba)2 = (b−1a)2 = 1 >, o(G35) = 24.

• G36 =< a, b | a2 = b2 = (ab)3 >, o(G36) = 24.

• G37 =< a, b | b4 = a12 = 1, b2 = a6, b−1ab = a−1 >, o(G37) = 24.

• G38 = D13, o(G38) = 26.

• G39 =< a, b | b3 = 1, b−1ab = a−2 >, o(G39) = 27.

• G40 = D14, o(G40) = 28.

• G41 =< a, b | a7 = b2 = (ab)2 >, o(G41) = 29.
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• G42 = C3 × D5, o(G42) = 30. • G43 = C5 × D3, o(G43) = 30.

• G44 = D15, o(G44) = 30.

The group G34 is called binary tetrahedral group.

4 Proof of the theorem

Let us now prove the theorem. Assume that G is an arbitrary group of order less than
32. We will show that G satisfies the statements of the theorem. By Lemma 2.2, we can
assume that G is non-abelian, i.e., G is one of the groups G1, G2, . . . , G44. In view of
Lemmas 2.2–2.9, the groups G1−G5, G8−G19, G21, G25−G33, G35−G38, G40, G42−G44

are determined by their endomorphism semigroups in the class of all groups. Therefore,
by Lemma 2.9, the theorem will be proved if we show that the groups

G7, G20, G22, G23, G24, G39, G41

are determined by their endomorphism semigroups in the class of all groups. Let us do
that.

Considering the group

G7 =< a, b | a3 = b2 = (ab)2 >,

we obtain
a3 = b2 = abab, b = aba, b−1ab = a−1, a3b = ba3,

b−1a3b = a−3, a3 = a−3, a6 = b4 = 1.

Hence
c3 = b4 = 1, b−1cb = c−1,

where c = a2. Since a3 = b2, we have ac = b2, a = b2c−1 and G7 =< a, b >=< b, c >.
Therefore,

G7 =< c, b | c3 = b4 = 1, b−1cb = c−1 >=< c > ⋋ < b >∼= C3 ⋋ C4.

By Lemma 2.7, the group G7 is determined by its endomorphism semigroup in the class
of all groups.

Next we consider the group

G22 =< a, b | a2baba−1b = b2 = 1 > .

Step by step we conclude

a2baba−1b = 1 =⇒ baba−1b = a−2 =⇒ aba−1 = b−1a−2b =⇒

=⇒ ab2a−1 = b−1a−4b =⇒ 1 = b−1a−4b =⇒

=⇒ a4 = 1, aba−1 = b−1a2b,

aba · aba = a · b−1a2b · a = a · aba−1 · a = a2b,



98 Peeter Puusemp

(aba)3 = aba · a2b = aba−1 · b = b−1a2b · b = ba2,

(aba)4 = a2ba2b = a2 · b−1a2b = a2 · aba−1 = a−1ba−1,

(aba)5 = a−1ba−1 · aba = 1.

Denote the elements a and aba by b and a, respectively. Then

G22 =< a, b | b4 = a5 = 1, b−1ab = a3 >=< a > ⋋ < b >∼= C5 ⋋ C4.

By Lemma 2.7, the group G22 is determined by its endomorphism semigroup in the class
of all groups.

For the group
G23 =< a, b | a5 = b2 = (ab)2 >

we obtain
b2 = (ab)2 = abab =⇒ b = aba =⇒ b−1ab = a−1,

a5 = b2 = b−1b2b = b−1a5b = (b−1ab)5 = a−5 =⇒ a10 = 1, b4 = 1,

G23 =< a, b | a10 = b4 = 1, b2 = a5, b−1ab = a−1 >=

=< a2 > ⋋ < b >∼= C5 ⋋ C4.

By Lemma 2.7, the group G23 is determined by its endomorphism semigroup in the class
of all groups.

Similarly,
G24 =< a, b | b3 = 1, b−1ab = a2 >,

b−2ab2 = b−1a2b = (b−1ab)2 = a4,

a = b−3ab3 = b−1a4b = (b−1ab)4 = a8, a7 = 1,

G24 =< a, b | b3 = a7 = 1, b−1ab = a2 >=< a > ⋋ < b >∼= C7 ⋋ C3,

G39 =< a, b | b3 = 1, b−1ab = a−2 >,

b−2ab2 = b−1a−2b = (b−1ab)−2 = (a−2)−2 = a4,

a = b−3ab3 = b−1a4b = (b−1ab)4 = (a−2)4 = a−8, a9 = 1,

G39 =< a, b | b3 = a9 = 1, b−1ab = a−2 >=< a > ⋋ < b >∼= C9 ⋋ C3,

G41 =< a, b | a7 = b2 = (ab)2 >,

b2 = abab =⇒ aba = b =⇒ b−1ab = a−1,

a7 = b2 = b−1b2b = b−1a7b = a−7 =⇒ a14 = 1, b4 = 1,

G41 =< b, c | b4 = c7 = 1, b−1cb = c−1 >=

=< c > ⋋ < b >∼= C7 ⋋ C4 (c = a2).

and, by Lemma 2.7, the groups G24, G39 and G41 are determined by their endomorphism
semigroups in the class of all groups.

Finally, let us consider the group

G20 =< a, b, c | a2 = b2 = c2 = (abc)2 = (ab)3 = (ac)3 = 1 > .
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It follows from the defining relations of G20 that

abc · abc = 1 =⇒ bcab = ac =⇒ ab · ac = ab · bcab =

= ac · ab =⇒ < ab, ac >=< ab > × < ac >,

ab · ab · ab = 1, a−1 · ab · a = ba =⇒ (ba)3 = 1, (ba)2 = ab =⇒

=⇒ (ba)−1 = ab, ba = (ab)−1 =⇒ a−1 · ab · a = (ab)−1,

a−1 · ac · a = ca, ac · ac · ac = 1 =⇒ (ca)3 = 1, (ca)2 = ac =⇒

=⇒ (ca)−1 = ac =⇒ a−1 · ac · a = (ac)−1,

G20 =< a, ab, ac >= (< ab > × < ac >)⋋ < a >= (C3 × C3) ⋋ C2.

Denote the elements a, ab and ac by b, a and c, respectively. Then

G20 =< a, b, c | b2 = a3 = c3 = 1,

ac = ca, b−1ab = a−1, b−1cb = c−1 >=

= (< a > × < c >)⋋ < b >∼= (C3 × C3) ⋋ C2. (4.1)

By (4.1),

G20 =< a > ⋋(< c > ⋋ < b >) =< c > ⋋(< a > ⋋ < b >).

Denote the projections of G20 onto its subgroups < b >, < a > ⋋ < b > and < c > ⋋ < b >

by x, x1 and x2, respectively. Choose another group G∗ such that the endomorphism
semigroups of G20 and G∗ are isomorphic:

End(G20) ∼= End(G∗). (4.2)

Since the semigroup End(G∗) is finite, the group G∗ is finite ([1], Theorem 2). Denote the
images of x, x1 and x2 in the isomorphism (4.2) by x∗, x∗

1
and x∗

2
.

Now we can use equalities (2.1)–(2.6) (take there G = G20). By these equalities,

G∗ = (G∗

1 × G∗

2) ⋋ K∗ = G∗

2 ⋋ (G∗

1 ⋋ K∗) = G∗

1 ⋋ (G∗

2 ⋋ K∗),

where
K∗ = Im x∗, Kerx∗ = G∗

1 × G∗

2,

G∗

1 ⋋ K∗ = Im x∗

1, Ker x∗

1 = G∗

2, G∗

2 ⋋ K∗ = Im x∗

2, Ker x∗

2 = G∗

1.

In view of Lemma 2.1,

End(< b >) = End(Imx) ∼= K(x) ∼= K(x∗) ∼= End(Im x∗) = End(K∗).

Hence, by Lemma 2.2, K∗ ∼=< b >∼= C2 and K∗ =< b∗ >∼= C2 for some b∗ ∈ K∗.
By Lemmas 2.1 and 2.7,

End(Im x1) ∼= K(x1) ∼= K(x∗

1)
∼= End(Im x∗

1) = End(G∗

1 ⋋ K∗),

Imx∗

1 = G∗

1 ⋋ K∗ = G∗

1⋋ < b∗ >∼= Imx ∼= C3 ⋋ C2.
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Therefore,

G∗

1 =< a∗ >∼= C3, b∗
−1

a∗b∗ = a∗
−1

for some a∗ ∈ G∗

1
. Similarly,

G∗

2
∼= C3, G∗

2 =< c∗ >, b∗
−1

c∗b∗ = c∗
−1

.

Hence

G∗ =< a∗, b∗, c∗ | a∗
3 = b∗

2 = c∗
3 = 1, a∗c∗ = c∗a∗,

b∗
−1

a∗b∗ = a∗
−1

, b∗
−1

c∗b∗ = c∗
−1

>,

and the groups G20 and G∗ are isomorphic.

The theorem is proved.
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