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Abstract

Deformation equation of a non-associative deformation in operad is proposed. Its
integrability condition (the Bianchi identity) is considered. Algebraic meaning of the
latter is explained.

Key words: Operad, deformation, Sabinin principle, Bianchi identity.
AMS MSC 2000: 18D50

1 Introduction and outline of the paper

Non-associativity is sometimes said to be an algebraic equivalent of the differential geo-
metric concept of curvature [3]. To see the equivalence, one must represent an associator
in curvature terms. In particular, this can be observed for the geodesic loops of a manifold
with an affine connection [1, 2].

In this paper, the equivalence is clarified from an operad theoretical point of view.
By using the Gerstenhaber brackets and a coboundary operator in an operad algebra,
the (formal) associator can be represented as a curvature form in differential geometry.
This equation is called a deformation equation. Its integrability condition is the Bianchi
identity.

2 Operad

Let K be a unital associative commutative ring, char K 6= 2, 3, and let Cn (n ∈ N) be
unital K-modules. For homogeneous f ∈ Cn, we refer to n as the degree of f and write
(when it does not cause confusion) f instead of deg f . For example, (−1)f

.
= (−1)n,

Cf .
= Cn and ◦f

.
= ◦n. Also, it is convenient to use the reduced degree |f |

.
= n − 1.

Throughout the paper we assume that ⊗
.
= ⊗K .

Definition 1. A linear operad with coefficients in K is a sequence C
.
= {Cn}n∈N of unital

K-modules (an N-graded K-module), such that the following conditions hold.
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(1) For 0 ≤ i ≤ m − 1 there exist partial compositions

◦i ∈ Hom(Cm ⊗ Cn, Cm+n−1), | ◦i | = 0

(2) For all h ⊗ f ⊗ g ∈ Ch ⊗ Cf ⊗ Cg, the composition relations hold,

(h ◦i f) ◦j g =







(−1)|f ||g|(h ◦j g) ◦i+|g| f if 0 ≤ j ≤ i − 1,

h ◦i (f ◦j−i g) if i ≤ j ≤ i + |f |,

(−1)|f ||g|(h ◦j−|f | g) ◦i f if i + f ≤ j ≤ |h| + |f |.

(3) There exists a unit I ∈ C1 such that

I ◦0f = f = f ◦i I, 0 ≤ i ≤ |f |

In the 2nd item, the first and third parts of the defining relations turn out to be
equivalent.

Example 2 (endomorphism operad [4]). Let L be a unital K-module and En
L

.
=

Endn
L

.
= Hom(L⊗n, L). Define the partial compositions for f ⊗ g ∈ Ef

L ⊗ Eg
L as

f ◦i g
.
= (−1)i|g|f ◦ (id⊗i

L ⊗g ⊗ id
⊗(|f |−i)
L ), 0 ≤ i ≤ |f |

Then EL
.
= {En

L}n∈N is an operad (with the unit idL ∈ E1
L) called the endomorphism operad

of L.

Thus algebraic operations turn out to be elements of an endomorphism operad. It is
convenient to call homogeneous elements of an abstract operad the operations as well.

3 Gerstenhaber brackets and associator

Definition 3 (total composition). The total composition •Cf ⊗Cg → Cf+|g| is defined
by

f • g
.
=

|f |
∑

i=0

f ◦i g ∈ Cf+|g|, | • | = 0

The pair Com C
.
= {C, •} is called a composition algebra of C.

Lemma 4 (Gerstenhaber identity). The composition algebra multiplication • is non-

associative and satisfies the Gerstenhaber identity

(h, f, g)
.
= (h • f) • g − h • (f • g)

= (−1)|f ||g|(h, g, f)

Definition 5 (Gerstenhaber brackets). The Gerstenhaber brackets [·, ·] are defined in
Com C by

[f, g]
.
= f • g − (−1)|f ||g|g • f = −(−1)|f ||g|[g, f ], |[·, ·]| = 0

The commutator algebra of Com C is denoted as Com−C
.
= {C, [·, ·]}.
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Theorem 6. Com−C is a graded Lie algebra.

Proof. The anti-symmetry of the Gerstenhaber brackets is evident. To prove the (graded)
Jacobi identity

(−1)|f ||h|[[f, g], h] + (−1)|g||f |[[g, h], f ] + (−1)|h||g|[[h, f ], g] = 0

use the G erstenhaber identity. �

Let {L,µ} be a non-associative algebra with a multiplication µ : L ⊗ L → L. The
multiplication µ can be seen as an element of the component E2

L of an endomorphism
operad EL. One can easily check that the associator of µ reads

A
.
= µ ◦ (µ ⊗ idL − idL ⊗µ) = µ • µ =

1

2
[µ, µ]

.
= µ2, µ ∈ E2

L

So the total composition and Gerstenhaber brackets can be used for representing the
associator in operadic terms. This was first noticed by Gerstenhaber [4].

Proposition 7. If K is a field of characteristic 0, then every binary operation µ ∈ C2

generates a power-associative subalgebra in Com C.

Proof. Use the Albert criterion [5] that a power-associative algebra over a field K of
characteristic 0 can be given by the identities

µ2 • µ = µ • µ2, (µ2 • µ) • µ = µ2 • µ2

Both identities easily follow from the corresponding Gerstenhaber identities

(µ, µ, µ) = 0, (µ2, µ, µ) = 0

�

4 Coboundary operator

Let h ∈ C be an operation from an operad C. By using the Gerstenhaber brackets, define
an adjoint representation h 7→ ∂h of Com−C by

∂hf
.
= adright

h f
.
= [f, h], |∂h| = |h|

It follows from the Jacobi identity in Com−C that ∂h is a (right) derivation of Com−C,

∂h[f, g] = [f, ∂hg] + (−1)|g||h|[∂hf, g]

and the following commutation relation holds:

[∂f , ∂g]
.
= ∂f∂g − (−1)|f ||g|∂g∂f = ∂[g,f ]

Let h
.
= µ ∈ C2 be a binary operation. Then, since |µ| = 1 is odd, one has

∂2
µ =

1

2
[∂µ, ∂µ] =

1

2
∂[µ,µ] = ∂ 1

2
[µ,µ] = ∂µ•µ = ∂µ2 = ∂A

So associativity µ2 = 0 implies ∂2
µ = 0. In this case, ∂µ is called a coboundary operator.

In particular, for C = EL one obtains the Hochschild coboundary operator [6]

−∂µf = µ ◦ (idL ⊗f) −

|f |
∑

i=0

(−1)if ◦ (id⊗i
L ⊗µ ⊗ id

⊗(|f |−i)
L ) + (−1)|f |µ ◦ (f ⊗ idL)



90 Eugen Paal

5 Deformation equation

Definition 8 (deformation). For an operad C, let µ, µ0 ∈ C2 be two binary operations.
The difference ω

.
= µ − µ0 is called a deformation.

Let ∂
.
= ∂µ0

and denote the (formal) associators of µ and µ0 as follows:

A
.
= µ • µ =

1

2
[µ, µ], A0

.
= µ0 • µ0 =

1

2
[µ0, µ0]

Definition 9 (associative deformation). The deformation is called associative if A =
0 = A0.

Theorem 10 (deformation equation). One has

A − A0
︸ ︷︷ ︸

deformation

= ∂ω +
1

2
[ω, ω]

︸ ︷︷ ︸

operadic curvature

Proof. Calculate

A =
1

2
[µ, µ]

=
1

2
[µ0 + ω, µ0 + ω]

=
1

2
[µ0, µ0] +

1

2
[µ0, ω] +

1

2
[ω, µ0] +

1

2
[ω, ω]

= A0 −
1

2
(−1)|µ0||ω|[ω, µ0] +

1

2
[ω, µ0] +

1

2
[ω, ω]

= A0 + [ω, µ0] +
1

2
[ω, ω]

= A0 + ∂ω +
1

2
[ω, ω]

�

6 Sabinin’s principle

The deformation equation can be seen as a differential equation for ω with given associators
A0, A. Note that if the associator is fixed, i. e. A = A0, we obtain the Maurer-Cartan

equation, well-known from the theory of associative deformations:

A = A0 ⇐⇒ ∂ω +
1

2
[ω, ω] = 0

Thus the deformation equation may be called the generalized Maurer-Cartan equation as
well. The Maurer-Cartan expression

∂ω +
1

2
[ω, ω]

is a well-known defining form for curvature in modern differential geometry. One can see
that the associator (deformation) is a formal (operadic) curvature while the deformation
is working as a connection. By reformulating the Sabinin principle, one can say that
associator is an operadic equivalent of the curvature.
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7 Bianchi identity

By following a differential geometric analogy, one can state the

Theorem 11 (Bianchi identity). The associator of the deformed algebra satisfies the

Bianchi identity

∂A + [A,ω] = 0

Proof. First differentiate the deformation equation,

∂(A − A0) = ∂2ω +
1

2
∂[ω, ω]

= ∂2ω +
1

2
(−1)|∂||ω|[∂ω, ω] +

1

2
[ω, ∂ω]

= ∂2ω −
1

2
[∂ω, ω] +

1

2
[ω, ∂ω]

= ∂2ω −
1

2
[∂ω, ω] −

1

2
(−1)|∂ω||ω|[∂ω, ω]

= ∂2ω − [∂ω, ω]

Again using the deformation equation, we obtain

∂(A − A0) = ∂2ω − [∂ω, ω]

= ∂2ω − [A − A0 −
1

2
[ω, ω], ω]

= ∂2ω − [A − A0, ω] +
1

2
[[ω, ω], ω]

It follows from the Jacobi identity that

∂A0 = [A0, µ0] =
1

2
[[µ0, µ0], µ0] = 0, [[ω, ω], ω] = 0

By using these relations we obtain

∂A = ∂2ω − [A − A0, ω]

Recall that ∂2 = ∂Ao
and calculate

∂A + [A,ω] = ∂A0
ω + [A0, ω] = [ω,A0] + [A0, ω]

= −(−1)|ω||A0|[A0, ω] + [A0, ω]

= 0

�

Remark 12. To clarify algebraic meaning of the Bianchi identity, let us give another proof
of the Bianchi identity:

∂A + [A,ω] = [A,µ0] + [A,µ − µ0] = [A,µ] =
1

2
[[µ, µ], µ] = 0

where the latter equality is evident from the Jacobi identity. But A
.
= µ • µ and so the

Bianchi identity strikingly reads

(µ • µ) • µ = µ • (µ • µ)

The latter identity can be easily seen from the Gerstenhaber identity.
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