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Abstract

The graphical description of morphisms in rigid monoidal categories, in particular in
ribbon categories, is summarized. It is illustrated with various examples of algebraic
structures in such categories, like algebras, (weak) bi-algebras, Frobenius algebras,
and modules and bimodules. Nakayama automorphisms of Frobenius algebras are
introduced; they are inner iff the algebra is symmetric.

1 Algebras in monoidal categories

A (unital, associative) algebra is a triple A= (Ȧ,m, η) consisting of a vecor space Ȧ over
some field (or more generally, commutative ring) k, a bilinear map m : Ȧ× Ȧ→ Ȧ and an
element e∈ Ȧ such that the associativity and unit properties

m(m(a, b), c) = m(a,m(b, c)) for all a, b, c∈ Ȧ

and m(e, a) = a = m(a, e) for all a∈ Ȧ
(1.1)

hold. The datum η in the triple A is the linear map from k to Ȧ that acts as

η(ξ) = ξ e ∈ Ȧ for ξ ∈ k . (1.2)

It is convenient to regard m not as a bilinear map to Ȧ from the Kronecker product Ȧ× Ȧ,
but as a linear map to Ȧ from the tensor product Ȧ⊗k Ȧ. In terms of the linear maps m
and η, the axioms (1.1) of A read

m ◦ (m⊗ idȦ) = m ◦ (idȦ ⊗m) and m ◦ (η⊗ idȦ) = idȦ = m ◦ (idȦ ⊗ η) . (1.3)

It would actually be more precise to call the structure just described an algebra in the

category Vectk of finite-dimensional k-vector spaces. When this formulation is adopted,
the requirement of linearity of the maps η and m is already built in automatically, namely
by merely demanding that they are allowed maps at all, i.e. that they are morphisms

m ∈ Hom(Ȧ⊗ Ȧ, Ȧ) and η ∈ Hom(1, Ȧ) (1.4)
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in Vectk. Moreover, there is then no need any longer to refer explicitly to the underlying
vector space structure, nor even to elements of Ȧ. Accordingly, this formulation is not
only valid for the category Vectk, but for any (strict) monoidal category C. That is, we can
define a (unital, associative) algebra (or monoid) in C as a triple A= (Ȧ,m, η) consisting
of an object A of C and of two morphisms (1.4) satisfying the relations (1.3). For general
C, ⊗ in (1.4) denotes the (strictly) associative tensor product of C, while 1 is the (strict)
tensor unit of C (for C =Vectk, one has ⊗=⊗k , 1= k and Hom = Homk).

As it turns out, many other concepts of algebra and representation theory can be
formulated in the language of monoidal categories, too; see, for instance, [23, 24, 18, 15,
16, 19, 8, 27, 7]. Depending on what additional structure on A is desired, additional
properties of the category C can be needed. Let me give a few examples:

A left A-module over an algebra A in C is a pair M = (Ṁ , ρ) consisting of an object Ṁ
of C and a morphism ρ∈Hom(Ȧ⊗ Ṁ, Ṁ ) satisfying the representation properties

ρ ◦ (idȦ ⊗ ρ) = ρ ◦ (m⊗ idṀ ) and ρ ◦ (η⊗ idṀ ) = idṀ . (1.5)

Analogously, a right A-module is a pair (Ṁ, ̺) with ̺∈Hom(Ṁ ⊗ Ȧ, Ṁ ) satisfying
̺ ◦ (̺⊗ idȦ)= ̺ ◦ (idṀ ⊗m) and ̺ ◦ (idṀ ⊗ η)= idṀ .

And an A-bimodule is a triple (Ṁ, ρ, ̺) such that (Ṁ, ρ) is a left A-module and (Ṁ, ̺) a
right A-module, with commuting left and right actions of A, i.e.

ρ ◦ (idȦ ⊗ ̺) = ̺ ◦ (ρ⊗ idȦ) . (1.6)

An intertwiner between (left, say) A-modules M = (Ṁ, ρ) and M ′ = (Ṁ ′, ρ′) is a mor-
phism f ∈Hom(Ṁ, Ṁ ′) that intertwines the A-action on M and M ′ in the sense that
f ◦ ρ= ρ′ ◦ (idȦ ⊗ f). The category CA| of left A-modules has by definition the left A-mo-
dules as objects and their intertwiners as morphisms. Analogously there is a category C|A
of right A-modules, as well as a category CA|A of A-bimodules; the latter is again monoidal.

A co-algebra in C is a triple C = (Ċ,∆, ε) where Ċ is an object of C and the coproduct
∆ and counit ε are morphisms with properties dual to the properties (1.3) of the product
and unit, i.e. ∆∈Hom(Ȧ, Ȧ⊗ Ȧ) and ε∈Hom(Ȧ,1) obey

(∆⊗ idȦ) ◦∆ = (idȦ ⊗∆) ◦∆ and (ε⊗ idȦ) ◦∆ = idȦ = (idȦ ⊗ ε) ◦∆ . (1.7)

Similarly, a left C-comodule is a pair (Ṁ, δ) with δ ∈Hom(Ṁ, Ċ ⊗ Ṁ) obeying relations
dual to (1.5). Analogously one defines right C-comodules and C-bicomodules.

The induced left A-module IndA(U) is given, for any object U of C, by

IndA(U) = (Ȧ⊗U,m⊗ idU ) . (1.8)

Every induced module is projective, and every simple A-module (i.e., simple object of CA|)
is a quotient of an induced module [22].
Analogously there are the notions of induced right module, and of induced bimodule. The
underlying objects of the latter bimodules are of the form Ȧ⊗U⊗Ȧ. If C is a braided

monoidal category, then there are interesting bimodule structures on the objects Ȧ⊗U as
well. These are known as α±-induced bimodules α±

A (U)= (Ȧ⊗U, ρ, ̺±); the left action ρ
of A is as in (1.8), while the right action is given by

̺+ = (m⊗ idU ) ◦ (idȦ ⊗ c
U,Ȧ

) and ̺− = (m⊗ idU ) ◦ (idȦ ⊗ (c
Ȧ,U

)−1) , (1.9)
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respectively. Here we denote by cU,V ∈Hom(U⊗V, V ⊗U) the braiding isomorphisms of C.

For braided C there is also the notion of a (left) A-dimodule over an algebra A in C that
is also a coalgebra. This is a triple (Ṁ , ρ, δ) such that (Ṁ , ρ) is a (left) A-module and
(Ṁ, δ) a (left) A-comodule and such that the action and coaction of A commute, i.e.

δ ◦ ρ = (idȦ ⊗ ρ) ◦ (c
Ȧ,Ȧ

⊗ idṀ) ◦ (idȦ ⊗ δ) . (1.10)

Note that there is also another, equally natural, notion of A-dimodule, obtained from the
one just defined by replacing the self-braiding cȦ,Ȧ of Ȧ by its inverse. The two structures
coincide iff cȦ,Ȧ squares to idȦ, and thus in particular if the braiding of C is actually a
symmetry, as is e.g. the case for C =Vectk.

Assume still that C is braided. Then a bi-algebra in C is an algebra that is also a co-
algebra in such a way that the coproduct and counit are morphisms of algebras, while the
unit, and automatically also the product, are coalgebra morphisms. Thus a bi-algebra is
a quintuple (Ḣ,m, η,∆, ε) such that (Ḣ,m, η) is an algebra, (Ḣ,∆, ε) is a co-algebra, and

(m⊗m) ◦ (idȦ ⊗ cA,A ⊗ idȦ) ◦ (∆⊗∆) = ∆ ◦ m (1.11)

and ε ◦m = ε⊗ ε , ∆ ◦ η = η⊗ η . (1.12)

(Again we have made one out of two equally sensible choices for the braiding. They cor-
respond to two equally natural definitions of algebra structure on the object Ȧ⊗Ȧ.)
Further, a Hopf algebra H = (Ḣ,m, η,∆, ε, s) in C is a bi-algebra with an additional mor-
phism s∈Hom(Ḣ, Ḣ), the antipode, which is required to be an inverse to the identity mor-
phism idḢ with respect to the convolution product that is defined as α∗β := m◦(α⊗β)◦∆

for α, β ∈Hom(Ḣ, Ḣ) .

2 Graphical calculus

For presenting further examples, it is stimulating to resort to the geometry of tensor cal-

culus [12], i.e. introduce a graphical notation for morphisms in a strict monoidal category.
This formalism is most convenient for visualizing algebraic structures like those introduced
above, see e.g. [15, 4, 16, 8, 7]. Often it is even indispensible in that it allows for graphi-
cal proofs that are easier, and more illuminating, than when using ordinary formulas. It
has also been instrumental for recent progress in the understanding of two-dimensional
conformal quantum field theory [2, 4, 16, 8, 10, 5]. While the graphical calculus is only
applicable to strict monoidal categories, this restriction is inessential. Indeed, by the
coherence theorems [17] every monoidal category is equivalent to a strict one, and this
extends to categories with additional structure, see e.g. [21]. In most applications the
monoidal category of interest can safely be replaced with the equivalent strict monoidal
category.

We draw identity morphisms idU as vertical lines (often as straight lines, but local
deformations like bending of a line do not change the meaning of a graph) labeled U , and
a general morphism f ∈Hom(U, V ) as a small coupon with an incoming (i.e., entering the
lower edge of the coupon) line labeled U and an outgoing line labeled V . For particular
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morphisms that appear often we use more specific notation, e.g. we write

U

V

c
U,V

V

U

=

U

V

V

U

U V

c
−1

V,U

V U

=

U

V

V

U

(2.1)

for the braiding isomorphisms cU,V ∈Hom(U ⊗V, V ⊗U) and their inverses, and denote
the (co)product and (co)unit morphisms of a (co)algebra by

m =

Ȧ

Ȧ

Ȧ

η =

1

Ȧ

∆ =

Ȧ

Ȧ

Ȧ

ε =

1

Ȧ

(2.2)

With these notations e.g. the defining properties (1.3) of the product and unit morphisms
look as follows:

Ȧ Ȧ

Ȧ

Ȧ

=

Ȧ Ȧ

Ȧ

Ȧ

Ȧ

Ȧ

=

Ȧ

Ȧ

=

Ȧ

Ȧ

(2.3)

An example involving a braiding is given by the bi-algebra axioms (1.11) and (1.12), which
look like

= and

=

=

(2.4)

respectively. (Here and in the sequel we suppress the labels of the lines when they are
obvious from the context.)

As another illustration, consider a weak bi-algebra [25] in a braided monoidal category
C. This is a quintuple (Ḣ,m, η,∆, ε) for which (Ḣ,m, η) is an algebra, (Ḣ,∆, ε) is a co--
algebra, and the bi-algebra axiom (1.11) holds, while (1.12) is replaced by the weaker
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properties

=

=

and

=

=

(2.5)

It follows e.g. that

= = (2.6)

which is the version in C of the idempotent property of ∆(e)·∆(e)= ∆(e) that is valid for
a weak bi-algebra in Vectk.

Every bi-algebra is in particular a weak bi-algebra; the expressions in (2.5) then all
reduce to ε⊗ ε⊗ ε and to η⊗ η⊗ η, respectively.

3 Frobenius algebras and ribbon categories

There are several equivalent definitions of a Frobenius algebra in Vectk, and similarly there
are several possibilities to characterize Frobenius algebras in a monoidal category C. The
following one does not require any further structure on C: A Frobenius algebra in C is a
quintuple A= (Ȧ,m, η,∆, ε) such that (Ȧ,m, η) is an algebra, (Ȧ,∆, ε) is a co-algebra,
and ∆ is a morphism of A-bimodules. That in the case of Vectk (3.1) is equivalent to the
usual definition is e.g. shown in [1]. In pictures, the bimodule morphism property of ∆
reads

= = (3.1)

Unlike for the bi-algebra axiom (1.11) no braiding is involved in (3.1). Also note that
here we use the same symbols for the coproduct and counit as in the case of bi- or Hopf
algebras above, even though now neither ∆ nor ε is an algebra morphism.
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A large number of nontrivial examples of Frobenius algebras is provided by so-called
Schellekens algebras [9, 6]; as objects they are direct sums of invertible objects, and they
are classified in terms of the cohomology of the Picard group (the group of isomorphism
classes of invertible objects) of C and of its subgroups. For a Frobenius algebra, any
left module (Ṁ, ρ) gives rise to a left comodule (and vice versa), namely (Ṁ , ̺) with
̺ := (idȦ ⊗ ρ) ◦ ((∆◦η)⊗ idṀ ). This gives rise to an A-dimodule iff A is commutative, i.e.
m ◦ cȦ,Ȧ = m for a braiding cȦ,Ȧ in C.

In Vectk, a conventional definition of the Frobenius property is that A is isomorphic
as a left (or, equivalently, as a right) A-module to Ȧ∨ = Homk(Ȧ, k) (see e.g. [3, 13, 20]).
To be able to formulate this isomorphism property in other monoidal categories C we
need a notion of dual object . It is actually natural to require C to be sovereign, i.e. that
there exist left and right duality functors that coincide both on objects and on morphisms.
That is, any object U of C has a left and right dual object U∨ and there are left and right
evaluation morphisms dU ∈Hom(U∨⊗U,1), d̃U ∈Hom(U⊗U∨,1), as well as left and right
coevaluation morphisms bU ∈Hom(1, U⊗U∨), b̃U ∈Hom(1, U∨⊗U), satisfying

(idU ⊗ dU ) ◦ (bU ⊗ idU ) = idU , (dU ⊗ idU∨) ◦ (idU∨ ⊗ bU ) = idU∨ ,

(d̃U ⊗ idU ) ◦ (idU ⊗ b̃U ) = idU , (idU∨ ⊗ d̃U ) ◦ (b̃U ⊗ idU∨) = idU∨

(3.2)

as well as

(dV ⊗ idU∨) ◦ (idV ∨ ⊗ f ⊗ idU∨) ◦ (idV ∨ ⊗ bU )

= (idU∨ ⊗ d̃V ) ◦ (idU∨ ⊗ f ⊗ idV ∨) ◦ (b̃U ⊗ idV ∨)
(3.3)

for any f ∈Hom(U, V ). We draw the evaluation and coevaluation morphisms as

bU

U U∨

=

U U∨

U∨

dU

U

=

U∨ U

(3.4)

b̃U

U∨U

=

U∨ U

U

d̃U

U∨

=

U U∨

The object Ȧ∨ can be naturally endowed with left and right A-module structures by

ρA∨ :=

Ȧ∨

Ȧ Ȧ∨

̺A∨ :=

Ȧ∨ Ȧ

Ȧ∨

(3.5)
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Now the Frobenius property (3.1) and the duality axioms (3.2) imply that the morphisms

Φ := and

Ȧ∨

Ȧ

Φ̃ := ∈ Hom(Ȧ, Ȧ∨)

Ȧ

Ȧ∨

(3.6)

are invertible, with inverses Φ−1 = (idȦ ⊗ d̃A) ◦ ((∆◦η)⊗ idȦ∨) and Φ̃−1 = (dA ⊗ idȦ) ◦

(idȦ∨ ⊗ (∆◦η)), respectively. Moreover, one can check that Φ and Φ̃ intertwine, respec-

tively, the left and right A-module structures on Ȧ (given by ρA = m = ̺A) and on Ȧ∨.

Conversely, given an algebra A and an isomorphism Φ (or Φ̃) of Ȧ and Ȧ∨ as left (or
right) A-modules, one may define a coproduct on A by

∆ := (Φ−1⊗m) ◦ (b̃A ⊗ idȦ) (3.7)

(respectively, as (m⊗ Φ̃−1) ◦ (idȦ ⊗ b̃A)), and then coassociativity of ∆ follows from the
intertwining property combined with associativity of m. Thus in a sovereign monoidal
category the Frobenius axiom (3.1) is indeed equivalent to the existence of isomorphic
A-module intertwiners (3.6).

The analogue of the nondegenerate invariant bilinear form, whose existence constitutes
another (convenient [14]) definition of a Frobenius algebra in Vectk, is the morphism

d̃ ◦ (idȦ ⊗Φ) = d ◦ (Φ̃⊗ idȦ) ∈ Hom(Ȧ⊗Ȧ,1) . (3.8)

With Φ and Φ̃ defined as in (3.6), this is nothing but ε ◦∆. Conversely, if one regards
(3.8) as defining the analogue of a bilinear form, then requiring it to be nondegenerate
amounts to Φ and Φ̃ being invertible, while requiring it to be invariant amounts to Φ and
Φ̃ being intertwiners of left and right A-modules, respectively.

In a sovereign monoidal category every object is isomorphic to its bidual, via the
isomorphism (idU∨∨ ⊗ dU ) ◦ (b̃U ⊗ idU )∈Hom(U,U∨∨) . In a sovereign monoidal category
that is also braided, the left and right dualities can be combined with the braiding to
define twist isomorphisms θU . The defining properties of braiding, right (or left) duality
and twist are precisely those for ribbons in three-space projected nonsingularly to the
plane; accordingly, braided sovereign monoidal categories are also called ribbon categories

[2]. In a ribbon category, the above isomorphisms in Hom(U,U∨∨), combined with the
twist isomorphisms, furnish a natural equivalence between the bidual functor ?

∨∨ and the
identity functor.

4 Nakayama automorphisms and symmetric algebras

Let A be a Frobenius algebra in a sovereign monoidal category C. The endomorphism

ωN := Φ̃−1 ◦ Φ (4.1)
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in Hom(Ȧ, Ȧ), with Φ and Φ̃ as in (3.6), is clearly an isomorphism, with inverse Φ−1◦ Φ̃.
Moreover, one has the

Proposition: The morphism (4.1) is an algebra automorphism of A.

Proof. Using successively the Frobenius property, coassociativity, sovereignty of C (ap-
plied to the coproduct that is marked by a dashed box in the second picture below) together
with the duality axioms (3.2), then again the Frobenius property, and finally associativity,
one derives the following chain of equalities:

m ◦ (ω
N
⊗ω

N
) = =

= = = ω
N
◦ m .

(4.2)

Thus ω
N

respects the product. That it also respects the unit, i.e. ω
N
◦ η = η, follows

directly by applying the unit property, sovereignty, duality axioms, and the counit prop-
erty. �

In [8], a symmetric Frobenius algebra A in C is defined as a Frobenius algebra for which
the morphisms Φ and Φ̃ in (3.6) coincide. Thus A is symmetric iff

ωN = idȦ . (4.3)

If A is symmetric in this sense, then Φ = Φ̃ is an isomorphism between A and A∨ as A-
bimodules; in Vectk it is this latter property of A that is commonly used as the defining
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property of a symmetric Frobenius algebra. Also, if A is symmetric, then ε ◦∆, i.e. the
analogue (3.8) of the nondegenerate invariant bilinear form, is symmetric in the sense that

= = (4.4)

Note that the notion of symmetry relevant here does not involve a braiding. The proper
setting setting for Frobenius algebras is the one of monoidal categories, and for symmetric
Frobenius algebras the one of sovereign monoidal categories; no braiding is required.

That (4.3) characterizes a symmetric algebra means that ωN is a Nakayama automor-

phism (see e.g. [14, 20]). Any other Nakayama automorphism differs from ω
N

by an inner

automorphism, that is, by a morphism of the form

̟α = m ◦ (α⊗m) ◦ (idȦ ⊗α−1) (4.5)

for some morphism α∈Hom(1, Ȧ) that is invertible with respct to the convolution prod-
uct α ∗β := m ◦ (α⊗β) on Hom(1, Ȧ). In other words, one can think of ‘the’ Nakayama
automorphism of A as an element of the group Aut(A)/Inn(A) of outer automorphisms
of A. In this respect, it is interesting to note that there is an exact sequence

1 → Inn(A) → Aut(A) → Pic(CA|A) (4.6)

of groups [11], involving besides the automorphism group and the inner automorphisms
the Picard group of the bimodule category CA|A. If A is a (Frobenius-) Azumaya algebra
[24, 26], then Pic(CA|A)∼= Pic(C), so that (4.6) reduces to the Rosenberg--Zelinsky type
sequence 1 → Inn(A) → Aut(A) → Pic(C) found in [26].
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