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Abstract

Canonical formalism for plane rotations is developed. This group can be seen as
a toy model of the Hamilton-Dirac mechanics with constraints. The Lagrangian and
Hamiltonian are explicitly constructed and their physical interpretation are given. The
Euler-Lagrange and Hamiltonian canonical equations coincide with the Lie equations.
Consistency of the constraints is checked.

PACS. 02.20.Bb, 02.04.Yy

1 Introduction and outline of the paper

The Lie group multiplication can be locally given as an integral of the first order par-
tial differential equations called the Lie equations. One may ask for such a Lagrangian
recapitulation of the Lie theory that the Euler-Lagrange equations coincide with the Lie
equations. Based on the Lagrangian one can elaborate the corresponding canonical for-
malism for a Lie group.

In this paper, the canonical formalism for plane rotation group SO(2) is presented.
It is shown that the latter can be seen as a toy model of the Hamilton-Dirac mechanics

with constraints [2]. The Lagrangian and Hamiltonian are explicitly constructed. The
Euler-Lagrange and Hamiltonian equations coincide with the Lie equations. Consistency
of the constraints is checked.

2 Lie equations and Lagrangian

Consider the rotation group SO(2) of the real two-plane R
2 . Rotation of R

2 by an angle
α ∈ R is given by the transformation

{

x′ = x cos α − y sinα

y′ = x sin α + y cos α
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In matrix notations
(

x′

y′

)

=

(
cos α − sinα

sinα cos α

)(
x

y

)

By denoting i
.
=

(
0 −1

1 1

)
, a generic element z ∈ SO(2) reads as a complex number

z =

(
cos α − sin α

sinα cos α

)

= cos α + i sin α = eiα

We consider the rotation angle α as a dynamical variable and z as a field variable for
SO(2). The Lie equations read

ż
.
= ∂αz = iz, ż

.
= ∂αz = −iz

Definition 1 (Lagrangian). The Lagrangian L for SO(2) can be defined by

L(z, ż, z, ż)
.
=

1

2i
(żz − zż) − zz

Theorem 2. The Euler-Lagrange equations of SO(2) coincide with its Lie equations.

Proof. Calculate

∂L

∂z
=

∂

∂z

[
1

2i
(żz − zż) − zz

]

=
1

2i
ż − z

∂L

∂ż
=

∂

∂ż

[
1

2i
(żz − zż) − zz

]

= −
1

2i
z =⇒

∂

∂α

∂L

∂ż
= −

1

2i
ż

from which it follows

∂L

∂z
−

∂

∂α

∂L

∂ż
= 0 ⇐⇒

1

2i
ż − z +

1

2i
ż = 0 ⇐⇒ ż = iz

�

3 Physical interpretation

By using the algebraic form of a complex number z
.
= f + ig, the Lie equation ż = iz reads

{

ḟ = −g

ġ = f

and the Lagrangian of these equations reads

L =
1

2
(f ġ − ḟg) −

1

2
(f2 + g2)

It follows from the Lie equations that

z̈ + z = 0 =⇒ f̈ + f = 0 = g̈ + g
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The Lagrangian of the latter is

L(f, g, ḟ , ġ)
.
=

1

2

(

ḟ2 + ġ2

)

−
1

2

(
f2 + g2

)

The quantity

T
.
=

1

2

(

ḟ2 + ġ2

)

is the kinetic energy of a point (f, g) ∈ R
2, meanwhile

l
.
= f ġ − gḟ

is its kinetic momentum with respect to origin (0, 0) ∈ R
2. By using the Lie equations one

can easily check that

ḟ2 + ġ2 = f ġ − gḟ

This relation has a simple explanation in the kinematics of a rigid body [1]. The kinetic
energy of a point can be represented via its kinetic momentum as follows:

1

2

(

ḟ2 + ġ2

)

= T =
l

2
=

1

2
(f ġ − gḟ)

This relation explains the equivalence of the Lagrangians. Both Lagrangians give rise to
the same extremals. But one must remember that this relation holds only on the extremals,
i.e for the Lie equations of SO(2).

4 Hamiltonian and Hamilton equations

Our aim is to develop canonical formalism for SO(2). We have already constructed such
a Lagrangian L that the Euler-Lagrange equations coincides with the Lie equations. Ac-
cording to canonical prescription, define the canonical momenta as

p
.
=

∂L

∂ż
=

∂

∂ż

[
1

2i
(żz − zż) − zz

]

= +
z

2i

s
.
=

∂L

∂ż
=

∂

∂ż

[
1

2i
(żz − zż) − zz

]

= −
z

2i
= p

Note that the canonical momenta do not depend on velocities and so we are confronted
with a constrained system with two constraints

ϕ1(z, z, p, p)
.
= p −

z

2i
= 0, ϕ2(z, z, p, p)

.
= p +

z

2i
= 0

Definition 3 (Hamiltonian). According to Dirac theory [2] of constrained systems, the
Hamiltonian H for SO(2) can be defined by

H
.
=

H′

︷ ︸︸ ︷

pż + p ż − L+λ1ϕ1(z, z, p, p) + λ2ϕ2(z, z, p, p)

= pż + p ż − L + λ1

(

p −
z

2i

)

+ λ2

(

p +
z

2i

)

where λ1 and λ2 are the Lagrange multipliers.
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Proposition 4. The Hamiltonian of SO(2) can be presented as

H = zz + λ1

(

p −
z

2i

)

+ λ2

(

p +
z

2i

)

Proof. It is sufficient to calculate

H ′ .
= pż + p ż − L

= pż + p ż −
1

2i
(żz − zż) + zz

= ż

(

p −
z

2i

)

+ ż
(

p +
z

2i

)

+ zz

= zz

�

Theorem 5 (Hamiltonian equations). If the Lagrange multipliers

λ1 = iz, λ2 = −iz = λ1

then the Hamiltonian equations

ż =
∂H

∂p
, ṗ = −

∂H

∂z
,

coincide with the Lie equations of SO(2).

Proof. Really, calculate

∂H

∂p
=

∂

∂p

[

zz + iz

(

p −
z

2i

)

− iz
(

p +
z

2i

)]

= iz = ż

∂H

∂z
=

∂

∂z

[

zz + iz

(

p −
z

2i

)

− iz
(

p +
z

2i

)]

= z + i

(

p −
z

2i

)

− iz
1

2i
=

z

2
+ ip −

z

2
= ip

= −

(
z

2i

).

= −ṗ

�

Remark 6. One must remember that the constraints must be applied after the calcula-
tions of the partial derivatives of H.

Corollary 7. The Hamiltonian of SO(2) can be presented in the form

H = i(zp − z p)

Then the Hamilton equations coincide with the Lie equations of SO(2).
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5 Poisson brackets and constraint algebra

Definition 8 (observables and Poisson brackets). Sufficiently smooth functions of
the canonical varibles are called observables. The Poisson brackets of the observables F

and G are defined by

{F,G}
.
=

∂F

∂z

∂G

∂p
−

∂F

∂p

∂G

∂z
+

∂F

∂z

∂G

∂p
−

∂F

∂p

∂G

∂z

Example 9 (well known). In particular, one can easily check that

{z, p} = 1 = {z, p}

and all other Poisson brackets between canonical variables identically vanish.

Example 10. In particular,

{ϕ1,H
′} =

{

p +
z

2i
,H ′

}

= −
∂H ′

∂z
+

1

2i

∂H ′

∂p
= −

∂

∂z
(zz) = −z

and similarly

{ϕ2,H
′} =

{

p +
z

2i
,H ′

}

=
1

2i

∂H ′

∂p
−

∂H ′

∂z
= −

∂

∂z
(zz) = −z

Definition 11 (weak equality). Observables A and B are called weakly equal, if

(A − B)
∣
∣
∣
ϕ1=0=ϕ2

= 0

In this case we write A ≈ B.

Using the notion of a weak equality one can propose the

Theorem 12. The Lie equations of SO(2) read

ż ≈
∂H

∂p
, ṗ ≈ −

∂H

∂z
,

Theorem 13. Lie equations of SO(2) can be presented in the Poisson-Hamilton form

ż ≈ {z,H}, ṗ ≈ {p,H},

Proof. As an example, check the second equation. We have

{p,H}
.
=

∂p

∂z

∂H

∂p
−

∂p

∂p

∂H

∂z
+

∂p

∂z

∂H

∂p
−

∂p

∂p

∂H

∂z
= −

∂H

∂z
≈ ṗ

�

Theorem 14. The equation of motion of an observable F reads

Ḟ ≈ {F,H}
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Proof. By using the Hamilton equations, calculate

Ḟ =
∂F

∂z
ż +

∂F

∂p
ṗ +

∂F

∂z
ż +

∂F

∂p
ṗ

≈
∂F

∂z

∂H

∂p
−

∂F

∂p

∂H

∂z
+

∂F

∂z

∂H

∂p
−

∂F

∂p

∂H

∂z
.
= {F,H}

�

Theorem 15 (constraint algebra). Constraints of SO(2) satsify the commutation re-

lations

{ϕ1, ϕ1} = 0 = {ϕ2, ϕ2}, {ϕ1, ϕ2} = i

Proof. First two relations are evident. To check the third one, calculate

4i2{ϕ1, ϕ2} = {2ip − z, 2ip + z}

.
=

∂(2ip − z)

∂z

∂(2ip + z)

∂p
−

∂(2ip − z)

∂p

∂(2ip + z)

∂z

+
∂(2ip − z)

∂z

∂(2ip + z)

∂p
−

∂(2ip − z)

∂p

∂(2ip + z)

∂z

= −2i
∂(2ip + z)

∂z
−

∂(2ip + z)

∂p

= −2i − 2i = −4i

�

6 Consistency

Now consider the dynamical behaviour of the constraints. Note that

ϕ1 = 0 = ϕ2 =⇒ ϕ̇1 = 0 = ϕ̇2

To be consistent with equations of motion we must prove the

Theorem 16 (consistency). The constraints of SO(2) satisfy equations

{ϕ1,H} ≈ ϕ̇1 = 0, {ϕ2,H} ≈ ϕ̇2 = 0

Proof. Really, first calculate

{ϕ1,H}
.
= {ϕ1,H

′ + λ1ϕ1 + λ2ϕ2}

≈ {ϕ1,H
′} + λ1{ϕ1, ϕ1} + λ2{ϕ1, ϕ2}

= −z + λ1 · 0 + λ2 · i

= −z + z

= 0

= ϕ̇1



SO(2) and Hamilton-Dirac mechanics 43

Similarly

{ϕ2,H}
.
= {ϕ2,H

′ + λ1ϕ1 + λ2ϕ2}

≈ {ϕ2,H
′} + λ1{ϕ2, ϕ1} + λ2{ϕ2, ϕ2}

= −z − λ1 · i + λ2 · 0

= −z + z

= 0

= ϕ̇2

�
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