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Abstract

We study the exact solvable 3 x 3 matrix model of the type G2. We apply the con-
struction similar to that one, which give the 2 x 2 matrix model. But in the studied
case the construction does not give symmetric matrix potential. We conceive that the
exact solvable 3 x 3 matrix potential model of the type G2 does not exist.

PACS: 02.30.1k;02.30.Jr

1 Introduction

In this note we continue in the study of the matrix exact solvable models [1]. We discuss
the 3 x 3 matrix model of the type G2 of the Calogero model [2]. For a comprehensive
review of these systems connected with different root systems see [3].

We applied the method developed in [4] to the 2 x 2 matrix models of the type As [4],
B(C5 [5] and G type in [6] and to the matrix 3 x 3 models of the type As [4] and BCs [6].
Some general results for N x N matrix models of the type Ay was obtained in [7]. It is
shown that the method and especially the simplification used for 2 x 2 matrix models or
3 x 3 matrix models of the Ay and BC5 do not gives the symmetric 3 x 3 model of the G
type.

This is a reason for our conjecture that the exact solvable 3 x 3 matrix model of the
type G2 does not exist.
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2 General construction

Let us consider the differential operator

H = 0y — U, (2.1)

where 7* is symmetric constant matrix, 0y = 8%;9 and U is matrix function of the type

N x N. The aim of our general construction is to find operator (2.1), which leads after
transformation

H=G 'HG,
where G is a regular matrix function, and change of variables y, = y,.(x}) to the differential
operator
H = g™ (y)ds +2b" ()9, + V(1) , (2:2)

for which we know finite dimensional invariant spaces. In the paper [4] are shown the
conditions, which the matrix functions b” and V have to fulfill, and construction of the
operator (2.1) by means of this functions. We briefly remind these conditions.

If we write

02,G = GXy(z) or 0, G=GY,(y), (2.3)
the matrix functions Xy (z) or Y, (y) must fulfil the compatibility conditions
hX; — ;X = [X;Xg] or 0,Y,—0,Ys=[Y,, Y. (2.4)
The matrix functions b” and Y, are connected by the relation
b = Y, — %Fr’
where we denote
I'" = QStht ) th = grkrsuk, and Fst,k = % (_akgst + Osgu + atgsk) >

and g, is inverse of the ¢g"*.
If we denote b, = g,sb® and introduce

TT’:%TrbT7 Br:br_Tr7
we can rewrite the compatibility conditions (2.4) in the form

Os (T, +4T,) — 9, (T, +4T,) =0 (2.5)
dsb, — 8,bs = [b,, by . (2.6)

From the equation (2.5) follows that exist function F'(y) such that
OF =T, +3T,. (2.7)
Denoting G = ¢’ G we can write the equation (2.3) in the form

8,G = Gb,. (2.8)
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If the Gy is solution of the equation (2.8) and Gg = ef'Gy, the matrix potential Uy(z)
corresponding the matrix functions Go(x) and V can be find from relation

Uo = (104 Go(@) — Go(2)V) Gy (). (29)

As the equation (2.8) is linear their general solution can be written in the form G =
CGy, where C is constant matrix. The potential U(z) corresponding to such solution of
(2.8) is

U(z) = CUy(z)C 1. (2.10)

the main problem of our construction is to find for given transformations y, = y,(zx)
matrix functions b"(y), V(y) and constant regular matrix C to the matrix potential (2.10)
be symmetric.

3 Models of the G, type

We will consider matrix models with!

7711:7722:%’ 7712:7721:_%
and transformation
y1 = —af —wiwy — a3, Yo = w12 +22).
In this case we obtain
g = 2y 2= = 3y, 2= %y% (3.1)
It is easy to see that the differential operator ¢"*0,s; has invariant subspaces of two
type: Vjs,l) spaces of polynomials generated by y1''y5?, where ny +ng < N and V]E,Q) spaces

of polynomials generated by y{“y%m, where ni 4+ 2no < N. In the scalar case the choose

)

of the invariant spaces Vjsfl leads to the models of the As type and the choose invariant

spaces V]S?) to the models of the G type. Matrix model of the Ay type we study in [4].
In this paper we will study the matrix models of type G3, i.e. we will consider invariant
subspaces VJS?).

Therefore we choose matrix functions b”(y) in the form

b' =C{+Cl, b*=C3y+y," (C+ Clys + Chyf)

and V as a constant matrix.
In this case the compatibility conditions (2.4) are

[C%’C?’,] =0, [C%’C%] =0,
[Cj, CT] + [C1, Cj] = —2CF,  [Cy, Cf] = —4CF .

!This #°* is connected with Laplace operator in three dimension in center of mass coordinates.
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In the case of 2 x 2 matrix model [6] we was successful with solution of the system (3.2),
when we put C{ = 0. Therefore we choose C1 = 0 in case 3 x 3 matrix, too. With this
choose the conditions (3.2) gives

[Ctl)’ C%] = 0’ [CO’ C ] = 2C3 ) [Ctl)a C%] = _20% ) [Ctl)a Cg] = _403 . (33)

It seems to sensible to chose the traceless matrix 6(1] in the (3.3) as diagonal. We will
study two cases:

a) Cl — A(eq; — es3) and
b) C§ = Ale1r — 2ex + es3),

where A is a constant and e, are 3 x 3 matrices (€;s);;, = 0riOsk-

3.1 Solution in the case a)

In the case a) the general solution of (3.3) is

Cl=-3u—3v—1+2(ey; —es3), Ci=—2w,
C% = A%e:ﬂ , C% = A%egl + 3%832 ,
02 3 v+ A2 (611 — 622) + B2 (622 — 633) C% = 3w+ A%elz + B§e23

or for traceless matrices C/,

60 = 2(e11 — e33), (:3% =0,
Co = Afes, C? = Ajeq1 + Bies, (3.4)
C2 = A(e1; — en) + B2(eg — e33), C3 = Ales + Bess

The system of equations (2.8) is in this case equivalent to three systems of equations

X = —(4+94%)y3X — 943y Y — 9427
0Y = —9A2y3X + 9(A3 — B)y}Y — 9By Z
0NZ = —9B3y3Y + (4 +9B3)y?Z

05X = —6(3ys — A3y3) X + 6A2y7Y + 6A%y1 Z
DY = 6A3y1y5X — 6(A3 — B2)y3Y +6B%y2Z
027 = 6B3y1y3Y + 6(3y3 — B3yi)Z

(447 + 2Ty5
(44} + 2Ty5
(497 + 2Ty3
y2(4y% + 27y2
y2(4y3 + 27y3
y2(4y3 + 27y3

\_/ N \_/

\_/\_/

where X = @kl, Y = @kg and Z = @kg, k=1,2, 3.
It is easy to see that from the system (3.5) follow

2y131X + 3y282X =-2X, 2y181Y + 3y232Y =0, 2y131Z + 3y2322 =27,

which gives

X =y 'F(t), Y=Gt), Z=wH{t), t=2.
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The functions F', G and H then fulfill the system of equations
t(4+27t)F' = 3(A% — 3t)F + 342G + 3A3H
t(4 +27t)G" = 3A3tF — 3(A% — B2)G + 3BH (3.6)
t(4+27t)H' = 3B3tG — 3(B3 — 3t)H .
To find three independent solution of system (3.6) we choose with analogy of 2 x 2
matrix model special value of constants A}, and BY, which essentially simplify the system

(3.6)2.
If we chose
P S S 7 S T u—
2_1  pa_ _s 2 (3.7)
31:57 32:_5, B3:_67
three independent solution of the system (3.6) are
12/3
R
4¢1/3 27t4/3
=G =—+, Hy=——F+-,
4427 4427
4(81t + 4) 27(4 — 27t) 1458t
F3 = ———— 5 3= = s H3 = —
t(4 + 27t) 4427 4427t

In our case the function e i

I v
el = <(3:1 — x9) (221 + x2) (21 + 23:2)) (xlxg(xl + 562)) e—w(@iteizatas) , (3.8)

which gives matrix Go(z). By direct calculation it is possible to show that corresponding
matrix potential Uy can not be symmetrize by any choose of constant matrices V and C.

S

3.2 Solution in the case b)

In this case the general solution of (3.3) is

C(l):—3,u—3u—1—|—%(e11—2922‘1‘933)7
Cl=-2w,
20,

C% = A%egl + B%egg ,
C3 =2v+ alerr — exn) + Blexz — e33) + Adeis + Bies ,
C% = —3w + A§e12 + B§e32

or for traceless matrices C,

2 (e11 — 2e2 + e33)

o O

(3.9)

A2es; + Bless,
= a(e; — exn) + e — es3) + Adejs + Bles,
C3 = A3e1r + Bies

Q Qo)
NN =N ONHH O
Il

?In the other case in the solution of (3.6) appear hypergeometric functions.
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To solve the system (2.8) we have to find three independent solutions of the system

(47 + 27y3
(4y} + 27y3
(47 + 27y3
ya (47 + 2Ty5
ya (4} + 2Ty5
ya (4} + 2Ty5

~—

hX = —5(4+27a)yi X — 9ATyY — 9B3yiZ

OY = —9A3y3X + L (8+ 27a — 27B)y3Y — 9B2y3Z
Z = —9A3X — 9BIyY — L (4 — 27B)y3Z

0o X = —6(y2 — ay})X + 6A%y2Y +6B2y3 Z

BY = 643193 X + 6(2y3 — (o — B)y})Y + 6BFyiy3Z
hZ = 643y} X + 6BFY —6(y3 + By})Z

~ —

(3.10)

~_ — —

From the system (3.10) we obtain relations
6y181X + 9y232X =-2X, 6y181Y + 9y232Y =4Y 6y1312 + 9y282Z =27,

from which follow
-1/3 2/3 -1/3 Y
X=y’F@t), Y=y’ct), Z=yPHOW), t=2.

Functions F(t), G(t) and H (t) fulfill system differential equations

t(4 427t F' = 3(a — t)F + 3A2G + 3BZH
t(4 4 27t)G" = 3A%F — 3(a — B — 2t)G + 3B3tH (3.11)
t(4+27t)H' = 3A3F +3B?G - 3(B+t)H

To solve (3.11) we again choose convenient constants.
First possibility is to choose

AT =3, A3=3(+p), A3=-3,
Bf=%(1-p), B3=0, B =0, (3.12)
_ 4 _ 32

In this case we have

t7/9
FF=Gi=H=—F"——
N R
(44 27t)7/9
FQ - G2 - 07 H2 - T (313)
4t1/9 27¢10/9 4 —20p 4+ 135(1 — p)t

(44 27t)8/9” (44 27t)8/97 27t8/9(4 + 27t)8/9

The second possibility is to choose

A3 = -8 Al=-2(1+p), A}=-3,
B?=-2(1-p), B2=0, B3=0, (3.14)
a=3, B=0

b wloo
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and three solutions of (3.11) are
4+ 27t)8/9
Fl =G =H = %7
1
Fh=Gy=0, Hh= ——— 3.15
2 2 ) 2 (4 I 27t)1/9 ) ( )
o 4(4 4 45¢) 16 4 180t + 405¢* 16 +45(1 —p)t
STt 2m) TP T gm0 TR T A4 27T/
In the third case we choose
A%:_§7 A%:—%O(l—i-p), A%z—?),
B}=-Y¥(1-p), Bi=0, B} =0, (3.16)
4 28
=57, B=—%
and independent solutions of (3.11) are
(4 +271)7/°
F =G =H = —wp
t7/9
Fr=Gy=0, Hh= ——— 3.17
2 2 ) 2 (4 I 27t)8/9 ) ( )
o 2(4 + 27t)1/9 a0 (4 +27t)1/9(9t 4 2) ~ 8+445(1 —p)t
3= £8/9 r T2 £8/9 T T R4 1 2T
In the last interesting case the constants are
A%:%’ A%:%(I—Fp), A%:—?),
B}=2(1-p), B}=0, B3 =0, (3.18)
_ _ 28 _ 4
Q= —57, B =35
and in this case the three independent solutions are, e.g.
t8/9
h=Gl=H =——
! YT aqoom
Fy=Go=0, Hy=t"17, (3.19)
o 2841358 9t2/9(2 — 27t) 41 +p)—27(1 —p)t
ST Pty 0T datomt T £7/9(4 + 27t)
The function e’ is in all discussed case given by relation (3.8).
4 Potential
To compute the corresponding potential we first use formulae (2.9).
The most interesting choose of the constant matrix V is
V=—-2wBu+3r+1)+ %w(en — 2e99 + e33) + Aejs + Besa, (4.1)

where A and B are suitable constants. The other choose of the matrix V leads to the ma-
trix function in the potential, which must be symmetrize simultaneously with the following

matrix potential.
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With this choice we obtain by direct computation
Uo = (1" 0Go(2)) — GoV ) G = U5 + U™,
where

Ués) = 2w (22 + w120 + 23)+

+2(u2—u+§)< L : + ! >+
3\ (e —x2)? (2w +22)? (21 + 229)?
1 1 1
+2 (V2 —v+ 132 —+—+7>
3 ( 81 ) 22 a2 (2 + 19)?
and U(()m) is the traceless part of the potential, which is given as follows
—12p(22 + z179 + 22)?
(z1 — 2)* (221 + x2)* (@1 + 222)*
X (163:? + 482529 + 692123 + 58x3xS + 6927wy + 48125 + 16333) +

1 1 1
16 5
(g 22 oy =
=8 (g )
2(6v + A+ B)(2? + 2179 + 23)?
(x1 — 22)* (221 + 22)* (21 + 222)*
(8::3(1i + 24adxy — 8Txtal — 21422l — 8Ta32] + 24x 25 + SxS) +

iy -

(22 + 7129 + 73)? y
(x1 — 22)4(2x1 + x2)4 (71 + 279)4

X
8
3

x (9490? + 282282 — 1112422 — 6922323 — 1112223 + 2820125 + 94;c§>

(m) _ 8 260 1 1 1
Vn™ = _(ﬁVer) <9U_%+9U_%+ (21 + x2)? -

1 ! : 1
—5(B@3p+17) +48) ((561 — 9)? " (221 + 22)? " (21 + 2902)2)

glm — _gm) _ pm)
33 11 22
(3p+7) (6 + 6v + A+ B + 2)aad (21 + 22)%(a? + 2122 + 23)?
(r1 — 22)4 (201 + w2)4 (21 + 222)4

o = -

m _ _3(Ou+6v+ At B+ 2)(w129(21 + 19))"®
13 (x1 — 22)*(221 + 22)* (21 + 229)*
(m) 3B(.%'11‘2(.%’1 + 1‘2))4/3

Uy’ = —

(x1 — 22)? (221 4+ x2)% (21 + 222)?

1 1 1
Ui =4B (S + 5+ ———— ) -
21 z? + 3 + (x1 4 22)?

1 1
—18B + +
((:61 —z9)2 (221 +12)%2 (w1 + 23:2)2)

(4.2)
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(22 + 129 + 23) (2122 (21 + .%'2))_10/3

(m)
glm) _
31 (x1 — w2)*(2x1 + m2)* (21 + 279)*

X [216;@%3:%@1 + 19)? x

<16m;2 + 96128 + 101122210 + 41752329 + 6570z4 a8 +
+228625 w8 — 206425 2§ + 22862725 + 657025 x5 +
+41752]] + 10112103 + 9621 25 + 16212 —

—24v <32x + 28891 + 2160x321¢ 4 1075223215 +

+24363z521 + 522925213 — 8630725212 — 18146735;3511
—17643625210 — 1420122527 — 17643623025 — 18146723 2] —
—863072z42 2% + 522929327 + 24363232 + 1075223723 +

—216021022 + 2882172y + 3235;8) +
+64 (38x18 + 34220017 + 113422216 + 132023215 —

—6282x3 211 — 3994225213 — 8799925212 49464x§x}1 +
412264325210 + 234518:52:51 + 1226432302% — 4946423 2T —
—87999x3228 — 3994221325 — 628223 4] 4 13202523 +

+113421822 + 34201721 + 382) ) +
—i—% A(x% 4+ z129 + x%)?’
X <8x? + 24a3xo — 8Txtas — 214a3as — 8Ta3x) 4 24a 25 + 8x2>2 —
—2B(2? + 29 + 23)3 <4x? + 12252y + 5latas + 82323 + 51a?a) +
+122125 + 428 + 4pa§ + 12pafay — 3px1x2 26prirs —
—3px%x% + 12px1xg + 4pxg> X
X (8x(f + 24adxy — 8Txtal — 21422l — 87232y + 24w 25 + 83:2)]
—4/3

(3p + 7) (@ + w122 + 23) (z122(21 + 22))

U(m) —
32 (z1 — 22)* (271 + 22)* (71 + 279)*

X [108;13:%3:%@1 + 29)? (7533 + 21z + 152225 — Sades +
—|—15£C%CC% + 21a5 2 + 7x?> -
—121/< 558x1x2 594x1x2 456x1x2 594x1x2 — 558x1x2 —

—185x329 + 5123230 + 5121023 — 1852923 +
+4821 g + 48z 23t + 8212 + 8a) ) +
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+£ <38x%2 + 2282112y + 4112122 — 352923 — 6392523 +
+162x7 25 4+ 11282525 + 1622525 — 6392125 —
350329 + 41122210 + 228728 + 3835;2) -

~2 A(x? + 29 + 23)3 (83:? + 242329 — 8Txia3 —
—214x3 a5 — 8Ta3xs 4 24x 25 + 8xg> +

+B(z? 4 z129 + 23)° <4:U(1S + 122529 + 51afa3 +

+822323 + 5laal + 12z 25 + 42§ +
+4paS + 12paiey — 3paiad — 26paies —

—3pac%:v% + 12pzy 2 + 4pxg>]
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