On the matrix 3×3 exact solvable models of the type G_{2}

Č. BURDÍK ${ }^{1}$, S. POŠTA ${ }^{1}$ and O. NAVRÁTIL ${ }^{2}$
${ }^{1}$ Department of Mathematics, Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 12000 Prague 2, Czech Republic E-mail: burdik@kmlinux.fjfi.cvut.cz, severin@km1.fjfi.cvut.cz
${ }^{2}$ Department of Mathematics, Czech Technical University, Faculty of Transportation Sciences, Na Florenci 25, 11000 Prague, Czech Republic
E-mail: navratil@fd.cvut.cz

This article is part of the Proceedings of the Baltic-Nordic Workshop, Algebra, Geometry and Mathematical Physics which was held in Tallinn, Estonia, during October 2005.

Abstract

We study the exact solvable 3×3 matrix model of the type G_{2}. We apply the construction similar to that one, which give the 2×2 matrix model. But in the studied case the construction does not give symmetric matrix potential. We conceive that the exact solvable 3×3 matrix potential model of the type G_{2} does not exist.

PACS: 02.30.Ik;02.30.Jr

1 Introduction

In this note we continue in the study of the matrix exact solvable models [1]. We discuss the 3×3 matrix model of the type G_{2} of the Calogero model [2]. For a comprehensive review of these systems connected with different root systems see [3].

We applied the method developed in [4] to the 2×2 matrix models of the type A_{2} [4], $B C_{2}$ [5] and G_{2} type in [6] and to the matrix 3×3 models of the type A_{2} [4] and $B C_{2}[6]$. Some general results for $N \times N$ matrix models of the type A_{2} was obtained in [7]. It is shown that the method and especially the simplification used for 2×2 matrix models or 3×3 matrix models of the A_{2} and $B C_{2}$ do not gives the symmetric 3×3 model of the G_{2} type.

This is a reason for our conjecture that the exact solvable 3×3 matrix model of the type G_{2} does not exist.

2 General construction

Let us consider the differential operator

$$
\begin{equation*}
\mathbf{H}=\eta^{i k} \partial_{i k}-\mathbf{U} \tag{2.1}
\end{equation*}
$$

where $\eta^{i k}$ is symmetric constant matrix, $\partial_{k}=\frac{\partial}{\partial x_{k}}$ and \mathbf{U} is matrix function of the type $N \times N$. The aim of our general construction is to find operator (2.1), which leads after transformation

$$
\widehat{\mathbf{H}}=\mathbf{G}^{-1} \mathbf{H G}
$$

where \mathbf{G} is a regular matrix function, and change of variables $y_{r}=y_{r}\left(x_{k}\right)$ to the differential operator

$$
\begin{equation*}
\widehat{\mathbf{H}}=g^{r s}(y) \partial_{r s}+2 \mathbf{b}^{r}(y) \partial_{y}+\mathbf{V}(y), \tag{2.2}
\end{equation*}
$$

for which we know finite dimensional invariant spaces. In the paper [4] are shown the conditions, which the matrix functions \mathbf{b}^{r} and \mathbf{V} have to fulfill, and construction of the operator (2.1) by means of this functions. We briefly remind these conditions.

If we write

$$
\begin{equation*}
\partial_{x_{k}} \mathbf{G}=\mathbf{G} \mathbf{X}_{k}(x) \quad \text { or } \quad \partial_{y_{r}} \mathbf{G}=\mathbf{G} \mathbf{Y}_{r}(y), \tag{2.3}
\end{equation*}
$$

the matrix functions $\mathbf{X}_{k}(x)$ or $\mathbf{Y}_{r}(y)$ must fulfil the compatibility conditions

$$
\begin{equation*}
\partial_{k} \mathbf{X}_{i}-\partial_{i} \mathbf{X}_{k}=\left[\mathbf{X}_{i} \mathbf{X}_{k}\right] \quad \text { or } \quad \partial_{s} \mathbf{Y}_{r}-\partial_{r} \mathbf{Y}_{s}=\left[\mathbf{Y}_{r}, \mathbf{Y}_{s}\right] \tag{2.4}
\end{equation*}
$$

The matrix functions \mathbf{b}^{r} and \mathbf{Y}_{r} are connected by the relation

$$
\mathbf{b}^{r}=g^{r s} \mathbf{Y}_{s}-\frac{1}{2} \Gamma^{r}
$$

where we denote

$$
\Gamma^{r}=g^{s t} \Gamma_{s t}^{r}, \quad \Gamma_{s t}^{r}=g^{r k} \Gamma_{s t, k}, \quad \text { and } \quad \Gamma_{s t, k}=\frac{1}{2}\left(-\partial_{k} g_{s t}+\partial_{s} g_{t k}+\partial_{t} g_{s k}\right)
$$

and $g_{r s}$ is inverse of the $g^{r s}$.
If we denote $\mathbf{b}_{r}=g_{r s} \mathbf{b}^{s}$ and introduce

$$
T_{r}=\frac{1}{N} \operatorname{Tr} \mathbf{b}_{r}, \quad \widehat{\mathbf{b}}_{r}=\mathbf{b}_{r}-T_{r}
$$

we can rewrite the compatibility conditions (2.4) in the form

$$
\begin{align*}
& \partial_{s}\left(T_{r}+\frac{1}{2} \Gamma_{r}\right)-\partial_{r}\left(T_{s}+\frac{1}{2} \Gamma_{s}\right)=0 \tag{2.5}\\
& \partial_{s} \widehat{\mathbf{b}}_{r}-\partial_{r} \widehat{\mathbf{b}}_{s}=\left[\widehat{\mathbf{b}}_{r}, \widehat{\mathbf{b}}_{s}\right] \tag{2.6}
\end{align*}
$$

From the equation (2.5) follows that exist function $F(y)$ such that

$$
\begin{equation*}
\partial_{r} F=T_{r}+\frac{1}{2} \Gamma_{r} \tag{2.7}
\end{equation*}
$$

Denoting $\mathbf{G}=\mathrm{e}^{F} \widehat{\mathbf{G}}$ we can write the equation (2.3) in the form

$$
\begin{equation*}
\partial_{r} \widehat{\mathbf{G}}=\widehat{\mathbf{G}} \widehat{\mathbf{b}}_{r} \tag{2.8}
\end{equation*}
$$

If the $\widehat{\mathbf{G}}_{0}$ is solution of the equation (2.8) and $\mathbf{G}_{0}=\mathrm{e}^{F} \widehat{\mathbf{G}}_{0}$, the matrix potential $\mathbf{U}_{0}(x)$ corresponding the matrix functions $\mathbf{G}_{0}(x)$ and \mathbf{V} can be find from relation

$$
\begin{equation*}
\mathbf{U}_{0}=\left(\eta^{i k} \partial_{i k} \mathbf{G}_{0}(x)-\mathbf{G}_{0}(x) \mathbf{V}\right) \mathbf{G}_{0}^{-1}(x) \tag{2.9}
\end{equation*}
$$

As the equation (2.8) is linear their general solution can be written in the form $\widehat{\mathbf{G}}=$ $\mathbf{C} \widehat{\mathbf{G}}_{0}$, where \mathbf{C} is constant matrix. The potential $\mathbf{U}(x)$ corresponding to such solution of (2.8) is

$$
\begin{equation*}
\mathbf{U}(x)=\mathbf{C U}_{0}(x) \mathbf{C}^{-1} \tag{2.10}
\end{equation*}
$$

the main problem of our construction is to find for given transformations $y_{r}=y_{r}\left(x_{k}\right)$ matrix functions $\mathbf{b}^{r}(y), \mathbf{V}(y)$ and constant regular matrix \mathbf{C} to the matrix potential (2.10) be symmetric.

3 Models of the G_{2} type

We will consider matrix models with ${ }^{1}$

$$
\eta^{11}=\eta^{22}=\frac{2}{3}, \quad \eta^{12}=\eta^{21}=-\frac{1}{3}
$$

and transformation

$$
y_{1}=-x_{1}^{2}-x_{1} x_{2}-x_{2}^{2}, \quad y_{2}=-x_{1} x_{2}\left(x_{1}+x_{2}\right)
$$

In this case we obtain

$$
\begin{equation*}
g^{11}=-2 y_{1}, \quad g^{12}=g^{21}=-3 y_{2}, \quad g^{22}=\frac{2}{3} y_{1}^{2} . \tag{3.1}
\end{equation*}
$$

It is easy to see that the differential operator $g^{r s} \partial_{r s}$ has invariant subspaces of two type: $V_{N}^{(1)}$ spaces of polynomials generated by $y_{1}^{n_{1}} y_{2}^{n_{2}}$, where $n_{1}+n_{2} \leq N$ and $V_{N}^{(2)}$ spaces of polynomials generated by $y_{1}^{n_{1}} y_{2}^{2 n_{2}}$, where $n_{1}+2 n_{2} \leq N$. In the scalar case the choose of the invariant spaces $V_{N}^{(1)}$ leads to the models of the A_{2} type and the choose invariant spaces $V_{N}^{(2)}$ to the models of the G_{2} type. Matrix model of the A_{2} type we study in [4]. In this paper we will study the matrix models of type G_{2}, i.e. we will consider invariant subspaces $V_{N}^{(2)}$.

Therefore we choose matrix functions $\mathbf{b}^{r}(y)$ in the form

$$
\mathbf{b}^{1}=\mathbf{C}_{0}^{1}+\mathbf{C}_{1}^{1}, \quad \mathbf{b}^{2}=\mathbf{C}_{3}^{2} y_{2}+y_{2}^{-1}\left(\mathbf{C}_{0}^{2}+\mathbf{C}_{1}^{2} y_{1}+\mathbf{C}_{2}^{2} y_{1}^{2}\right)
$$

and \mathbf{V} as a constant matrix.
In this case the compatibility conditions (2.4) are

$$
\begin{array}{ll}
{\left[\mathbf{C}_{1}^{1}, \mathbf{C}_{3}^{2}\right]=0,} & {\left[\mathbf{C}_{1}^{1}, \mathbf{C}_{2}^{2}\right]=0,} \\
{\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{2}^{2}\right]+\left[\mathbf{C}_{1}^{1}, \mathbf{C}_{1}^{2}\right]=0,} & {\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{3}^{2}\right]=-3 \mathbf{C}_{1}^{1}+2 \mathbf{C}_{3}^{2},} \tag{3.2}\\
{\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{1}^{2}\right]+\left[\mathbf{C}_{1}^{1}, \mathbf{C}_{0}^{2}\right]=-2 \mathbf{C}_{1}^{2},} & {\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{0}^{2}\right]=-4 \mathbf{C}_{0}^{2}}
\end{array}
$$

[^0]In the case of 2×2 matrix model [6] we was successful with solution of the system (3.2), when we put $\mathbf{C}_{1}^{1}=0$. Therefore we choose $\mathbf{C}_{1}^{1}=0$ in case 3×3 matrix, too. With this choose the conditions (3.2) gives

$$
\begin{equation*}
\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{2}^{2}\right]=0, \quad\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{3}^{2}\right]=2 \mathbf{C}_{3}^{2}, \quad\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{1}^{2}\right]=-2 \mathbf{C}_{1}^{2}, \quad\left[\mathbf{C}_{0}^{1}, \mathbf{C}_{0}^{2}\right]=-4 \mathbf{C}_{0}^{2} \tag{3.3}
\end{equation*}
$$

It seems to sensible to chose the traceless matrix $\widehat{\mathbf{C}}_{0}^{1}$ in the (3.3) as diagonal. We will study two cases:
a) $\widehat{\mathbf{C}}_{0}^{1}=A\left(\mathbf{e}_{11}-\mathbf{e}_{33}\right)$ and
b) $\widehat{\mathbf{C}}_{0}^{1}=A\left(\mathbf{e}_{11}-2 \mathbf{e}_{22}+\mathbf{e}_{33}\right)$,
where A is a constant and $\mathbf{e}_{r s}$ are 3×3 matrices $\left(\mathbf{e}_{r s}\right)_{i k}=\delta_{r i} \delta_{s k}$.

3.1 Solution in the case a)

In the case a) the general solution of (3.3) is

$$
\begin{array}{ll}
\mathbf{C}_{0}^{1}=-3 \mu-3 \nu-1+2\left(\mathbf{e}_{11}-\mathbf{e}_{33}\right), & \mathbf{C}_{1}^{1}=-2 \omega \\
\mathbf{C}_{0}^{2}=A_{0}^{2} \mathbf{e}_{31}, & \mathbf{C}_{1}^{2}=A_{1}^{2} \mathbf{e}_{21}+B_{1}^{2} \mathbf{e}_{32} \\
\mathbf{C}_{2}^{2}=\frac{2}{3} \nu+A_{2}^{2}\left(\mathbf{e}_{11}-\mathbf{e}_{22}\right)+B_{2}^{2}\left(\mathbf{e}_{22}-\mathbf{e}_{33}\right), & \mathbf{C}_{3}^{2}=-3 \omega+A_{3}^{2} \mathbf{e}_{12}+B_{3}^{2} \mathbf{e}_{23}
\end{array}
$$

or for traceless matrices $\widehat{\mathbf{C}}_{s}^{r}$

$$
\begin{array}{ll}
\widehat{\mathbf{C}}_{0}^{1}=2\left(\mathbf{e}_{11}-\mathbf{e}_{33}\right), & \widehat{\mathbf{C}}_{1}^{1}=0, \\
\widehat{\mathbf{C}}_{0}^{2}=A_{0}^{2} \mathbf{e}_{31}, & \widehat{\mathbf{C}}_{1}^{2}=A_{1}^{2} \mathbf{e}_{21}+B_{1}^{2} \mathbf{e}_{32}, \tag{3.4}\\
\widehat{\mathbf{C}}_{2}^{2}=A_{2}^{2}\left(\mathbf{e}_{11}-\mathbf{e}_{22}\right)+B_{2}^{2}\left(\mathbf{e}_{22}-\mathbf{e}_{33}\right), & \widehat{\mathbf{C}}_{3}^{2}=A_{3}^{2} \mathbf{e}_{12}+B \mathbf{e}_{23}
\end{array}
$$

The system of equations (2.8) is in this case equivalent to three systems of equations

$$
\begin{align*}
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} X & =-\left(4+9 A_{2}^{2}\right) y_{1}^{2} X-9 A_{1}^{2} y_{1} Y-9 A_{0}^{2} Z \\
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} Y & =-9 A_{3}^{2} y_{2}^{2} X+9\left(A_{2}^{2}-B_{2}^{2}\right) y_{1}^{2} Y-9 B_{1}^{2} y_{1} Z \\
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} Z & =-9 B_{3}^{2} y_{2}^{2} Y+\left(4+9 B_{2}^{2}\right) y_{1}^{2} Z \\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{2} X & =-6\left(3 y_{2}^{2}-A_{2}^{2} y_{1}^{3}\right) X+6 A_{1}^{2} y_{1}^{2} Y+6 A_{0}^{2} y_{1} Z \tag{3.5}\\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{2} Y & =6 A_{3}^{2} y_{1} y_{2}^{2} X-6\left(A_{2}^{2}-B_{2}^{2}\right) y_{1}^{3} Y+6 B_{1}^{2} y_{1}^{2} Z \\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{2} Z & =6 B_{3}^{2} y_{1} y_{2}^{2} Y+6\left(3 y_{2}^{2}-B_{2}^{2} y_{1}^{3}\right) Z
\end{align*}
$$

where $X=\widehat{G}_{k 1}, Y=\widehat{G}_{k 2}$ and $Z=\widehat{G}_{k 3}, k=1,2,3$.
It is easy to see that from the system (3.5) follow

$$
2 y_{1} \partial_{1} X+3 y_{2} \partial_{2} X=-2 X, \quad 2 y_{1} \partial_{1} Y+3 y_{2} \partial_{2} Y=0, \quad 2 y_{1} \partial_{1} Z+3 y_{2} \partial_{2} Z=2 Z
$$

which gives

$$
X=y_{1}^{-1} F(t), \quad Y=G(t), \quad Z=y_{1} H(t), \quad t=\frac{y_{2}^{2}}{y_{1}^{3}}
$$

The functions F, G and H then fulfill the system of equations

$$
\begin{align*}
t(4+27 t) F^{\prime} & =3\left(A_{2}^{2}-3 t\right) F+3 A_{1}^{2} G+3 A_{0}^{2} H \\
t(4+27 t) G^{\prime} & =3 A_{3}^{2} t F-3\left(A_{2}^{2}-B_{2}^{2}\right) G+3 B_{1}^{2} H \tag{3.6}\\
t(4+27 t) H^{\prime} & =3 B_{3}^{2} t G-3\left(B_{2}^{2}-3 t\right) H
\end{align*}
$$

To find three independent solution of system (3.6) we choose with analogy of 2×2 matrix model special value of constants A_{s}^{r} and B_{s}^{r}, which essentially simplify the system $(3.6)^{2}$.

If we chose

$$
\begin{array}{lll}
A_{0}^{2}=\frac{4}{9}, & A_{1}^{2}=-\frac{16}{9}, & A_{2}^{2}=-\frac{4}{3}, \\
B_{1}^{2}=\frac{4}{9}, & B_{2}^{2}=-\frac{8}{9}, & B_{3}^{2}=-6 \tag{3.7}
\end{array}
$$

three independent solution of the system (3.6) are

$$
\begin{aligned}
& F_{1}=G_{1}=H_{1}=\frac{t^{2 / 3}}{4+27 t} \\
& F_{2}=G_{2}=\frac{4 t^{1 / 3}}{4+27 t}, \quad H_{2}=-\frac{27 t^{4 / 3}}{4+27 t} \\
& F_{3}=\frac{4(81 t+4)}{t(4+27 t)}, \quad G_{3}=\frac{27(4-27 t)}{4+27 t}, \quad H_{3}=-\frac{1458 t}{4+27 t}
\end{aligned}
$$

In our case the function e^{F} is

$$
\begin{equation*}
\mathrm{e}^{F}=\left(\left(x_{1}-x_{2}\right)\left(2 x_{1}+x_{2}\right)\left(x_{1}+2 x_{2}\right)\right)^{\mu}\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)\right)^{\nu} \mathrm{e}^{-\omega\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)} \tag{3.8}
\end{equation*}
$$

which gives matrix $\mathbf{G}_{0}(x)$. By direct calculation it is possible to show that corresponding matrix potential \mathbf{U}_{0} can not be symmetrize by any choose of constant matrices \mathbf{V} and \mathbf{C}.

3.2 Solution in the case b)

In this case the general solution of (3.3) is

$$
\begin{aligned}
& \mathbf{C}_{0}^{1}=-3 \mu-3 \nu-1+\frac{2}{3}\left(\mathbf{e}_{11}-2 \mathbf{e}_{22}+\mathbf{e}_{33}\right), \\
& \mathbf{C}_{1}^{1}=-2 \omega, \\
& \mathbf{C}_{0}^{2}=0, \\
& \mathbf{C}_{1}^{2}=A_{1}^{2} \mathbf{e}_{21}+B_{1}^{2} \mathbf{e}_{23}, \\
& \mathbf{C}_{2}^{2}=\frac{2}{3} \nu+\alpha\left(\mathbf{e}_{11}-\mathbf{e}_{22}\right)+\beta\left(\mathbf{e}_{22}-\mathbf{e}_{33}\right)+A_{2}^{2} \mathbf{e}_{13}+B_{2}^{2} \mathbf{e}_{31}, \\
& \mathbf{C}_{3}^{2}=-3 \omega+A_{3}^{2} \mathbf{e}_{12}+B_{3}^{2} \mathbf{e}_{32}
\end{aligned}
$$

or for traceless matrices $\widehat{\mathbf{C}}_{s}^{r}$

$$
\begin{align*}
& \widehat{\mathbf{C}}_{0}^{1}=\frac{2}{3}\left(\mathbf{e}_{11}-2 \mathbf{e}_{22}+\mathbf{e}_{33}\right), \\
& \widehat{\mathbf{C}}_{1}^{1}=0, \\
& \widehat{\mathbf{C}}_{0}^{2}=0, \\
& \widehat{\mathbf{C}}_{1}^{2}=A_{1}^{2} \mathbf{e}_{21}+B_{1}^{2} \mathbf{e}_{23}, \tag{3.9}\\
& \widehat{\mathbf{C}}_{2}^{2}=\alpha\left(\mathbf{e}_{11}-\mathbf{e}_{22}\right)+\beta\left(\mathbf{e}_{22}-\mathbf{e}_{33}\right)+A_{2}^{2} \mathbf{e}_{13}+B_{2}^{2} \mathbf{e}_{31}, \\
& \widehat{\mathbf{C}}_{3}^{2}=A_{3}^{2} \mathbf{e}_{12}+B_{3}^{2} \mathbf{e}_{32}
\end{align*}
$$

${ }^{2}$ In the other case in the solution of (3.6) appear hypergeometric functions.

To solve the system (2.8) we have to find three independent solutions of the system

$$
\begin{align*}
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} X & =-\frac{1}{3}(4+27 \alpha) y_{1}^{2} X-9 A_{1}^{2} y_{1} Y-9 B_{2}^{2} y_{1}^{2} Z \\
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} Y & =-9 A_{3}^{2} y_{2}^{2} X+\frac{1}{3}(8+27 \alpha-27 \beta) y_{1}^{2} Y-9 B_{3}^{2} y_{2}^{2} Z \\
\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} Z & =-9 A_{2}^{2} y_{1}^{2} X-9 B_{1}^{2} y_{1} Y-\frac{1}{3}(4-27 \beta) y_{1}^{2} Z \tag{3.10}\\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{2} X & =-6\left(y_{2}^{2}-\alpha y_{1}^{3}\right) X+6 A_{1}^{2} y_{1}^{2} Y+6 B_{2}^{2} y_{1}^{3} Z \\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{2} Y & =6 A_{3}^{2} y_{1} y_{2}^{2} X+6\left(2 y_{2}^{2}-(\alpha-\beta) y_{1}^{3}\right) Y+6 B_{3}^{2} y_{1} y_{2}^{2} Z \\
y_{2}\left(4 y_{1}^{3}+27 y_{2}^{2}\right) \partial_{1} Z & =6 A_{2}^{2} y_{1}^{3} X+6 B_{1}^{2} y_{1}^{2} Y-6\left(y_{2}^{2}+\beta y_{1}^{3}\right) Z
\end{align*}
$$

From the system (3.10) we obtain relations

$$
6 y_{1} \partial_{1} X+9 y_{2} \partial_{2} X=-2 X, \quad 6 y_{1} \partial_{1} Y+9 y_{2} \partial_{2} Y=4 Y, \quad 6 y_{1} \partial_{1} Z+9 y_{2} \partial_{2} Z=-2 Z
$$

from which follow

$$
X=y_{1}^{-1 / 3} F(t), \quad Y=y_{1}^{2 / 3} G(t), \quad Z=y_{1}^{-1 / 3} H(t), \quad t=\frac{y_{2}^{2}}{y_{1}^{3}}
$$

Functions $F(t), G(t)$ and $H(t)$ fulfill system differential equations

$$
\begin{align*}
& t(4+27 t) F^{\prime}=3(\alpha-t) F+3 A_{1}^{2} G+3 B_{2}^{2} H \\
& t(4+27 t) G^{\prime}=3 A_{3}^{2} t F-3(\alpha-\beta-2 t) G+3 B_{3}^{2} t H \tag{3.11}\\
& t(4+27 t) H^{\prime}=3 A_{2}^{2} F+3 B_{1}^{2} G-3(\beta+t) H
\end{align*}
$$

To solve (3.11) we again choose convenient constants.
First possibility is to choose

$$
\begin{array}{lll}
A_{1}^{2}=\frac{8}{9}, & A_{2}^{2}=\frac{10}{9}(1+p), & A_{3}^{2}=-3 \\
B_{1}^{2}=\frac{10}{9}(1-p), & B_{2}^{2}=0, & B_{3}^{2}=0 \tag{3.12}\\
\alpha=\frac{4}{27}, & \beta=\frac{32}{27} &
\end{array}
$$

In this case we have

$$
\begin{align*}
& F_{1}=G_{1}=H_{1}=\frac{t^{7 / 9}}{(4+27 t)^{8 / 9}} \\
& F_{2}=G_{2}=0, \quad H_{2}=\frac{(4+27 t)^{7 / 9}}{t^{8 / 9}} \tag{3.13}\\
& F_{3}=\frac{4 t^{1 / 9}}{(4+27 t)^{8 / 9}}, \quad G_{3}=-\frac{27 t^{10 / 9}}{(4+27 t)^{8 / 9}}, \quad H_{3}=\frac{4-20 p+135(1-p) t}{27 t^{8 / 9}(4+27 t)^{8 / 9}} .
\end{align*}
$$

The second possibility is to choose

$$
\begin{array}{lll}
A_{1}^{2}=-\frac{8}{3}, & A_{2}^{2}=-\frac{2}{3}(1+p), & A_{3}^{2}=-3 \\
B_{1}^{2}=-\frac{2}{3}(1-p), & B_{2}^{2}=0, & B_{3}^{2}=0 \tag{3.14}\\
\alpha=\frac{4}{3}, & \beta=0 &
\end{array}
$$

and three solutions of (3.11) are

$$
\begin{align*}
& F_{1}=G_{1}=H_{1}=\frac{(4+27 t)^{8 / 9}}{t} \\
& F_{2}=G_{2}=0, \quad H_{2}=\frac{1}{(4+27 t)^{1 / 9}}, \tag{3.15}\\
& F_{3}=\frac{4(4+45 t)}{t(4+27 t)^{7 / 9}}, \quad G_{3}=\frac{16+180 t+405 t^{2}}{t(4+27 t)^{7 / 9}}, \quad H_{3}=\frac{16+45(1-p) t}{t(4+27 t)^{7 / 9}} .
\end{align*}
$$

In the third case we choose

$$
\begin{array}{lll}
A_{1}^{2}=-\frac{4}{3}, & A_{2}^{2}=-\frac{10}{9}(1+p), & A_{3}^{2}=-3 \\
B_{1}^{2}=-\frac{10}{9}(1-p), & B_{2}^{2}=0, & B_{3}^{2}=0 \tag{3.16}\\
\alpha=\frac{4}{27}, & \beta=-\frac{28}{27} &
\end{array}
$$

and independent solutions of (3.11) are

$$
\begin{align*}
& F_{1}=G_{1}=H_{1}=\frac{(4+27 t)^{7 / 9}}{t^{8 / 9}} \\
& F_{2}=G_{2}=0, \quad H_{2}=\frac{t^{7 / 9}}{(4+27 t)^{8 / 9}} \tag{3.17}\\
& F_{3}=\frac{2(4+27 t)^{1 / 9}}{t^{8 / 9}}, \quad G_{2}=\frac{(4+27 t)^{1 / 9}(9 t+2)}{t^{8 / 9}}, \quad H_{3}=\frac{8+45(1-p) t}{t^{8 / 9}(4+27 t)^{8 / 9}} .
\end{align*}
$$

In the last interesting case the constants are

$$
\begin{array}{lll}
A_{1}^{2}=\frac{20}{9}, & A_{2}^{2}=\frac{2}{3}(1+p), & A_{3}^{2}=-3 \\
B_{1}^{2}=\frac{2}{3}(1-p), & B_{2}^{2}=0, & B_{3}^{2}=0 \tag{3.18}\\
\alpha=-\frac{28}{27}, & \beta=\frac{4}{27} &
\end{array}
$$

and in this case the three independent solutions are, e.g.

$$
\begin{align*}
& F_{1}=G 1=H_{1}=\frac{t^{8 / 9}}{4+27 t} \\
& F_{2}=G_{2}=0, \quad H_{2}=t^{-1 / 9} \tag{3.19}\\
& F_{3}=\frac{2(8+135 t)}{3 t^{7 / 9}(4+27 t)}, \quad G_{3}=\frac{9 t^{2 / 9}(2-27 t)}{4+27 t}, H_{3}=-\frac{4(1+p)-27(1-p) t}{t^{7 / 9}(4+27 t)}
\end{align*}
$$

The function e^{F} is in all discussed case given by relation (3.8).

4 Potential

To compute the corresponding potential we first use formulae (2.9).
The most interesting choose of the constant matrix \mathbf{V} is

$$
\begin{equation*}
\mathbf{V}=-2 \omega(3 \mu+3 \nu+1)+\frac{4}{3} \omega\left(\mathbf{e}_{11}-2 \mathbf{e}_{22}+\mathbf{e}_{33}\right)+A \mathbf{e}_{12}+B \mathbf{e}_{32} \tag{4.1}
\end{equation*}
$$

where A and B are suitable constants. The other choose of the matrix \mathbf{V} leads to the matrix function in the potential, which must be symmetrize simultaneously with the following matrix potential.

With this choice we obtain by direct computation

$$
\left.\mathbf{U}_{0}=\left(\eta^{i k} \partial_{i k} \mathbf{G}_{0}(x)\right)-\mathbf{G}_{0} \mathbf{V}\right) \mathbf{G}_{0}^{-1}=U_{0}^{(s)}+\mathbf{U}_{0}^{(m)}
$$

where

$$
\begin{align*}
U_{0}^{(s)}= & 2 \omega^{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)+ \\
& +2\left(\mu^{2}-\mu+\frac{8}{3}\right)\left(\frac{1}{\left(x_{1}-x_{2}\right)^{2}}+\frac{1}{\left(2 x_{1}+x_{2}\right)^{2}}+\frac{1}{\left(x_{1}+2 x_{2}\right)^{2}}\right)+ \tag{4.2}\\
& +\frac{2}{3}\left(\nu^{2}-\nu+\frac{152}{81}\right)\left(\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\frac{1}{\left(x_{1}+x_{2}\right)^{2}}\right)
\end{align*}
$$

and $\mathbf{U}_{0}^{(m)}$ is the traceless part of the potential, which is given as follows

$$
\begin{aligned}
U_{11}^{(m)}= & \frac{-12 \mu\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \times \\
& \times\left(16 x_{1}^{6}+48 x_{1}^{5} x_{2}+69 x_{1}^{4} x_{2}^{2}+58 x_{1}^{3} x_{2}^{3}+69 x_{1}^{2} x_{2}^{4}+48 x_{1} x_{2}^{5}+16 x_{2}^{6}\right)+ \\
& +\frac{16}{27}\left(4 \nu-\frac{5}{9}\right)\left(\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\frac{1}{\left(x_{1}+x_{2}\right)^{2}}\right)+ \\
& +\frac{2(6 \nu+A+B)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \times \\
& \times\left(8 x_{1}^{6}+24 x_{1}^{5} x_{2}-87 x_{1}^{4} x_{2}^{2}-214 x_{1}^{3} x_{2}^{3}-87 x_{1}^{2} x_{2}^{4}+24 x_{1} x_{2}^{5}+8 x_{2}^{6}\right)+ \\
& +\frac{8}{3} \frac{\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \times \\
& \times\left(94 x_{1}^{6}+282 x_{1}^{5} x_{2}-111 x_{1}^{4} x_{2}^{2}-692 x_{1}^{3} x_{2}^{3}-111 x_{1}^{2} x_{2}^{4}+282 x_{1} x_{2}^{5}+94 x_{2}^{6}\right) \\
U_{22}^{(m)}= & -\left(\frac{8}{27} \nu+\frac{260}{243}\right)\left(\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\frac{1}{\left(x_{1}+x_{2}\right)^{2}}\right)- \\
& -\frac{1}{9}(B(3 p+7)+48)\left(\frac{1}{\left(x_{1}-x_{2}\right)^{2}}+\frac{1}{\left(2 x_{1}+x_{2}\right)^{2}}+\frac{1}{\left(x_{1}+2 x_{2}\right)^{2}}\right) \\
U_{33}^{(m)}= & -U_{11}^{(m)}-U_{22}^{(m)} \\
U_{12}^{(m)}= & -\frac{(3 p+7)\left(6 \mu+6 \nu+A+B+\frac{2}{3}\right) x_{1}^{2} x_{2}^{2}\left(x_{1}+x_{2}\right)^{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \\
U_{13}^{(m)}= & -\frac{3\left(6 \mu+6 \nu+A+B+\frac{2}{3}\right)\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)\right)^{10 / 3}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \\
U_{23}^{(m)}= & -\frac{3 B\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)\right)^{4 / 3}}{\left(x_{1}-x_{2}\right)^{2}\left(2 x_{1}+x_{2}\right)^{2}\left(x_{1}+2 x_{2}\right)^{2}} \\
U_{21}^{(m)}= & 4 B\left(\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\frac{1}{\left.\left(x_{1}+x_{2}\right)^{2}\right)-}\right. \\
& -18 B\left(\frac{1}{\left(x_{1}-x_{2}\right)^{2}}+\frac{1}{\left(2 x_{1}+x_{2}\right)^{2}}+\frac{1}{\left(x_{1}+2 x_{2}\right)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& U_{31}^{(m)}=\frac{\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)\right)^{-10 / 3}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \times \\
& \times\left[216 \mu x_{1}^{2} x_{2}^{2}\left(x_{1}+x_{2}\right)^{2} \times\right. \\
& \left(16 x_{2}^{12}+96 x_{1} x_{2}^{11}+1011 x_{1}^{2} x_{2}^{10}+4175 x_{1}^{3} x_{2}^{9}+6570 x_{1}^{4} x_{2}^{8}+\right. \\
& +2286 x_{1}^{5} x_{2}^{7}-2064 x_{1}^{6} x_{2}^{6}+2286 x_{1}^{7} x_{2}^{5}+6570 x_{1}^{8} x_{2}^{4}+ \\
& \left.+4175 x_{1}^{9} x_{2}^{3}+1011 x_{1}^{10} x_{2}^{2}+96 x_{1}^{11} x_{2}+16 x_{1}^{12}\right)- \\
& -24 \nu\left(32 x_{1}^{18}+288 x_{2} x_{1}^{17}+2160 x_{2}^{2} x_{1}^{16}+10752 x_{2}^{3} x_{1}^{15}+\right. \\
& +24363 x_{2}^{4} x_{1}^{14}+5229 x_{2}^{5} x_{1}^{13}-86307 x_{2}^{6} x_{1}^{12}-181467 x_{2}^{7} x_{1}^{11}- \\
& -176436 x_{2}^{8} x_{1}^{10}-142012 x_{2}^{9} x_{1}^{9}-176436 x_{2}^{10} x_{1}^{8}-181467 x_{2}^{11} x_{1}^{7}- \\
& -86307 x_{2}^{12} x_{1}^{6}+5229 x_{2}{ }^{1} 3 x_{1}^{5}+24363 x_{2}^{14} x_{1}^{4}+10752 x_{2}^{15} x_{1}^{3}+ \\
& \left.-2160 x_{2}^{16} x_{1}^{2}+288 x_{2}^{17} x_{1}+32 x_{2}^{18}\right)+ \\
& +\frac{64}{3}\left(38 x_{1}^{18}+342 x_{2} x_{1}^{17}+1134 x_{2}^{2} x_{1}^{16}+1320 x_{2}^{3} x_{1}^{15}-\right. \\
& -6282 x_{2}^{4} x_{1}^{14}-39942 x_{2}^{5} x_{1}^{13}-87999 x_{2}^{6} x_{1}^{12}-49464 x_{2}^{7} x_{1}^{11}+ \\
& +122643 x_{2}^{8} x_{1}^{10}+234518 x_{2}^{9} x_{1}^{9}+122643 x_{2}^{10} x_{1}^{8}-49464 x_{2}^{11} x_{1}^{7}- \\
& -87999 x_{2}^{12} x_{1}^{6}-39942 x_{2}^{13} x_{1}^{5}-6282 x_{2}^{14} x_{1}^{4}+1320 x_{2}^{15} x_{1}^{3}+ \\
& \left.+1134 x_{2}^{16} x_{1}^{2}+342 x_{2}^{17} x_{1}+38 x_{2}^{18}\right)+ \\
& +\frac{4}{3} A\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{3} \times \\
& \times\left(8 x_{1}^{6}+24 x_{1}^{5} x_{2}-87 x_{1}^{4} x_{2}^{2}-214 x_{1}^{3} x_{2}^{3}-87 x_{1}^{2} x_{2}^{4}+24 x_{1} x_{2}^{5}+8 x_{2}^{6}\right)^{2}- \\
& -2 B\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{3}\left(4 x_{1}^{6}+12 x_{1}^{5} x_{2}+51 x_{1}^{4} x_{2}^{2}+82 x_{1}^{3} x_{2}^{3}+51 x_{1}^{2} x_{2}^{4}+\right. \\
& +12 x_{1} x_{2}^{5}+4 x_{2}^{6}+4 p x_{1}^{6}+12 p x_{1}^{5} x_{2}-3 p x_{1}^{4} x_{2}^{2}-26 p x_{1}^{3} x_{2}^{3}- \\
& \left.-3 p x_{1}^{2} x_{2}^{4}+12 p x_{1} x_{2}^{5}+4 p x_{2}^{6}\right) \times \\
& \left.\times\left(8 x_{1}^{6}+24 x_{1}^{5} x_{2}-87 x_{1}^{4} x_{2}^{2}-214 x_{1}^{3} x_{2}^{3}-87 x_{1}^{2} x_{2}^{4}+24 x_{1} x_{2}^{5}+8 x_{2}^{6}\right)\right] \\
& U_{32}^{(m)}=\frac{(3 p+7)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)\right)^{-4 / 3}}{\left(x_{1}-x_{2}\right)^{4}\left(2 x_{1}+x_{2}\right)^{4}\left(x_{1}+2 x_{2}\right)^{4}} \times \\
& \times\left[1 0 8 \mu x _ { 1 } ^ { 2 } x _ { 2 } ^ { 2 } (x _ { 1 } + x _ { 2 }) ^ { 2 } \left(7 x_{2}^{6}+21 x_{1} x_{2}^{5}+15 x_{1}^{2} x_{2}^{4}-5 x_{1}^{3} x_{2}^{3}+\right.\right. \\
& \left.+15 x_{1}^{4} x_{2}^{2}+21 x_{1}^{5} x_{2}+7 x_{1}^{6}\right)- \\
& -12 \nu\left(-558 x_{1}^{8} x_{2}^{4}-594 x_{1}^{7} x_{2}^{5}-456 x_{1}^{6} x_{2}^{6}-594 x_{1}^{5} x_{2}^{7}-558 x_{1}^{4} x_{2}^{8}-\right. \\
& -185 x_{1}^{3} x_{2}^{9}+51 x_{1}^{2} x_{2}^{10}+51 x_{1}^{10} x_{2}^{2}-185 x_{1}^{9} x_{2}^{3}+ \\
& \left.+48 x_{1}^{11} x_{2}+48 x_{1} x_{2}^{11}+8 x_{1}^{12}+8 x_{2}^{12}\right)+
\end{aligned}
$$

$$
\begin{aligned}
&+ \frac{8}{3}\left(38 x_{1}^{12}+228 x_{1}^{11} x_{2}+411 x_{1}^{10} x_{2}^{2}-35 x_{1}^{9} x_{2}^{3}-639 x_{1}^{8} x_{2}^{4}+\right. \\
& \quad+162 x_{1}^{7} x_{2}^{5}+1128 x_{1}^{6} x_{2}^{6}+162 x_{1}^{5} x_{2}^{7}-639 x_{1}^{4} x_{2}^{8}- \\
&\left.-35 x_{1}^{3} x_{2}^{9}+411 x_{1}^{2} x_{2}^{10}+228 x_{1} x_{2}^{11}+38 x_{2}^{12}\right)- \\
&-\frac{2}{3} A\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{3}\left(8 x_{1}^{6}+24 x_{1}^{5} x_{2}-87 x_{1}^{4} x_{2}^{2}-\right. \\
&\left.-214 x_{1}^{3} x_{2}^{3}-87 x_{1}^{2} x_{2}^{4}+24 x_{1} x_{2}^{5}+8 x_{2}^{6}\right)+ \\
&+ B\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)^{3}\left(4 x_{1}^{6}+12 x_{1}^{5} x_{2}+51 x_{1}^{4} x_{2}^{2}+\right. \\
& \quad+82 x_{1}^{3} x_{2}^{3}+51 x_{1}^{2} x_{2}^{4}+12 x_{1} x_{2}^{5}+4 x_{2}^{6}+ \\
&+ 4 p x_{1}^{6}+12 p x_{1}^{5} x_{2}-3 p x_{1}^{4} x_{2}^{2}-26 p x_{1}^{3} x_{2}^{3}- \\
&\left.\left.\quad-3 p x_{1}^{2} x_{2}^{4}+12 p x_{1} x_{2}^{5}+4 p x_{2}^{6}\right)\right]
\end{aligned}
$$

Acknowledgements

The research was supported by GACR 201/05/0857 and the project LC06002 of the Ministery of Education.

References

[1] A. V. Turbiner: Modern Phys. Lett. A 13 No 18, (1998), 1473-1483.
[2] F. Calogero, J. Math. Phys. 10, (1969), 2191 and 219 and 12, (1971), 419.
[3] M. A. Olshanetsky, A. M. Perelomov: Phys. Rep. 71, (1981), 314 and 94, (1983), 6.
[4] Č. Burdík, and O. Navrátil, A method for construction of the matrix solvable models, J. Phys. A: Math. Gen. 38 (2005) 1533-1542.
[5] Č. Burdík, O. Navrátil, S. Pošta: Matrix Calogero model of the $B C_{2}$ type with matrix potential, Physics of Atomic Nuclei submited
[6] Č. Burdík, O. Navrátil, S. Pošta: Matrix solvable Calogero models of G_{2} type, Quantum Theory and Symmetries IV, ed. V.K. Dobrev, Heron Press, Sofia, 2006
[7] Č. Burdík, O. Navrátil and S. Pošta, On three particle matrix Calogero models, Phys. Lett. A326, (2006), 326-370

[^0]: ${ }^{1}$ This $\eta^{i k}$ is connected with Laplace operator in three dimension in center of mass coordinates.

