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Abstract

In this paper we employ a “direct method” to construct rank-k solutions, express-
ible in Riemann invariants, to hyperbolic system of first order quasilinear differential
equations in many dimensions. The most important feature of our approach is the
analysis of group invariance properties of these solutions and applying the conditional
symmetry reduction technique to the initial equations. We discuss in detail the neces-
sary and sufficient conditions for existence of these type of solutions. We demonstrate
our approach through several examples of hydrodynamic type systems; new classes of
solutions are obtained in a closed form.

1 Introduction

This work has been motivated by a search for new ways of constructing multiple Rie-
mann waves for nonlinear hyperbolic systems. Riemann waves and their superpositions
were first studied two centuries ago in connection with differential equations describing a
compressible isothermal gas flow, by D. Poisson [19] and later by B. Riemann [20]. Since
then many different approaches to this topic have been developed by various authors
with the purpose of constructing solutions to more general hydrodynamic-type systems
of PDEs. For a classical presentation we refer reader to a treatise by R. Courant and D.
Hilbert [2] and for a modern approach to the subject, see e.g. [12, 17, 21] and references
therein. A review of most recent developments in this area can be found in [3, 5, 13].

The task of constructing multiple Riemann waves has been approached so far mainly
through the method of characteristics. It relies on treating Riemann invariants as new
independent variables (which remain constant along appropriate characteristic curves of
the basic system). This leads to the reduction of the dimensionality of the initial system
which has to be subjected however to the additional differential constraints, limiting the
scope of resulting solutions.
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We propose here a new (though a very natural) way of looking at solutions expressible
in terms of Riemann invariants, namely from the point of view of their group invariance
properties. We show that this approach (initiated in [4, 11]) leads to the larger classes of
solutions, extending beyond Riemann multiple waves.

We are looking for the rank-k solutions of first order quasilinear hyperbolic system of
PDEs in p independent variables xi and q unknown functions uα of the form

∆µi
α(u)uα

i = 0, µ = 1, . . . , l. (1.1)

We denote by U and X the spaces of dependent variables u = (u1, . . . , uq) ∈ Rq and
independent variables x = (x1, . . . , xp) ∈ Rp, respectively. The functions ∆µi

α are assumed
to be real valued functions on U and are components of the tensor products ∆µi

α∂i ⊗ duα

on X × U . Here, we denote the partial derivatives by uα
i = ∂iuα ≡ ∂uα/∂xi and we

adopt the convention that repeated indices are summed unless one of them is in a bracket.
For simplicity we assume that all considered functions and manifolds are at least twice
continuously differentiable in order to justify our manipulations. All our considerations
have a local character. For our purposes it suffices to search for solutions defined on a
neighborhood of the origin x = 0. In order to solve (1.1), we look for a map f : X →
J1(X × U) annihilating the contact 1-forms, i.e.

f∗(duα − uα
i dxi) = 0. (1.2)

The image of f is in a submanifold of the first jet space J1 over X given by (1.1) for which
J1 is equipped with coordinates xi, uα, uα

i .
This paper is organized as follows. Section 2 contains a detailed account of the con-

struction of rank-1 solutions of PDEs (1.1). In section 3 we discuss the construction of
rank-k solutions, using geometric and group invariant properties of the system (1.1). Sec-
tion 4 deals with a number of examples of hydrodynamic type systems which illustrate the
theoretical considerations. Several new classes of solutions in implicit and explicit form
are obtained. Section 5 contains a comparison of our results with the generalized method
of characteristics for multi-dimensional systems of PDEs.

2 The rank-1 solutions

It is well known [2] that any hyperbolic system (1.1) admits rank-1 solutions

u = f(r), r(x, u) = λi(u)xi, (2.1)

where f = (fα) are some functions of r and a wave vector is a nonzero function

λ(u) = (λ1(u), . . . , λp(u)) (2.2)

such that

ker (∆iλi) (= 0. (2.3)

Solution (2.1) is called a Riemann wave and the scalar function r(x) is the Riemann
invariant associated with the wave vector λ.
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The function f is a solution of (1.1) if and only if the condition

(

∆µi
α(f)λi(f)

)

f ′α = 0, f ′α =
dfα

dr
(2.4)

holds, i.e. if and only if f ′ is an element of ker (∆i λi). Note that equation (2.4) is an
underdetermined system of the first order ordinary differential equations (ODEs) for f .
The image of a solution (2.1) is a curve in U space defined by the map f : R → Rq

satisfying the set of ODEs (2.4). The extent to which expresion (2.4) constrains the
function f depends on the dimension of ker (∆iλi). For example, if ∆i λi = 0 then there is
no constraint on the function f at all and no integration is involved. The rank-1 solutions
have the following common properties :
1. The Jacobian matrix is decomposable (in matrix notation)

∂u =

(

1 −
∂f

∂r

∂r

∂u

)

−1 ∂f

∂r
λ, (2.5)

or equivalently

∂u =
∂f

∂r

(

1 −
∂r

∂u

∂f

∂r

)

−1

λ, (2.6)

where we have

∂u = (uα
i ) ∈ R

q×p,
∂f

∂r
=

(

∂fα

∂r

)

∈ R
q,

∂r

∂u
=

(

∂r

∂uα

)

=
∂λi

∂uα
xi ∈ R

q, λ = (λi) ∈ R
p.

(2.7)

This property follows directly from differentiation of (2.1). The inverses
(

1 − ∂f
∂r

∂r
∂u

)

−1

or
(

1 − ∂r
∂u

∂f
∂r

)

−1
are scalar functions and are defined, since ∂r/∂u = 0 at x = 0. From

equations (2.5) or (2.6), it can be noted that u(x) has rank at most equal to 1.
2. The graph of the rank-1 solution Γ = {x, u(x)} is (locally) invariant under the linearly
independent vector fields

Xa = ξi
a(u)∂i, a = 1, . . . , p − 1 (2.8)

acting on X × U space. Here the vectors

ξa(u) =
(

ξ1a(u), . . . , ξpa(u)
)T

(2.9)

satisfy the orthogonality conditions

λi ξ
i
a = 0, a = 1, . . . , p − 1 (2.10)

for a fixed wave vector λ for which (2.3) holds. The vector fields (2.8) span a Lie vector
module g over functions on U which constitutes an infinite-dimensional Abelian Lie al-
gebra. The algebra g uniquely defines a module Λ (over the functions on U) of 1-forms
λi(u) dxi annihilating all elements of g. A basis of Λ is given by

λ = λi(u) dxi, ξi
a λi = 0 (2.11)
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for all indices a = 1, . . . , p − 1. The set {r = λi(u)xi, u1, . . . , uq} is the complete set of
invariants of the vector fields (2.8).
3. It should be noted that rescaling the wave vector λ produces the same solution due to
the homogeneity of the original system (1.1).
4. Due to the orthogonality conditions (2.10), together with property (2.5) or (2.6), any
rank-1 solution is a solution of the overdetermined system of equations composed of system
(1.1) and the differential constraints

ξi
a(u)uα

i = 0, a = 1, . . . , p − 1. (2.12)

The side equations (2.12) mean that the characteristics of the vector fields (2.8) are equal
to zero.
5. One can always find nontrivial solutions of (2.4) if (1.1) is an underdetermined system
(l < q) or if it is properly determined (l = q) and hyperbolic. Here, a weaker assumption
can be imposed on the system (1.1). Namely, it is sufficient to require that eigenvalues of
the matrix (∆iλi) are real functions.

The method of construction of rank-1 solutions to (1.1) can be summarized as follows.
First, we seek a wave vector λ = (λ1, . . . , λp) such that

rank
(

∆µi
αλi

)

< l. (2.13)

For each such choice of λi we look for the solutions γα of the wave relations
(

∆µi
α λi

)

γα = 0, µ = 1, . . . , l. (2.14)

Functions fα(r) are required to satisfy the ODEs

f ′α(r) = γα(f(r)). (2.15)

Alternatively, the system of equations (2.4) is linear in the variables λi. Nonzero solutions
λi exist if and only if

rank
(

∆µi
a (f(r)) f ′α(r)

)

< p. (2.16)

If (2.16) is satisfied for some function f(r) then one can easily find λi(r) satisfying equa-
tions (2.4). Using u = f(r) one can define λi(u) (not uniquely in general). If l < p then
(2.16) is identically satisfied for any function f(r) and this approach does not require any
integration.

3 The rank-k solutions

This section is devoted to the construction of rank-k solutions of a multi-dimensional
system of PDEs (1.1). These solutions may be considered as nonlinear superpositions of
rank-1 solutions.

Suppose that we fix k linearly independent wave vectors λ1, . . . , λk, 1 ≤ k < p with
Riemann invariant functions

rA(x, u) = λA
i (u)xi, A = 1, . . . , k. (3.1)
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The equation

u = f (r(x, u)) , r(x, u) =
(

r1(x, u), . . . , rk(x, u)
)

(3.2)

then defines a unique function u(x) on a neighborhood of x = 0. The Jacobian matrix of
(3.2) is given by

∂u =

(

I −
∂f

∂r

∂r

∂u

)

−1 ∂f

∂r
λ, (3.3)

or equivalently

∂u =
∂f

∂r

(

I −
∂r

∂u

∂f

∂r

)

−1

λ, (3.4)

where f = (fα), fα are arbitrary functions of r = (rA) and

∂u = (uα
i ) ∈ R

q×p,
∂f

∂r
=

(

∂fα

∂rA

)

∈ R
q×k,

λ =
(

λA
i

)

∈ R
k×p,

∂r

∂u
=

(

∂rA

∂uα

)

=
∂λA

i

∂uα
xi ∈ R

k×q.

(3.5)

We assume here that the inverse matrices appearing in expressions (3.3) or (3.4), denoted
by

Φ1 =

(

I −
∂f

∂r

∂r

∂u

)

∈ R
q×q, Φ2 =

(

I −
∂r

∂u

∂f

∂r

)

∈ R
k×k (3.6)

respectively, are invertible in some neighborhood of the origin x = 0. This assumption
excludes the gradient catastrophe phenomenon for the function u.

Note that the rank of the Jacobian matrix (3.3) or (3.4) is at most equal to k. Hence the
image of the rank-k solution is a k-dimensional submanifold S which lies in a submanifold
of J1.

If the set of vectors

ξa(u) =
(

ξ1a(u), . . . , ξpa(u)
)T

, a = 1, . . . , p − k, (3.7)

satisfies the orthogonality conditions

λA
i ξ

i
a = 0 (3.8)

for A = 1, . . . , k, a = 1, . . . , p − k then by virtue of (3.3) or (3.4) we have

Qα
a (x, u(1)) ≡ ξi

a (u)uα
i = 0, a = 1, . . . , p − k, α = 1, . . . , q. (3.9)

Therefore rank-k solutions, given by (3.2), are obtained from the overdetermined system
(1.1) subjected to differential constraints (DCs) (3.9)

∆µi
α(u)uα

i = 0, ξi
a(u)uα

i = 0, a = 1, . . . , p − k. (3.10)
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Note that the conditions (3.9) are more general than the one required for the existence of
Riemann k-wave solutions (see expression (5.1) and discussion in Section 5).

Let us note also that there are different approaches to the overdetermined system (3.10)
employed in different versions of Riemann invariant method for multi-dimensional PDEs.
The essence of our approach lies in treating the problem from the point of view of the
conditional symmetry method (for description see e.g. [15]). Below we proceed with the
adaptation of this method for our purpose.

The graph of the rank-k solution Γ = {x, u(x)} of (3.9) is invariant under the vector
fields

Xa = ξi
a(u)∂i, a = 1, . . . , p − k (3.11)

acting on X × U ⊂ Rp × Rq. The functions {r1, . . . , rk, u1, . . . , uq} constitute a complete
set of invariants of the Abelian Lie algebra A generated by the vector fields (3.11).

In order to solve the overdetermined system (3.10) we subject it to several transforma-
tions, based on the set of invariants of A, which simplify its structure considerably. To
achieve this simplification we choose an appropriate system of coordinates on X×U space
which allows us to rectify the vector fields Xa, given by (3.11). Next, we show how to find
the invariance conditions in this system of coordinates which guarantee the existence of
rank-k solutions in the form (3.2).

Let us assume that the k by k matrix

Π =
(

λA
i

)

, 1 ≤ A, i ≤ k < p (3.12)

built from the components of the wave vectors λA is invertible. Then the linearly inde-
pendent vector fields

Xk+1 = ∂k+1 −
k

∑

A,j=1

(

Π−1
)j

A
λA

k+1∂j ,

...

Xp = ∂p −
k

∑

A,j=1

(

Π−1
)j

A
λA

p ∂j ,

(3.13)

have the required form (3.11) for which the orthogonality conditions (3.8) are satisfied.
The change of independent and dependent variables

x̄1 = r1(x, u), . . . , x̄k = rk(x, u), x̄k+1 = xk+1, . . . , x̄p = xp, ū1, . . . , ūq = uq (3.14)

permits us to rectify the vector fields Xa and get

Xk+1 = ∂x̄k+1 , . . . , Xp = ∂x̄p . (3.15)

Note that a p-dimensional submanifold is transverse to the projection (x, u) → x at
x = 0 if and only if it is transverse to the projection (x̄, ū) → x̄ at x̄ = 0. The trans-
verse p-dimensional submanifolds invariant under Xk+1, . . . , Xp are defined by the implicit
equation of the form

ū = f(x̄1, . . . , x̄k). (3.16)
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Hence, expression (3.16) is the general integral of the invariance conditions

ūx̄k+1 = 0, . . . , ūx̄p = 0. (3.17)

The system (1.1) is subjected to the invariance conditions (3.17) and, when written in
terms of new coordinates (x̄, ū) ∈ X × U , takes the form

∆µ
(

Φ1
)−1 ∂ū

∂x̄
λ = 0, , ūx̄k+1 = 0, . . . , ūx̄p = 0, (3.18)

or

∆µ∂ū

∂x̄

(

Φ2
)−1

λ = 0, , ūx̄k+1 = 0, . . . , ūx̄p = 0, (3.19)

where the matrices Φ1 and Φ2 are given by

(

Φ1
)A

i
= δAi − ūα

i
∂rA

∂ūα
,

(

Φ2
)A

i
= δAi −

∂rA

∂ūα
ūα

i . (3.20)

The above considerations characterize geometrically the solutions of the overdetermined
system (3.10) in the form (3.2). Let us illustrate these considerations with some examples.

Example 1. Let us assume that there exist k independent relations of dependence for
the matrices ∆1, . . . ,∆p such that the conditions

∆µi
αλ

A
i = 0, A = 1, . . . , k (3.21)

hold. Suppose also that the original system (1.1) has the evolutionary form and each of
the q by q matrices A1, . . . , An is scalar, i.e.

∆0 = I, ∆iα
β = ai(u)δαβ , i = 1, . . . , n (3.22)

for some functions a1, . . . , an defined on U , where p = n+1 and for convenience we denote
the independent variables by x = (t = x0, x1, . . . , xn) ∈ X. Then the system (1.1) is
particularly simple and becomes

ut + a1(u)u1 + . . . + an(u)un = 0. (3.23)

The corresponding wave vectors

λ1 = (−a1(u), 1, 0, . . . , 0),

...

λn = (−an(u), 0, . . . , 0, 1)

(3.24)

are linearly independent and satisfy conditions (3.21). A vector function u(x, t) is a solu-
tion of (3.23) if and only if the vector field

X = ∂t + ai(u)∂i

defined on Rn+q+1 is tangent to the (n + 1)-dimensional submanifold S = {u = u(x, t)} ⊂
Rn+q+1. The solution is thus identified with the (n + 1)-dimensional submanifold S ⊂



400 A M Grundland and B Huard

Rn+q+1 which is transverse to Rn+q+1 → Rn+1 : (x, t, u) → (x, t) and is invariant un-
der the vector field X. The functions {r(x, t, u) = (r1 = x1 − a1(u)t, . . . , rn = xn −
an(u)t), u1, . . . , uq} are invariants of X, such that dr1 ∧ . . . ∧ drn ∧ du1 ∧ . . . ∧ duq (= 0. If
we define t̄ = t, ū = u, then (r, t̄, ū) are coordinates on Rn+q+1 and the vector field X can
be rectified

X = ∂t̄.

The general solution is

S = {F (r, ū) = 0}

where F : Rn+q → Rq satisfies the condition

det

(

∂F

∂r

∂r

∂ū
+
∂F

∂ū

)

(= 0

but is otherwise arbitrary. Note that it may be assumed that

∂r

∂u
(x0, t0, u0) = 0,

in which case the transversality condition is

det

(

∂F

∂ū
(x0, t0, u0)

)

(= 0.

Hence the general solution of (3.23) near (x0, t0, u0) is

S = {ū = f(r)},

where f : Rn → Rq is arbitrary. Thus the equation

u = f(x1 − a1(u)t, . . . , xn − an(u)t), (3.25)

defines a unique function u(x, t) on a neighborhood of the point (x0, t0, u0) for any f . Note
that

t = 0, u(x, 0) = f(x1, . . . , xn),

so the function f is simply the Cauchy data on {t = 0}.
Example 2. Another interesting case to consider is when the matrix Φ1 (or Φ2) is a

scalar matrix. Then system (3.18) is equivalent to the quasilinear system in k independent
variables x̄1, . . . , x̄k and q dependent variables ū1, . . . , ūq. So, we have

BA(ū)ūα
A = 0, (3.26)

where

BA = ∆iλA
i . (3.27)
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If k ≥ 2 then Φ1 is a scalar if and only if

∂r1

∂u
= 0, . . . ,

∂rk

∂u
= 0 (3.28)

and consequently, if and only if the vector fields λ1, . . . , λk are constant wave vectors.
Finally, a more general situation occurs when the matrix Φ1 (or Φ2) satisfies the con-

ditions

∂Φ1

∂x̄k+1
= 0, . . . ,

∂Φ1

∂x̄p
= 0. (3.29)

Then the system (3.18) is independent of variables x̄k+1, . . . , x̄p. The conditions (3.29)
hold if and only if

∂2r

∂u∂x̄k+1
= 0, . . . ,

∂2r

∂u∂x̄p
= 0. (3.30)

Using (3.1) and (3.12) we get

∂λA
i

∂u
=

k
∑

l,B=1

∂ΠA
l

∂u

(

Π−1
)l

B
λB

i . (3.31)

Equation (3.31) can be rewritten in the simpler form

∂

∂u

(

k
∑

B=1

(

Π−1
)l

B
λB

i

)

= 0, 1 ≤ l ≤ k < i ≤ p. (3.32)

Thus system (3.18) is independent of variables x̄k+1, . . . , x̄p if the k by p− k matrix
(

λB
i

)

,
1 ≤ B ≤ k < i ≤ p is equal to the matrix ΠC, where C is a constant k by (p − k) ma-
trix. In this case (3.18) is a system not necessarily quasilinear, in k independent variables
x̄1, . . . , x̄k and q dependent variables ū1, . . . , ūq.

Let us now derive the neccesary and sufficient conditions for existence of solutions in
the form (3.2) of the overdetermined system (3.10). Substituting (3.3) or (3.4) into (1.1)
yields

Tr

[

∆µ

(

I −
∂f

∂r

∂r

∂u

)

−1 ∂f

∂r
λ

]

= 0, (3.33)

or equivalently

Tr

[

∆µ∂f

∂r

(

I −
∂r

∂u

∂f

∂r

)

−1

λ

]

= 0, (3.34)

respectively, where

∆µ =
(

∆µi
α

)

∈ R
p×q, µ = 1, . . . , l. (3.35)
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Given the system of PDEs (1.1) (i.e. functions ∆µi
α(u)) it follows that equations (3.33)

(or (3.34)) are conditions on the functions fα(r) and λA
i (u) (or ξi

a(u)). Since ∂r/∂u
depends explicitly on x it may happen that these conditions have only trivial solutions
(i.e. f=const) for some values of k. We discuss a set of conditions following from (3.33)
or (3.34) which allow the system (3.10) to possess the nontrivial rank-k solutions.

Let g be a (p-k)-dimensional Lie vector module over C∞(X × U) with generators Xa

given by (3.11). Let Λ be a k-dimensional module generated by k < p linearly independent
1-forms

λA = λA
i (u)dxi, A = 1, . . . , k

which are annihilated by Xa ∈ g. It is assumed here that the vector fields Xa and λA are
related by the orthogonality conditions (3.8) and form a basis of g and Λ, respectively.
For k > 1, it is always possible to choose a basis λA of the module Λ of the form

λA = dxiA + λA
ia dxia , A = 1, . . . , k (3.36)

where (iA, ia) is a permutation of (1, . . . , p). Here we split the coordinates xi into xiA and
xia . Then from (3.1) we obtain the relation

∂rA

∂uα
=
∂λA

ia

∂uα
xia . (3.37)

Substituting (3.37) into equations (3.33) or (3.34) yields, respectively

Tr

(

∆µ(I − Qax
ia)−1∂f

∂r
λ

)

= 0, (3.38)

or

Tr

(

∆µ∂f

∂r
(I − Kax

ia)−1λ

)

= 0, (3.39)

where we use the following notation

Qa =
∂f

∂r
ηa ∈ R

q×q, Ka = ηa
∂f

∂r
∈ R

k×k, (3.40)

ηa =

(

∂λA
ia

∂uα

)

∈ R
k×q, ia = 1, . . . , p − 1. (3.41)

The functions rA and xia are all independent in the neighborhood of the origin x = 0. The
functions ∆µ, ∂f

∂r , λ, Qa and Ka depend on r only. For these specific functions, equations
(3.38) (or (3.39)) must be satisfied for all values of coordinates xia . In order to find
appropriate conditions for f(r) and λ(u) let us notice that, according to the Cayley-
Hamilton theorem, for any n by n invertible matrice M, (M−1 det M) is a polynomial in
M of order (n − 1). Hence, one can replace equation (3.38) by

Tr

(

∆µ Q
∂f

∂r
λ

)

= 0, (3.42)
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where we introduce the following notation

Q = (I − Qax
ia)−1 det (I − Qax

ia).

Taking equation (3.42) and all its xia derivatives (with r=const) at xia = 0, yields

Tr

(

∆µ∂f

∂r
λ

)

= 0, (3.43)

Tr

(

∆µQ(a1
. . . Qas)

∂f

∂r
λ

)

= 0, (3.44)

where s = 1, . . . , q − 1 and (a1, . . . , as) denotes symmetrization over all indices in the
bracket. A similar procedure for equation (3.39) yields (3.43) and the trace condition

Tr

(

∆µ ∂f

∂r
K(a1

, . . . , Kas)λ

)

= 0, (3.45)

where now s = 1, . . . , k − 1.
Equation (3.43) represents an initial value condition on a surface in X space given by
xia = 0. Equations (3.44) (or (3.45)) correspond to the preservation of (3.43) by flows
represented by the vector fields (3.11). Note that Xa can be put into the form

Xa = ∂ia − λA
ia∂A, ξi

a · λ
A
i = 0, A = 1, . . . , k. (3.46)

By virtue of (3.40), (3.41), equations (3.44) or (3.45) take the unified form

Tr

(

∆µ ∂f

∂r
η(a1

∂f

∂r
. . . ηas)

∂f

∂r
λ

)

= 0, (3.47)

where either max s = q − 1 or max s = k − 1.
The vector fields Xa and the Lie module g spanned by the vector fields X1, . . . , Xp−k

are called the conditional symmetries and the conditional symmetry module of (1.1),
respectively if Xa are Lie point symmetries of the original system (1.1) supplemented by
the DCs (3.9) [15].

Let us now associate the system (1.1) and the conditions (3.9) with the subvarieties of
the solution spaces

B∆ = {(x, u(1)) : ∆µi
α(u)uα

i = 0, µ = 1, . . . , l},

and

BQ = {(x, u(1)) : ξi
a(u)uα

i = 0, a = 1, . . . , p − k, α = 1, . . . , q},

respectively. We have the following.

Proposition 1. A nondegenerate first order hyperbolic system of PDEs (1.1) admits a (p-
k)-dimensional Lie vector module g of conditional symmetries if and only if (p-k) linearly
independent vector fields X1, . . . , Xp−k satisfy the conditions (3.43) and (3.47) on some
neighborhood of (x0, u0) of B = B∆ ∩ BQ.
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Proof. The vector fields Xa constitute the conditional symmetry module g for the system
(1.1) if they are Lie point symmetries of the overdetermined system (3.10). This means
that the first prolongation of Xa has to be tangent to the system (3.10). Hence g is a
conditional symmetry module of (1.1) if and only if the equations

pr(1)Xa(∆
µi
α(u)uα

i ) = 0, pr(1)Xa
(

ξi
b(u)uα

i

)

= 0, a, b = 1, . . . , p − k (3.48)

are satisfied on J1 whenever the equations (3.10) hold. Now we show that if the conditions
(3.43) and (3.47) are satisfied then the symmetry criterion (3.48) is identically equal to
zero.

In fact, applying the first prolongation of the vector fields Xa

pr(1)Xa = Xa + ξi
a,uβuβ

j uα
i
∂

∂uα
j

to the original system (1.1) yields

pr(1)Xa
(

∆µi
αuα

i

)

= ∆µi
αξ

j
a,uβuβ

i uα
j = 0, (3.49)

whenever equations (3.10) hold. On the other hand, carrying out the differentiations of
(3.8) gives

ξj
a,uβλ

B
j = −ξj

aλ
B
j,uβ . (3.50)

Comparing (3.49) and (3.50) leads to

ΩµA
Bξ

j
aZA(λB

j ) = 0, (3.51)

where we introduce the following notation

ΩµA
B = ∆µi

αZα
Bλ

A
i . (3.52)

Here the new vector fields ZB are defined on U

ZA = Zα
A
∂

∂uα
∈ TuU. (3.53)

It is convenient to write equation (3.51) in the equivalent form

Tr(∆µZθaZλ) = 0, µ = 1, . . . , l (3.54)

where the following notation has been used

θa = λA
i,uβξ

i
a. (3.55)

The assumption that system (1.1) is hyperbolic implies that there exist the real-valued
vector fields λA and γA defined on U for which the wave relation

(

∆µ i
αλ

A
i

)

γα
(A) = 0, A = 1, . . . , k (3.56)

is satisfied and that the U space is spanned by the linearly independent vector fields

γA = γα
A ∂uα ∈ TuU. (3.57)
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Hence, one can represent the vector fields ZA through the basis generated by the vector
fields {γ1, . . . , γk}, i.e.

ZA = hB
AγB. (3.58)

Using equations (3.3) and (3.6) we find the coefficients

hB
A = ((Φ1)−1)B

A .

This means that the submanifold S, given by (3.2), can be represented parametrically by

∂fα

∂rA
= hB

Aγ
α
B. (3.59)

On the other hand, comparing (3.3) and (3.58) gives

uα
i = Zα

Aλ
A
i . (3.60)

Applying the invariance criterion (3.48) to the side conditions (3.9) we obtain

pr(1)Xa(Q
α
b ) = ξi

[bξ
j
a],uβuβ

i uα
j . (3.61)

The bracket [a, b] denotes antisymmetrization with respect to the indices a and b. By
virtue of equations (3.50) and (3.60), the right side of (3.61) is identically equal to zero.
Substituting (3.58) into equation (3.54) and taking into account equation (3.36) and (3.59)
we obtain that for any value of x ∈ X the resulting formulae coincide with equations (3.43)
and (3.47). Hence, the infinitesimal symmetry criterion (3.48) for the overdetermined
system (3.10) is identically satisfied whenever conditions (3.43) and (3.47) hold.

The converse also holds. The assumption that the system (1.1) is nondegenerate means

that it is locally solvable and takes a maximal rank at every point (x0, u
(1)
0 ) ∈ B∆. There-

fore [14] the infinitesimal symmetry criterion is a necessary and sufficient condition for
the existence of symmetry group G of the overdetermined system (3.10). Since the vector
fields Xa form an Abelian distribution, it follows that the conditions (3.43) and (3.47)
hold. That ends the proof since the solutions of the original system (1.1) are invariant
under the Lie algebra generated by (p − k) vector fields X1, . . . , Xp−k. !

Note that the set of solutions of the determining equations obtained by applying the
symmetry criterion to the overdetermined system (3.10) is different than the set of solutions
of the determining equations for the initial system (1.1). Thus the system (3.10) admits
other symmetries than the original system (1.1). So, new reductions for the system (1.1)
can be constructed, since each solution of system (3.10) is a solution of system (1.1).

In our approach the construction of solutions of the original system (1.1) requires us to
solve first the system (3.47) for λA

i as functions of uα and then find u = f(r) by solving
(3.43). Note that the functions f∗(λA

i ) are the functions λA
i (f) pulled back to the surface

S. The λA
i (f) then become functions of the parameters r1, . . . , rk on S. For simplicity of

notation we denote f∗(λA
i ) by λA

i (r1, . . . , rk).
The system composed of (3.43) and (3.47) is, in general, nonlinear. So, we cannot

expect to solve it in a closed form, except in some particular cases. But nevertheless, as
we show in section 4, there are physically interesting examples for which solutions of (3.43)
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and (3.47) lead to the new solutions of (1.1) which depend on some arbitrary functions.
These particular solutions of (3.43) and (3.47) are obtained by expanding each function
λA

i into a polynomial in the dependent variables uα and requiring that the coefficients
of the successive powers of uα vanish. We then obtain a system of first order PDEs for
the coefficients of the polynomials. Solving this system allows us to find some particular
classes of solutions of the initial system (1.1) which can be constructed by applying the
symmetry reduction technique.

4 Examples of applications

We start with considering the case of rank-2 solutions of the system (1.1) with two
dependent variables (q = 2). Then (3.47) adopts the simplified form.

Tr

(

∆µ∂f

∂r
ηa
∂f

∂r
λ

)

= 0. (4.1)

By virtue of (3.43), equation (4.1) can be transformed to

Tr

[

∆µ∂f

∂r

(

ηa
∂f

∂r
− ITr

(

ηa
∂f

∂r

))

λ

]

= 0. (4.2)

Using the Cayley Hamilton identity, we get the relation

AB − I TrAB = (B − I TrB)(A − I TrA) (4.3)

for any 2 by 2 matrices A, B ∈ R2×2. Now we can rewrite (4.2) in the equivalent form

−Tr

[

∆µ∂f

∂r

(

∂f

∂r
− ITr

∂f

∂r

)

(ηa − ITrηa)λ

]

= 0. (4.4)

So we have

det

(

∂f

∂r

)

Tr[∆µ(ηa − ITrηa)λ] = 0. (4.5)

The rank-2 solutions require that the condition det ∂f/∂r (= 0 be satisfied (otherwise q = 2
can be reduced to q = 1). As a consequence of this, we obtain the following condition

Tr[∆µ(ηa − ITrηa)λ] = 0, µ = 1, . . . , l, (4.6)

which coincides with the result obtained earlier for this specific case [11]. One can look
first for solutions λ(u) of (4.6) and then find f(r) by solving (3.43). Note that equations
(4.6) form a system of l(p− 2) equations for 2(p− 2) functions λA

ia(u). This indicates that
they should have solutions (say, for generic systems) if (1.1) is not overdetermined.

Example 3. We are looking for rank-2 solutions of the (2+1) hydrodynamic type
equations

ui
t + ujui

j + Aij
kuk

j = 0, i, j, k = 1, 2 (4.7)
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where Ai are some matrix functions of u1 and u2. Using the condition representing the
tracelessness of the matrices ∆1i

αuα
i and ∆2i

αuα
i , it is convenient to rewrite the system (4.7)

in the following form

Tr





(

1 u1 + A11
1 u2 + A12

1

0 A11
2 A12

2

)





u1
t u2

t

u1
x u2

x

u1
y u2

y







 = 0,

Tr





(

0 u1 u2

1 u1 + A21
2 u2 + A22

2

)





u1
t u2

t

u1
x u2

x

u1
y u2

y







 = 0.

(4.8)

Let F be a smooth orientable surface immersed in 3-dimensional Euclidean (x, y, t) ∈ X
space. Suppose that F can be written in the following parametric form

u = f(r1, r2) = (u1(r1, r2), u2(r1, r2)), (4.9)

such that the Jacobian matrix is different from zero

J = det

(

∂fα

∂rA

)

= det

(

∂u1/∂r1 ∂u1/∂r2

∂u2/∂r1 ∂u2/∂r2

)

(= 0. (4.10)

Without loss of generality, it is possible to choose a basis λA of module Λ of the form

λA
i =

(

λ1
1 λ1

2 λ1
3

λ2
1 λ2

2 λ2
3

)T

=

(

ε a1 b1

ε a2 b2

)T

, ε = ±1, (4.11)

where aA and bA are functions of u1 and u2 to be determined.
The rank-2 solution can be constructed from the most general solution of equations

(4.6) for λA = (−1, aA, bA), A = 1, 2. These equations lead to a system of four PDEs with
four dependent variables aA, bA, A = 1, 2 and two independent variables u1 and u2,

− (A11
2 a2 + A12

2 b2)
∂a1

∂u1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂a1

∂u2

+ (A11
2 a1 + A12

2 b1)
∂a2

∂u1
− ((u1 + A11

1 )a1 + (u2 + A12
1 )b1 − 1)

∂a2

∂u2
= 0,

(4.12)

− (A11
2 a2 + A12

2 b2)
∂b1

∂u1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂b1

∂u2

+ (A11
2 a1 + A12

2 b1)
∂b2

∂u1
− ((u1 + A11

1 )a1 + (u2 + A12
1 )b1 − 1)

∂b2

∂u2
= 0,

(1 − (u1 + A21
2 )a2 − (u2 + A22

2 )b2)
∂a1

∂u1
+ (A211a2 + A22

1 b2)
∂a1

∂u2

− (1 − (u1 + A21
2 )a1 − (u2 + A22

2 )b1)
∂a2

∂u1
− (A21

1 a1 + A22
1 b1)

∂a2

∂u2
= 0,

(1 − (u1 + A21
2 )a2 − (u2 + A22

2 )b2)
∂b1

∂u1
+ (A211a2 + A22

1 b2)
∂b1

∂u2

− (1 − (u1 + A21
2 )a1 − (u2 + A22

2 )b1)
∂b2

∂u1
− (A21

1 a1 + A22
1 b1)

∂b2

∂u2
= 0.
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Finally, a rank-2 solution of (4.8) is obtained from the explicit parametrization of the
surface F in terms of the parameters r1 and r2, by solving equations (3.43) in which λA

adopt the form (4.11)

((u1 + A11
1 )a1 + (u2 + A12

1 )b1 − 1)
∂u1

∂r1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂u1

∂r2

+(A11
2 a1 + A12

2 b1)
∂u2

∂r1
+ (A11

2 a2 + A12
2 b2)

∂u2

∂r2
= 0, (4.13)

(A21
1 a1 + A22

1 b1)
∂u1

∂r1
+ (A21

1 a2 + A22
1 b2)

∂u1

∂r2
+ ((u1 + A21

2 )a1 + (u2 + A22
2 )b1 − 1)

∂u2

∂r1

+((u1 + A21
2 )a2 + (u2 + A22

2 )b2 − 1)
∂u2

∂r2
= 0,

while the quantities r1 and r2 are implicitly defined as functions of y, x, t by equation (3.1)
with λA given by (4.11).

In the case when equation (4.8) does admit two linearly independent vector fields λA

with ε = −1, there exists a class of rank-2 solutions of equations (4.12) and (4.13) invariant
under the vector fields

X1 = ∂t + u1∂x, X2 = ∂t + u2∂y. (4.14)

Following the procedure outlined in Section 3 we assume that the functions f1 and f2

appearing in equation (3.2) are linear in u2. Then the invariance conditions take the form

x − u1t = g(u1) + u2h(u1), y − u2t = a(u1) + u2b(u1), (4.15)

where a, b, g and h are some functions of u1.
One can show that if h = 0, then the solution of the system (4.12), (4.13) is defined

implicitly by the relations

x − u1t = g(u1), y − u2t = a(u1) + u2g,u1 , (4.16)

where a and g are arbitrary functions of u1. Note that in this case the functions u1 and
u2 satisfy the following system of equations

u1
t + u1u1

x + u2u1
y + A11

1 (u1
x − u2

y) + A12
1 u1

y = 0,

u2
t + u1u2

x + u2u2
y + A21

1 (u1
x − u2

y) + A22
1 u1

y = 0,
(4.17)

for any functions Aij
k of two variables u1 and u2.

If the function h of u1 does not vanish anywhere (h (= 0) then the rank-2 solution is defined
implicitly by equations (4.15) and satisfies the following system of PDEs

u1
t + u1u1

x + u2u1
y + A12

2 [u2
y − u1

x + l(u1)u2
x + m(u1)u1

y] = 0,

u2
t + u1u2

x + u2u2
y + A22

2 [u2
y − u1

x + l(u1)u2
x + m(u1)u1

y] = 0,
(4.18)

where A12
2 and A22

2 are any functions of two variables u1 and u2. Given the functions l
and m of u1, we can prescribe the functions a and b in expression (4.15) to find

h =

∫

l b,u1du1, g =

∫

[b − hm − a,u1 ]du1. (4.19)
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For instance, consider a rank-2 solution of equations (4.12) and (4.13) invariant under
the vector fields

X1 = ∂t + u1∂x, X2 = ∂t − u2∂y (4.20)

with the wave vectors λA which are the nonzero multiples of λ1 = (u1,−1, 0) and λ2 =
(u2, 0,−1). Then the solution is defined by the implicit relations

x − u1t = g(u1),

y + u2t = h(u1) + u2g,u1 .
(4.21)

and satisfies the following system of equations

u1
t + u1u1

x + u2u1
y + b(u1, u2)u1

y = 0,

u2
t + u1u2

x + u2u2
y + c(u1, u2)u1

y = 0,
(4.22)

where b and c are arbitrary functions of u1 and u2.
Thus, putting it all together, we see that the constructed solutions correspond to su-

perpositions of two rank-1 solutions (i.e. simple waves) with local velocities u1 and u2,
respectively. According to [10], if we choose the initial data (t = 0) for the functions
u1 and u2 sufficiently small and such that their first derivatives with respect to x and
y will have compact and disjoint supports, then asymptotically there exists a finite time
t = T > 0 for which rank-2 solution decays in the exact way in two rank-1 solutions, being
of the same type as in the initial moment.

Example 4. Consider the overdetermined hyperbolic system in (2 + 1) dimensions
(p = 3)

∂*u

∂t
+ (*u · ∇)*u + ka grad a = 0

∂a

∂t
+ (*u · ∇)a + k−1adiv *u = 0,

∂a

∂x
= 0,

∂a

∂y
= 0,

(4.23)

describing the nonstationary isentropic flow of a compressible ideal fluid. Here we use the

following notations : *u = (u1, u2) is the flow velocity, a(t) =
(

γp
ρ

)1/2
(= 0 is the sound

velocity which depends on t only, k = 2(γ − 1)−1 and γ is the polytropic exponent.
The system (4.23) can be written in an equivalent form as

Tr









1 u1 u2

0 0 0
0 ka 0









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0,

Tr









0 0 0
1 u1 u2

0 0 ka









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0,

Tr









0 k−1a 0
0 0 k−1a
1 u1 u2









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0.

(4.24)
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We are interested here in the rank-2 solutions of (4.24). So, we require that conditions
(3.43) and (3.47) be satisfied. This demand constitutes the necessary and sufficient condi-
tion for the existence of a surface F written in a parametric form (4.9) for which equation
(4.10) holds. In our case, p = q = 3 and k = 2, conditions (3.43) and (3.47) become

Tr

(

∆µ∂f

∂r
λ

)

= 0, µ = 1, 2, 3, (4.25)

and

Tr

(

∆µ∂f

∂r

(

η1
∂f

∂r
η2 + η2

∂f

∂r
η1

)

∂f

∂r
λ

)

= 0, (4.26)

respectively. Here, we assume the following basis for the wave vectors

λA
i =

(

λ1
0 λ1

1 λ1
2

λ2
0 λ2

1 λ2
2

)T

=

(

−1 v1 w1

−1 v2 w2

)T

, (4.27)

where vA and wA are some functions of u1 and u2 to be determined. The 2 by 3 matrices
ηa and the 3 by 2 matrix ∂f/∂r take the form

ηa =
∂λA

ia

∂uα
=

(

∂λ1
ia/∂u

1 ∂λ1
ia/∂u

2 ∂λ1
ia/∂a

∂λ2
ia/∂u

1 ∂λ2
ia/∂u

2 ∂λ2
ia/∂a

)

, a = 1, 2

∂f

∂r
=





∂u1/∂r1 ∂u1/∂r2

∂u2/∂r1 ∂u2/∂r2

∂a/∂r1 ∂a/∂r2



 .

(4.28)

Equations (4.25) lead to the following differential conditions

∂u1

∂r1
+
∂u1

∂r2
+ (u1 − kav2)

∂u2

∂r1
+ (u1 − kaw2)

∂u2

∂r2
+ u2(

∂a

∂r1
+
∂a

∂r2
) = 0,

v1∂u
1

∂r1
+ w1∂u

1

∂r2
+ u1(v1∂u

2

∂r1
+ w1∂u

2

∂r2
) + (u2v1 + kav2)

∂a

∂r1

+ (u2w1 + kaw2)
∂a

∂r2
= 0,

k(v2∂u
1

∂r1
+ w2∂u

1

∂r2
) − (a − kv2u1)

∂u2

∂r1

− (a − w2ku1)
∂u2

∂r2
+ (av1 + kv2u2)

∂a

∂r1
+ (aw1 + kw2u2)

∂a

∂r2
= 0.

(4.29)

Assuming that we have found vA and wA as functions of u1 and u2, we have to solve (4.26)
for the unknown functions u1 and u2 in terms of r1 and r2. The resulting expressions in
the equations (4.26) are rather complicated, hence we omit them here. Various rank-2
solutions are determined by a specification of functions vA and wA in terms of u1 and u2.
By way of illustration we show how to obtain a solution which depends on one arbitrary
function of two variables.

Let us suppose that we are interested in the rank-2 solutions invariant under the vector
fields

X1 = ∂t + u1∂x, X2 = ∂t + u2∂y. (4.30)
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So, the functions r1 = x−u1t and r2 = y−u2t are the Riemann invariants of these vector
fields. Under this assumption, equations (4.25) and (4.26) can be easily solved to obtain
the Jacobian matrix

J =
∂(u1, u2)

∂(r1, r2)
(= 0 (4.31)

which has the characteristic polynomial with constant coefficients. This means that the
trace and determinant of J are constant,

(i) u1
r1 + u2

r2 = 2C1,

(ii) u1
r1u2

r2 − u1
r2u2

r1 = C2.
C1, C2 ∈ R (4.32)

The trace condition (4.32(i)) implies that there exists a function h of r1 and r2 such that
the conditions

u1 = C1r
1 + hr2 , u2 = C1r

2 − hr1 , (4.33)

hold. The determinant condition (4.32(ii)) requires that the function h(r1, r2) satisfies the
Monge-Ampère equation

hr1r1hr2r2 − h2
r1r2 = C, C ∈ R. (4.34)

Hence, the general integral of the system (4.23) has the implicit form defined by the
relations between the variables t, x, y, u1 and u2

u1 = C1(x − u1t) +
∂h

∂r2
(x − u1t, y − u2t),

u2 = C1(y − u2t) +
∂h

∂r1
(x − u1t, y − u2t),

a = a0
(

(1 + C1t)
2 + Ct2

)−1/k
, a0 ∈ R

(4.35)

where the function h obeys (4.34).
Note that the Gaussian curvature K expressed in curvilinear coordinates (t, r1, r2) ∈ R3

of the surface S = {t = h(r1, r2)} is not constant and is given by

K(r1, r2) =
C

1 + h2
r1 + h2

r2

. (4.36)

For example, a particular nontrivial class of solution of (4.23) can be obtained if we assume
that C = 0. In this case the general solution of (4.23) depends on three parameters,
a0, C1, m ∈ R and takes the form

u1 = C1(x − u1t) + (1 − m)

(

x − u1t

y − u2t

)m

,

u2 = C1(y − u2t) − m

(

y − u2t

x − u1t

)1−m

,

a(t) =
a0

(1 + C1t)2/k
.

(4.37)
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Note that if C = 0 and C1 = 0 then the Jacobian matrix J is nilpotent and the divergence
of the vector *u is equal to zero. Then the expression

u1 = (1 − m)

(

x − u1t

y − u2t

)m

, a = a0,

u2 = −m

(

y − u2t

x − u1t

)1−m

,

(4.38)

defines a solution *u = (u1, u2) to incompressible Euler equations

*ut + (*u · ∇)*u = 0, div *u = 0, a = a0. (4.39)

Example 5. Now let us consider a more general case of to the autonomous system
(4.23) in p = n+1 independent (t, xi) ∈ X and q = n+1 dependent (a, ui) ∈ U variables.
We look for the rank-k solutions, when k = n. The change of variables in the system
(4.23) under the point transformation

t̄ = t, x̄1 = x1 − u1t, . . . , x̄n = xn − unt, ā = a, ū = u (4.40)

leads to the following system

Dū

Dt̄
= 0,

Dā

Dx̄
= 0,

Dā

Dt̄
+ k−1āTr

(

B−1 Dū

Dx̄

)

= 0, ā (= 0
(4.41)

where the total derivatives are denoted by

D

Dt̄
=
∂

∂t
+ ūi

t̄

∂

∂ūi
,

D

Dx̄j
=

∂

∂x̄j
+ ūi

x̄j

∂

∂ūi
, j = 1, . . . , n (4.42)

and the n by n nonsigular matrix B has the form

B = I + t
∂ū

∂x̄
. (4.43)

The general solution of the first equation in (4.41) is

ū = f(x̄), x̄ = (x̄1, . . . , x̄n) (4.44)

for some function f : Rn → Rn. The second equation in (4.41) can be written in an
equivalent form

∂

∂t̄

(

ln |ā(t)|k
)

+ Tr
[

(I + t̄Df(x̄))−1Df(x̄)
]

= 0, (4.45)

where the Jacobian matrix is denoted by

Df(x̄) =
∂f

∂x̄
(x̄). (4.46)
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Differentiation of equation (4.45) with respect to x̄ yields

∂2

∂x̄∂t̄
(ln det (I + t̄Df(x̄))) = 0 (4.47)

with general solution

det (I + t̄Df(x̄)) = α(x̄)β(t̄) (4.48)

for some functions α : Rn → R and β : R → R. Evaluating (4.48) at the initial data t = 0
implies α(x̄) = β(0)−1. Therefore

det (I + t̄Df(x̄)) =
β(t̄)

β(0)
. (4.49)

So, we have

∂

∂x
det (I + t̄Df(x̄)) = 0. (4.50)

Now, let us write the determinant in the form of the characteristic polynomial

det (I + t̄Df(x̄)) = t̄nPn(ε, x̄), ε =
1

t̄
(4.51)

where

det (εI + Df(x̄)) = εn + pn−1(x̄)εn−1 + . . . + p1(x̄)ε+ p0(x̄). (4.52)

Equation (4.50) holds if and only if the coefficients of the characteristic polynomial p0, . . . , pn−1

are constants. So, equation (4.45) implies that

∂

∂t̄
ln |ā(t̄)|k +

∂

∂t̄
ln |det (I + t̄Df(x̄))| = 0.

Then we have,

∂

∂t̄

(

|ā(t̄)|k det (I + t̄Df(x̄))
)

= 0. (4.53)

Solving equation (4.53) we obtain

ā(t̄) = γ (det (I + t̄Df(x̄)))−1/k , 0 (= γ ∈ R. (4.54)

Thus, the general solution of system (4.23) is

u = f(x̄), a(t̄) = γ [1 + pn−1t̄ + . . . + p0t̄
n]−1/k , (4.55)

for any differentiable function f : Rn → Rn and takes the form of a constant characteristic
polynomial on the Cauchy data t = 0

Pn(ε) = εn + pn−1ε
n−1 + . . . + p1ε+ p0. (4.56)
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Note that the function a is constant if and only if Pn(ε) = εn. This fact holds if and only
if the Jacobian matrix Df(x̄) is nilpotent.

Note that in the particular case when p = 2, the general explicit solution of (4.23) is
given by

u(x, t) = (β + αx)(1 + αt)−1, a(t) = γ(1 + αt)−1/k, α, β, γ ∈ R. (4.57)

An extension of this solution to the (n+1)-dimensional space X is as follows

u(x, t) = (I + tα)−1(β + αx), a(t) = γ(det (I + αt))−1/k, (4.58)

where β is any constant n-component vector and α is any n by n constant matrix. In this
case the Jacobian matrix is constant

Df(x̄) = α (4.59)

for any x̄ ∈ Rn.
Finally, a similar computation can be performed for the case in which the vector func-

tion *u = (u1, u2, u3) satisfies the overdetermined system (4.39). In the above notation, an
invariant solution under the vector fields

Xa = ∂t + ua∂(a), a = 1, 2, 3 (4.60)

is given by ū = f(x̄) and is a divergence free solution

div *u = 0 (4.61)

if and only if the trace condition

Tr

(

B−1∂ū

∂x̄

)

= 0, B = I + t
Dū

Dx̄
(x̄) (4.62)

holds. But

D*u

Dx̄
=
∂B

∂t
. (4.63)

Therefore div *u = 0 if and only if

Tr

(

B−1∂B

∂t

)

= 0, (4.64)

or equivalently, if and only if

∂

∂t
(detB) = 0. (4.65)

This means that the Jacobian matrix Df(x̄) has to be a nilpotent one and takes the form

Df(x̄) =





0 f1
x̄2 f1

x̄3

0 f2
s −f2

s

0 f2
s −f2

s



 , (4.66)
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where f1 is an arbitrary function of two variables x̄2 and x̄3 and f2 is an arbitrary function
of one variable s = x̄2 − x̄3. Note that if f1

x̄2 (= f1
x̄3 then the Jacobian matrix Df(x̄) has

rank 2 (otherwise f1 is any function of s and Df(x̄) has rank 1). As a consequence, the
matrix B has the form

B =





1 tf1
x̄2 tf1

x̄3

0 1 + tf2
s −tf2

s

0 tf2
s 1 − tf2

s



 , detB = 1. (4.67)

So, the condition (4.65) is identically satisfied. Thus, the general solution of system (4.39)
is implicitly defined by the equations

u1 = f1
(

x2− tf2(x2−x3), x3− tf2(x2−x3)
)

, u2 = u3 = f2(x2−x3), a = a0, (4.68)

where the functions f1 and f2 are arbitrary functions of their arguments. Equations (4.68)
define a rank-2 solution but, according to the formula for the corresponding principle [10],
it is not a double Riemann wave.

Obviously, other choices of the wave vectors λA (and the related vector fields Xa) lead to
different classes of solutions. The problem of the classification of these solutions remains
still open but some results are known (see e.g. the functorial properties of systems of
equations determining Riemann invariants [9]).

5 Conclusions

In this paper we have developed a new method which serves as a tool for constructing rank-
k solutions of multi-dimensional hyperbolic systems including Riemann waves and their
superpositions. The most significant characteristic of this approach is that it allows us to
construct regular algorithms for finding solutions written in terms of Riemann invariants.
Moreover, this approach does not refer to any additional considerations, but proceeds
directly from the given system of PDEs.

Riemann waves and their superpositions described by multi-dimensional hyperbolic
systems have been studied so far only in the context of the generalized method of charac-
teristics (GMC) [1, 10, 18]. The essence of this method can be summarized as follows. It
requires the supplementation of the original system of PDEs (1.1) with additional differ-
ential constraints for which all first derivatives are decomposable in the following form

∂uα

∂xi
(x) =

k
∑

A=1

ξA(x)γα
A(u)λA

i (u), (5.1)

where
(

∆µi
α(u)λA

i

)

γα
(A) = 0, A = 1, . . . , k

rank
(

∆µi
α(u)λA

i

)

< l.
(5.2)

Here, ξA (= 0 are treated as arbitrary scalar functions of x and we assume that the vector
fields {γ1, . . . , γk} are locally linearly independent. The necessary and sufficient conditions
for the existence of k-wave solutoins (when k > 1) of the system (5.1) in terms of Riemann
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invariants impose some additional differential conditions on the wave vectors λA and the
corresponding vector fields γA, namely [18]

[γA, γB] ∈ span{γA, γB},

Lγβ
λA ∈ span{λA, λB}, ∀A (= B = 1, . . . , k,

(5.3)

where [γA, γB] denotes the commutator of the vector fields γA and γB, LγB
denotes the

Lie derivatives along the vector fields γB.
Due to the homogeneity of the wave relation (5.2) we can choose, without loss of

generality, a holonomic system for the fields {γ1, . . . , γk} by requiring a proper length for
each vector γA such that

[γA, γB] = 0, ∀A (= B = 1, . . . , k. (5.4)

It determines a k-dimensional submanifold S ⊂ U obtained by solving the system of PDEs

∂fα

∂rA
= γα

A(f1, . . . , fk) (5.5)

with solution π : F → U defined by

π : (r1, . . . , rk) →
(

f1(r1, . . . , rk), . . . , f q(r1, . . . , rk)
)

. (5.6)

The wave vectors λA are pulled back to the submanifold S and then λA become functions
of the parameters r1, . . . , rk. Consequently, the requirements (5.1) and (5.3) take the form

∂rA

∂xi
(x) = ξA(x)λA

i (r1, . . . , rk), (5.7)

∂λA

∂rB
∈ span{λA, λB}, ∀A (= B = 1, . . . , k (5.8)

respectively. It has been shown [18] that the conditions (5.5) and (5.8) ensure that the
set of solutions of system (1.1) subjected to (5.1), depends on k arbitrary functions of
one variable. It has also been proved [17] that all solutions, i.e. the general integral of
the system (5.7) under conditions (5.8) can be obtained by solving, with respect to the
variables r1, . . . , rk, the system in implicit form

λA
i (r1, . . . , rk)xi = ψA(r1, . . . , rk), (5.9)

where ψA are arbitrary functionnally independent differentiable functions of k variables
r1, . . . , rk. Note that solutions of (5.7) are constant on (p − k)-dimensional hyperplanes
perpendicular to wave vectors λA satisfying conditions (5.8).

As one can observe, both methods discussed here exploit the invariance properties of the
initial system of equations (1.1). In the GMC, they have the purely geometric character
for which a form of solution is postulated by subjecting the original system (1.1) to the
side conditions (5.1). In contrast, in the case of the approach proposed here we augment
the system (1.1) by differential constraints (3.9).

There are, however, at least two basic differences between the GMC and our proposed
approach. Riemann multiple waves defined from (5.1), (5.5) and (5.8) constitute a more
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limited class of solutions than the rank-k solutions postulated by our approach. This
difference results from the fact that the scalar functions ξA appearing in expression (5.1)
(which describe the profile of simple waves entering into a superposition) are substituted
in our case (see expressions (3.3) or (3.4)) with a q by q or k by k matrix Φ1 or Φ2,
respectively. This situation consequently allows for a much broader range of initial data.
The second difference consists in fact that the restrictions (5.5) and (5.8) on the vector
fields γA and λA, ensuring the solvability of the problem by GMC, are not necessary in
our approach. This makes it possible for us to consider more general configurations of
Riemann waves entering into an interaction.

A number of different attempts to generalize the Riemann invariants method and its
various applications can be found in the recent literature on the subject (see e.g. [4, 6, 7,
8, 22]). For instance, the nonlinear k-waves superposition u = f(r1, . . . , rk) described in
[16] can be regarded as dispersionless analogues to “n-gap solution” of (1.1) which require
the resolution of a set of commuting diagonal systems for the Riemann invariants rA, i.e.

rA
xi = µA

i(j)(r)r
A
xj , A = 1, . . . , k, i (= j = 1, . . . , p. (5.10)

That specific technique involves differential constraints on the functions µA
ij of the form

[22]

∂jµA
i(j)

µA
i(j) − µA

j(i)

=
∂juB

i(j)

µB
i(j) − µB

j(i)

, i (= j, A (= B = 1, . . . , k, (5.11)

no summation. As in the case of Riemann k-waves if the system (5.11) is satisfied for the
functions µA

ij then the general integral of the system (5.10) can be obtained by solving

system (5.9) with respect to the variables r1, . . . , rk.
In contrast, our proposed approach does not require the use of differential equations

(5.10) and therefore does not impose constraints on the functions µA
ij when the 1-forms

λA are linearly independent and k < p.
However, if one removes these assumptions and λA can be linearly dependent and

k ≥ p then the approach presented in [7] is a valuable one and provides an effective tool
for classification criterion of integrable systems.

In order to verify the efficiency of our approach we have used it for constructing rank-
2 solutions of several examples of hydrodynamic type systems. The proposed approach
proved to be a useful tool in the case of multi-dimensional hydrodynamic type systems
(1.1), since it leads to new interesting solutions.

The examples illustrating our method clearly demonstrate its usefulness as it has pro-
duced several new and interesting results. Let us note that the outlined approach to rank-k
solutions lends itself to numerous potential applications which arise in physics, chemistry
and biology. It has to be stressed that for many physical systems, (e.g. nonlinear field
equations, Einstein’s equations of general relativity and the equations of continuous me-
dia, etc) there have been very few known examples of rank-k solutions. The approach
proposed here offers a new and promising way to investigate and construct such type of
solutions.
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