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Abstract

The complete symmetry group of a 1 + 1 linear evolution equation has been demon-
strated to be represented by the six-dimensional Lie algebra of point symmetries
sl(2, R)⊕sW , where W is the three-dimensional Heisenberg-Weyl algebra. The infinite
number of solution symmetries does not play a role in the complete specification of
the equation. In the absence of a sufficient number of point symmetries which are not
solution symmetries one must look to generalized or nonlocal symmetries to remove
the deficit. This is true whether the evolution equation be linear or not. We report
two Ansätze which provide a route to the determination of the required nonlocal sym-
metry necessary to supplement the point symmetries for the complete specification of
two nonlinear 1+1 evolution equations which arise in the area of Financial Mathemat-
ics. The first of these, when reduced to its essential form, is the well-known Burgers’
equation.

1 Introduction

The concept of a complete symmetry group as the group of the Lie symmetries required
to specify completely a differential equation (equally a system of differential equations)
was introduced some ten years ago by Krause [7, 8] in a study of the classical Kepler
Problem. In general [2] a system of n second-order ordinary differential equations requires
2n + 1 symmetries to specify it completely. The Newtonian equations for the Kepler
Problem (section 3.4) possess just the five Lie point symmetries of the algebra A2 ⊕ A3,9

representing invariance under time translation and rescaling on the one hand and the
rotational invariance of SO(3) on the other1. Krause had resort to the use of nonlocal
symmetries to remedy the deficit2 and devised an ingenious scheme for their determination.

Copyright c© 2006 by S M Myeni and P G L Leach

1We use the classification scheme of Mubarakzyanov [16, 17, 18, 19].
2We must note that the use of nonlocal symmetries in the first application of this concept of a complete

symmetry group should not be taken to imply that nonlocal symmetries are a necessary concommitant.
That nonlocal symmetries have played an important role in the determination of the complete symmetry
group in a number of instances [9, 21, 10, 11] should not obscure the reality that point symmetries have
played an important role in the theoretical development as well as certain applications [1, 2, 3] of complete
symmetry groups.
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Unfortunately nonlocal symmetries of differential equations in general have a property in
common with symmetries of first-order differential equations. Although they are more
numerous than the grains of sand by the sea, there is no finite algorithm for their general
determination3.

Until recently the determination of complete symmetry groups has been confined to
systems of ordinary differential equations. In a study of the complete symmetry group of
the 1 + 1 heat equation and some related equations which arise in Financial Mathematics
we [20] showed that the number of Lie point symmetries required to specify the 1+1 heat
equation is six. The classical heat equation, as a linear partial differential equation, pos-
sesses an infinite number of Lie point symmetries. Specifically we write them as 5+1+∞
symmetries to indicate that there are three classes of symmetry in terms of provenance.
The class containing the infinite number of Lie point symmetries comprises solutions of the
equation. This is a feature of linear equations, be they ordinary or partial. Given that the
order of an ordinary differential equation is usually not high this feature is perhaps of no
great interest for them. However, in the case of partial differential equations the existence
of an infinite number of solution symmetries is important, particularly if the partial differ-
ential equation under study happens to be nonlinear. The possession implies that there is
a route to linearisation. The one-dimensional abelian subalgebra is a consequence of the
homogeneity of the equation. The five remaining symmetries are critical for the successful
group theoretical analysis of the equation. These nongeneric symmetries are determined
by the particular structure of the equation and are the maximal number which this heat
equation can possess. In the case of the heat equation in its standard form, videlicet

ut = uxx (1.1)

in a usual notation, the nongeneric Lie point symmetries are

Γ1 = ∂x

Γ2 = t∂x − 1
2xu ∂u

Γ3 = ∂t (1.2)

Γ4 = t∂t + 1
2x ∂x − 1

4u ∂u

Γ5 = t2∂t + tx ∂x − 1
4(x2 + 2t)u ∂u

and comprise two groups. The symmetries, Γ3, Γ4 and Γ5, constitute the Lie algebra
sl(2, R) which is characteristic of ordinary differential equations of maximal symmetry
and of Ermakov-Pinney systems. The two remaining symmetries, Γ1 and Γ2, correspond
to the solution symmetries of the one-dimensional free particle. In general a scalar second-
order ordinary differential equation derivable from a variational principle possesses at most
five Noether point symmetries [15]. They are the counterparts of the five nongeneric Lie
point symmetries of the heat equation. The connection is more easily seen through the
corresponding Schrödinger equation [13] to which the heat equation is related by a simple
point transformation.

The Lie algebra which characterises (1.1) comprises the five symmetries listed in (1.2)
plus the homogeneity symmetry, Γ6 = u∂u. The six Lie point symmetries split into two

3See also Sjoberg and Mahomed and the references cited therein [23] for a discussion of the theory and
application of nonlocal symmetries.
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three-dimensional subalgebras. One is the algebra sl(2, R) mentioned above. The other is
the three-dimensional Heisenberg-Weyl algebra of the three symmetries Γ1, Γ2 and Γ6. The
six-dimensional algebra has the structure sl(2, R)⊕s W . In the more systematic notation
of the Mubarakzyanov classification scheme this is written as A3,8 ⊕s A3,3. It so happens
that these six symmetries are also a representation of the complete symmetry group of
(1.1). We should emphasize that the number of Lie point symmetries of a given differential
equation and the number of symmetries required to specify it completely have no particular
relation. In the case of the Kepler Problem not only is the number of Lie point symmetries
insufficient to specify the system completely but certain of the point symmetries, those of
the representation of the rotation group, play no role in the specification of the system.
By way of contrast a scalar linear second-order ordinary differential equation has the eight
Lie point symmetries of the algebra sl(3, R), but requires only three symmetries to specify
it completely. There are at least four combinations of the eight symmetries which perform
the purpose [2].

In this paper we address the problem of identifying the symmetries which completely
specify a given 1 + 1 evolution equation when the number of Lie point symmetries is
insufficient to the purpose. In particular we consider two nonlinear 1+1 evolution equations
which arise in the Mathematics of Finance. The first of these equations possesses only three
Lie point symmetries and is evidently not linearizable by means of a point transformation.
For a specific relationship between the parameters in the equation the number of Lie
point symmetries increases to five. In this case the equation, which then becomes the
well-known Burgers’ equation, can be converted by means of the equally well-known Cole-
Hopf transformation w = 2Wx/W to the standard heat equation and consequently solved
[12]. The increase in the number of symmetries and the convertibility to the linear heat
equation are still insufficient to specify the equation completely [20]. Here we consider
the complete specification of the equation when there are five Lie point symmetries. The
second equation possesses just four Lie point symmetries and no amount of playing with
special values of the parameters increases that number. For both equations it is necessary
to find additional symmetry to complete the specification and the additional symmetry
must necessarily be nonlocal. The problem is the determination of the nonlocal symmetry.
This is a nontrivial task for any equation, be it ordinary or partial, with even a modest
pretence to complexity of structure4. We manage partially to obviate this difficulty by
imposing an extra condition on the structure of the equation we seek to specify. This
enables us to make progress using the Lie point symmetries at our disposal. Finally we
must return to the Ansatz of the extra condition to determine the nonlocal symmetry
behind the imposition of the specific structure.

We structure the paper as follows. In Section 2 we examine the equation with five Lie
point symmetries. In Section 3 we extend the Ansatz which enabled us to determine the
additional symmetry required for the complete specification of that equation to deal with
the situation in which we have only four Lie point symmetries. In both instances our
stratagem leads to the additional nonlocal symmetry required. We conclude the paper
with some comments in Section 4.

4The calculation of nonlocal symmetries in the case of partial differential equations is even less obvious
than that for ordinary differential equations for which more than a certain amount of ingenuity is often
required [4]. By way of contrast the calculation of the Lie point symmetries for the equations which we
consider in this paper is easily performed by one of the classic codes developed for the purpose [6, 22].
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2 The First Nonlinear Equation

The equation

ut + uxx + (u + x)ux − (Eu + Dx) = 0, (2.1)

which arises in Financial Mathematics [12], possesses three Lie point symmetries for gen-
eral values of the parameters, E and D. However, in the special case that E = −1 the
equation

ut + uxx + (u + x)ux + u − Dx = 0 (2.2)

has the five Lie point symmetries

Λ1 = ∂t

Λ2± = exp[±Bt] {∂x ± (B ∓ 1)∂u} (2.3)

Λ3± = exp[±2Bt]
{

∂t ± Bx∂x +
(

2B2x ∓ 2Bx ∓ Bu
)

∂u

}

,

where B2 = D + 1.
We can make the analysis of the equation in the form (2.2). However, for the purposes

of this discussion we look to a simpler form. Under the transformation w = u + x (2.2)
becomes

wt + wxx + wwx = B2x. (2.4)

The parameter B may be set at unity by rescaling. As the number of symmetries is
unaffected, we take B = 0. The Lie point symmetries of

wt + wxx + wwx = 0, (2.5)

which is now the well-known Burgers’ equation, are

∆1 = ∂x

∆2 = t∂x + ∂w

∆3 = ∂t (2.6)

∆4 = t∂t + 1
2x∂x − 1

2w∂w

∆5 = t2∂t + tx∂x + (x − tw)∂w.

The Lie Brackets of the symmetries in (2.6) are

[∆1, ∆2]LB = 0 [∆2, ∆3]LB = −∆1

[∆1, ∆3]LB = 0 [∆2, ∆4]LB = −1
2∆2

[∆1, ∆4]LB = 1
2∆1 [∆2, ∆5]LB = 0

[∆1, ∆5]LB = ∆2 [∆3, ∆4]LB = ∆3

[∆4, ∆5]LB = ∆5 [∆3, ∆5]LB = 2∆4.

It is evident that the algebra is sl(2, R) ⊕s 2A1 with ∆1 and ∆2 constituting the two-
dimensional abelian subalgebra.
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To determine the complete symmetry group of (2.5) we commence with the general
equation

wxx = f(t, x, w, wt, wx), (2.7)

where f is initially an arbitrary function of its arguments. We impose the symmetries in
turn so that the functional form of f is established. These five Lie point symmetries are
insufficient to specify completely equation (2.5). To determine the complete symmetry
group we make use of an approach which we call the method of the ‘implicit complete
symmetry group’. This type of complete symmetry group is achieved by imposing an
extra condition on the structure of the equation we are trying to specify. This condition
then removes an argument from our arbitrary function and thereby makes the number of
point symmetries required to specify the equation one fewer than that required for the
complete symmetry group.

In principle we are saying that there is a nonlocal symmetry which allows us to impose
this extra condition. Once we have imposed the desired condition, we then return to find
the nonlocal symmetry. We illustrate this method with equation (2.5) for which we assume
the general second-order evolution partial differential equation of the form (2.7).

The application of ∆1 = ∂t and ∆3 = ∂x gives

wxx = f(w, wx, wt). (2.8)

We now impose the condition that the function f is of the form

f(w, wx, wt) = h(w, wx) − wt (2.9)

so that we have

wxx + wt = h(w, wx). (2.10)

The application of ∆5 = t2∂t + tx ∂x + (x − tw)∂w on (2.10) gives

−3t wxx − w − 3t wt − x wx = (x − tw)
∂h

∂w
+ (1 − 2t)wx

∂h

∂wx
. (2.11)

When we take (2.10) into account, (2.11) becomes

−3th − w − x wx = (x − tw)
∂h

∂w
+ (1 − 2t)wx

∂h

∂wx
.

Since x and t are not in h, we can extract coefficients to obtain

For t : 3h = w
∂h

∂w
+ 2wx

∂h

∂wx

For x : −wx =
∂h

∂w

For neither x nor t : −w = wx
∂h

r∂wx
.

(2.12)
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We substitute the second and third equations into the first equation so that

h = −w wx.

Hence

wxx + wt + w wx = 0

and we have recovered (2.5).
Now we need to find a nonlocal symmetry that allows us to write f = h − wt. The

procedure is as follows. We require that the characteristics for equation (2.8) which is
invariant under ∆1 and ∆3 produced by the associated Lagrange’s system be

w, wx, wt + f

from the associated Lagrange’s system

dw

0
=

dwx

0
=

dwt

g(·)
=

df

−g(·)
, (2.13)

where g is some arbitrary function of its arguments and arises from the fact that the
associated Lagrange’s system is always up to a common multiplier in the denominator.
Assume that the nonlocal symmetry is of the form

∆6 = ξ∂x + τ∂t + η∂w (2.14)

without specifying the nature of the dependence in ξ, τ and η.
For linear evolution equations the required terms of the second extension are given by

∆[2]
6 = ξ∂x + τ∂t + η∂w + ηx∂wx

+ ηt∂wt
+ ηxx∂wxx

, (2.15)

where

ηx =
∂η

∂x
+

[

∂η

∂w
−

∂ξ

∂x

]

wx −
∂τ

∂x
wt

ηt =
∂η

∂t
+

[

∂η

∂w
−

∂τ

∂t

]

wt −
∂ξ

∂t
wx

ηxx =
∂2η

∂x2
+

[

2
∂2η

∂x∂w
−

∂2ξ

∂x2

]

wx −
∂2τ

∂x2
wt +

[

∂η

∂w
− 2

∂ξ

∂w

]

wxx.

We apply (2.15) to (2.8) and then demand that the coefficients in the equation give the
associated Lagrange’s system (2.13). We obtain that

η = 0, ηx = 0, ηxx + ηt = 0.

These result in the system of partial differential equations for the coefficient functions of
the symmetry to be

∂ξ

∂x
wx +

∂τ

∂x
wt = 0

(

∂2τ

∂x2
+

∂τ

∂t

)

wt +

(

∂2ξ

∂x2
+

∂ξ

∂t

)

wx + 2
∂ξ

∂x
wxx = 0.
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Substituting the upper equation into the lower we obtain, after dividing by wt,

∂2τ

∂x2
+

∂τ

∂t
− 2

wxx

wx

∂τ

∂x
+

(

∂2ξ

∂x2
+

∂ξ

∂t

)

wx

wt
= 0.

For convenience5 we choose τ = x.

Then

∂2ξ

∂x2
+

∂ξ

∂t
= 2

wxxwt

w2
x

for which, using Fourier transforms, Duhamel’s principle or Green’s function, one can
derive the solution of a nonhomogeneous diffusion problem [14]. Here

ξt + ξxx = g(x, t), x ∈ R, t > 0.
ξ(x, 0) = ξ0(x), x ∈ R,

The solution is given by

ξ(x, t) =

∫

R

K(x − y; t)ξ0(y)dy +

∫ t

0

∫

R

K(x − y, t − s)g(y, s)dy ds, (2.16)

where K(x, t) is the diffusion kernel given by

K(x, t) =

(

1

4πt

)

1
2

exp
(

−x2/4t
)

and ξ0 and g(x, t) are continuous bounded functions. Hence

∆6 = ξ(x, t)∂x + x ∂t

with ξ(x, t) given by the integral equation (2.16) for the function g given by

g(x, t) = 2
wxxwt

w2
x

.

It must be noted that the solution to the above system of partial differential equations,
(2.12), is not unique. A different choice of τ or ξ would produce a different solution. Hence
there is not a unique nonlocal symmetry producing the same characteristics in (2.14).

3 Quasi-implicit complete symmetry groups

In the process of finding a complete symmetry group of a partial differential equation one
sometimes has to specify more than one condition, which in turn reduces the number of
independent variables in the general second-order evolution partial differential equation,

F (x, u, ux, ut, uxx) = 0, (3.1)

5In the case that one confines symmetries to be point symmetries the assumption of a specific expression
for one of the coefficient functions is at least potentially a major restriction. In the case of generalized
and/or nonlocal symmetries one is simply choosing one symmetry of an equivalence class rather like one
chooses a gauge in Field Theory.
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by more than the one seen in §2. This necessarily produces more than one nonlocal
symmetry.

The most important step in this type of analysis for the symmetry group is to identify
at what point in the analysis a nonlocal symmetry is required. The guideline is at a point
where the arbitrary function found after the application of a particular point symmetry
still depends on the variable that one is trying to remove. We illustrate this by an example
drawn from the Mathematics of Finance.

The equation we consider is a nonlinear partial differential equation for volatility. The
economic model [5] presents the necessary and sufficient conditions which permit the
driving standard Brownian motion to be expressed as a scale change of the stock price
process.

The economic model assumes frictionless markets, no arbitrage and that the underlying
stock price process is a one-dimensional diffusion starting from a positive value. It also
assumes a proportional risk-neutral drift of r − q, where r ≥ 0 is the constant risk-free
rate and q ≥ 0 is the constant dividend yield. The absolute volatility rate is a positive
C2,1 function u(x, t) of the stock price x ∈ (0,∞) and time t ∈ (0, T ), where T is some
distant horizon exceeding the longest maturity of the option to be priced.

Carr, Tari and Zariphopoulou [5] derive the nonlinear partial differential equation

u2uxx + (r − q)xux + ut − (r − q)u = 0. (3.2)

We rescale the variables to achieve an equation simpler in appearance, videlicet

u2uxx + xux + ut − u = 0, (3.3)

and it is for this equation that we find the complete symmetry group.
The Lie point symmetries of (3.3) are

Σ1 = ∂t

Σ2 = et ∂x

Σ3 = ∂t + x ∂x + u ∂u

Σ4 = t ∂t + tx ∂x +
(

t − 1
2

)

u ∂u.

(3.4)

The Lie Brackets are

[Σ1, Σ2]LB = Σ2

[Σ1 , Σ3]LB = 0 [Σ2 , Σ3]LB = Σ2

[Σ1, Σ4]LB = Σ3 [Σ2, Σ4]LB = 0 [Σ3, Σ4]LB = 0.

The symmetries Σ2, Σ3 and Σ4 form an A1 ⊕ A2 subalgebra and the symmetries Σ1, Σ3

and Σ4 form an A3,1 (Weyl) subalgebra. This equation makes one very curious since it
has an even number of symmetries and there is no trace of the sl(2, R) subalgebra, which
is a common phenomenon in many equations arising in finance. Equation (3.3) is not
linearizable to the heat equation or one of its variations by means of a point transformation
since the algebra (3.4) does not contain an infinite abelian subalgebra.

For a complete symmetry group we consider the general second-order evolution partial
differential equation

F (x, t, u, ux, ut, uxx) = 0.
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By the Implicit Function Theorem the equation can be written in solved form of one of
its essential arguments. We choose to write this as ut = f(x, t, u, ux, uxx) since we wish to
express the equation as an evolution equation with ut as the subject6.

Application of Σ1 = ∂t gives

ut = f(x, u, ux, uxx). (3.5)

The second extension of Σ2 = et∂x is

Σ[2]
2 = et∂x + (0)∂ux

− etux ∂ut
+ (0)∂uxx

and its application to (3.5) yields

−ux =
∂f

∂x
⇒ f = −x ux + h(ux, uxx, u).

This is not good since h still depends explicitly on ux. Before applying Σ2 we become
proactive and require that

ut = f(u, xux, uxx).

This is just imposing that the equation must have a Euler structure in x as far as ux is
concerned.

Then there is a nonlocal symmetry which allows the above operation. We find it as
follows.

The characteristics would have been

ut, u, uxx, xux

which come from the associated Lagrange’s system

dux

−ux
=

du

0
=

duxx

0
=

dut

0
=

dx

x
.

This suggests that the second extension of the nonlocal symmetry, say Σ5 = ξ∂x+τ∂t+η∂u,
is

Σ[2]
5 = ξ ∂x + τ ∂t + η ∂u + ζx ∂ux

+ ζt ∂ut
+ ζxx ∂uxx

,

where

ξ = x , η = 0,

ζx, ζt and ζxx are the extensions of the operator Σ5 relevant to the derivatives indicated.
Specifically they are given by

ζx =
∂η

∂x
+

[

∂η

∂u
−

∂ε

∂x

]

ux −
∂τ

∂x
ut (3.6)

6Naturally the argument can be carried out using the conventional form of the general second-order
evolution equation, but one must prepared to do hard labor!
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ζt =
∂η

∂t
+

[

∂η

∂u
−

∂τ

∂t

]

ut −
∂ξ

∂t
ux (3.7)

ζxx =
∂2η

∂x2
+

[

2
∂2η

∂x∂u
−

∂2ξ

∂x2

]

ux −
∂2τ

∂x2
ut − 2

∂ξ

∂x
uxx. (3.8)

The symmetry generating function/system is

ζxx = 0 ζt = 0 ζx = −ux,

ie, when one makes use of the expressions of ζx, ζt and ζxx, above one obtains

−
∂2ξ

∂x2
ux −

∂2τ

∂x2
ut − 2

∂ξ

∂x
uxx = 0

−
∂τ

∂t
ut −

∂ξ

∂t
ux = ut ⇒

∂τ

∂t
ut +

∂ξ

∂t
ux = 0 (3.9)

−
∂ξ

∂x
ux −

∂τ

∂x
ut = −ux ⇒

∂ξ

∂x
ux +

∂τ

∂x
ut = ux.

When we add the second and the third of (3.9), we have
(

∂τ

∂t
+

∂τ

∂x

)

ut +

(

∂ξ

∂t
+

∂ξ

∂x

)

ux = ux, (3.10)

but we have assumed that

ξ = x.

Then
(

∂τ

∂t
+

∂τ

∂x

)

ut = 0

so that

∂τ

∂t
+

∂τ

∂x
= 0. (3.11)

From the first of (3.9) we obtain, after substituting ξ = x,

∂2τ

∂x2
ut = −2uxx

∂2τ

∂x2
= −2

uxx

ut
.

The first integration gives

∂τ

∂x
= −2

∫

uxx

ut
dx + c(t), (3.12)

where c is some function of t. We substitute (3.12) into (3.11) so that

∂τ

∂t
= −c(t) + 2

∫

uxx

ut
dx = 2

∫

uxx

ut
dx − c(t)
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and hence

τ(x, t) = 2

∫ ∫

uxx

ut
dx dt −

∫

c(t)dt + β, (3.13)

where β is a constant of integration.
The nonlocal symmetry is

Σ5 = x ∂x + τ ∂t,

where τ(x, t) is given by (3.13). Note that in this case there is only one nontrivial solution
of the system of partial differential equations producing the nonlocal symmetry. So the
nonlocal symmetry producing the above characteristics is unique.

Hence we have the desired result that

ut = f(u, x ux, uxx).

We further proceed with the application of the remaining Lie point symmetries. The
application of the second extension of Σ2 = et∂x gives

−ux =
∂f

∂(x ux)
· ux,

ie,

∂f

∂(x ux)
= −1 ⇒ f = −x ux + h(u, uxx) .

ut + x ux = h(u, uxx). (3.14)

The second extension of Σ4 is

Σ[2]
4 = t ∂t + tx ∂x +

(

t − 1
2

)

u ∂u − 1
2ux ∂ux

+
[

u +
(

t − 3
2

)

ut − x ux

]

∂ut
−

(

t + 1
2

)

uxx ∂uxx (3.15)

and the action of (3.14) on (3.15) gives Σ[2]
4 (ut + x ux − h) = 0 which implies that

u +
(

t − 3
2

)

ut − x ux = −tx ux +
(

t − 1
2

)

u
∂h

∂u
+ 1

2x ux −
(

t + 1
2

)

uxx
∂h

∂uxx
. (3.16)

Extracting coefficients of t which is not present in (3.16) we have

For t : ut = −x ux + u
∂h

∂u
− uxx

∂h

∂uxx

⇒ ut + x ux = u
∂h

∂u
− uxx

∂h

∂uxx
,

ie,

h = u
∂h

∂u
− uxx

∂h

∂uxx
. (3.17)
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The remaining terms of (3.16) give

u − 3
2ut − x ux = −1

2u
∂h

∂u
+ 1

2x ux − 1
2uxx

∂h

∂uxx
,

ie

u − 3
2h = −1

2u
∂h

∂u
− 1

2uxx
∂h

∂uxx
. (3.18)

When one substitutes (3.17) into (3.18), the result is

u = u
∂h

∂u
− 2uxx

∂h

∂uxx
.

The associated Lagrange’s system is

dh

u
=

du

u
=

duxx

−2uxx
.

The characteristics are

h − u; u2uxx

so that h = u + g(u2uxx).
When we resubstitute h into equation (3.17), we get

u + g = u(1 + 2uuxxg′) − uxxu2g′

g = 2u2uxxg′ − u2uxxg′

g = u2uxxg′,

ie,

g′

g
=

1

u2uxx
.

When this is integrated and exponentiated, we obtain

g = γu2uxx,

This gives the characteristic g/(u2uxx) so that

ut + xux = u + γu2uxx,

where γ is an arbitrary constant. We require that γ = −1. This can easily done by
rescaling or by the use of this not very nice nonlocal symmetry7

Σ6 = τ ∂t,

with τ given by

τ(x, t) = −2

∫ ∫

uxx

utux
dx dt −

∫

c1(t)dt + β,

where c1(t) and β are function and constant of integration respectively.

7There are other nonlocal symmetries which provide a similar result.
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4 Conclusion

The implicit and quasi-implicit complete symmetry group approach not only provides us
with the sufficient number of symmetries to form a complete symmetry group but also
provides a more direct way to find nonlocal symmetries. The nonlocal symmetries found
are known to have specific functions in the development of a partial differential equation.
Further the nonlocal symmetries producing the desired result may be unique as seen in
Section 3 or not. Furthermore work needs be done to determine whether are they unique.
Also the nonlocal symmetry, ∆6, is an extracting symmetry since it removes a variable
from the arbitrary function while the nonlocal symmetry, Σ5, is a combining symmetry as
it combines the variables inside the arbitrary function. It turns out that, when an arbitrary
function we are trying to specify contains more than three arguments, ie contains either
the space or the time variable in addition to the u and its derivatives, the extracting
nonlocal symmetry simply becomes a Lie point symmetry.

An interesting point to note is that the nonlocal symmetry, ∆6, is not only the symmetry
for equation (2.3) but it turns out that all evolution equations which can be written in
the form,

wxx + wt = h(w, wx), (4.1)

have ∆6 as the nonlocal symmetry. Similarly the nonlocal symmetry, Σ5, is a symmetry
for all equations of the form

ut = f(u, xux, uxx).

These types of symmetries are said to be generic to these structures of equations. One
can proceed in a similar way to find other generic symmetries for other structures of
equations. The implicit and quasi-implicit ideas presented in this paper were inspired
from a consideration of nonlinear partial differential equations. They can also be applied
quite easily to linear partial differential equations. Consider the 1 + 1 linear evolution
equation

ut + uxx +
u

x2
= 0

from our previous paper [20]. This equation has the Lie point symmetries

G1 = ∂t

G2 = t∂t + 1
2x ∂x − 1

4u ∂u

G3 = t2∂t + tx ∂x + 1
4(x2 − 2t)u ∂u

G4 = u ∂u

G5 = g(t, x)∂u,

The application of G1 to the general second-order evolution equation leads to

uxx = f(x, u, ux, ut) .

A nonlocal symmetry of the form

Γ = x∂x + τ(x, t)∂t + 2u∂u , (4.2)
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where

τ(x, t) = 2

∫

1

ux

(
∫

uxx

ut
dx

)

dt +

∫

β(t)

ux
dt + γ,

β(t) is some arbitrary function of t and γ is a constant of integration, guarantees that

f(x, u, ux, ut) = h
( u

x2
, ux, ut

)

(4.3)

and (4.2) is generic to (4.3).

Note that (4.3) can also be written in the form (4.1) using a nonlocal symmetry of the
form Σ5 to obtain

uxx + ut = g
( u

x2
, ux

)

. (4.4)

The function g is arbitrary as is seen by replacing the first argument in (4.1) with those of
g in (4.4). From this point onwards one can easily use the remaining Lie point symmetries
G2 − G5 to specify completely the equation.

Another point worth mentioning is that the level of complexity increases when one has
an insufficient number of point symmetries to constitute a complete symmetry group. This
was more evident in [20] when dealing with an 1 + 1 evolution equation with ∞+1+3 Lie
point symmetries. However, once all necessary nonlocal symmetries have been determined,
the complete symmetry group follows immediately.

The open question in the implicit/quasi-implicit complete symmetry group is the deter-
mination of the exact point at which a nonlocal symmetry is required. So far we have been
successful in following our intuition and we hope to provide a concise guideline/algorithm
to avoid the frustration of attempting the exercise when experience, intuition and luck are
absent. The beauty of this algorithm is that we can then proceed (iff ) to find most of
these generic nonlocal symmetries of evolution equations.

Acknowledgments. We express our appreciation of the care with which a referee, re-

grettably unknown, examined the manuscript and for the useful suggestions which were

consequent upon that care. SMM thanks the Almighty God for his wisdom, Professor

PGL Leach, Professor Henda Swart, the National Research Foundation of South Africa

and the University of KwaZulu-Natal for their support. PGLL thanks the University of

KwaZulu-Natal for its continued support.

References

[1] Andriopoulos K, Leach P G L and Flessas G P, Complete symmetry groups of
ordinary differential equations and their integrals: some basic considerations J. Math.

Anal. Appl. 262 (2001), 256–273.

[2] Andriopoulos K and Leach P G L, The economy of complete symmetry groups
for linear higher dimensional systems J. Nonlinear Math. Phys. 9 Suppl. 2 (2002),
10–23



Nonlocal Symmetries and the Complete Symmetry Group of 1 + 1 Evolution Eqs 391

[3] Andriopoulos K and Leach P G L, Newtonian Economics, in Group Analysis of
Differential Equations, University of Cyprus, Nicosia, 2005, 134–142
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