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Abstract 

This research focuses on a silicon neuron circuit designed utilizing a qualitative neuronal modeling approach. In this 
circuit, temperature, fabrication mismatch, and secondary effects of transistors cause the difference between the 
intended characteristics and those in the implemented circuits. Therefore, we have to tune the bias voltages for each 
neuron instance to realize the desired dynamical behavior after circuit implementation. We constructed an algorithm 
to automatically find appropriate values for the bias voltages. 
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1. Introduction

Silicon neuron is electronic circuit that mimics 
electrophysiological behavior of neurons. It is supposed to 
be used as the basic elements of silicon neural networks, 
whose aim is to simulate the behavior of the nervous 
system in real-time or faster. They can be used not only as 
the high-speed brain simulators for neuroscientific 
researches but also as a basic technology for the next 
generation low-power intelligent computing systems. In 
addition, they can be used to construct bio-silico hybrid 
systems in connection with neurons, which can be an ideal 
technology for neuroprosthetic devices. 

In this research, we focus on an analog silicon neuron 
circuit designed by using the techniques of qualitative 
neuronal modeling whose power consumption is as low as 
about 3 nW.1 This circuit is composed of metal-oxide-
semiconductor field-effect transistors (MOSFETs) in their 
subthreshold region for low-power consumption. By 

utilizing the qualitative modeling techniques, the model of 
this circuit was designed so that it can reproduce the 
dynamical structures in the excitable nerve membrane. 
The parameter tuning procedure is supported by the 
feedback amplifiers integrated in the silicon neuron circuit. 

The characteristics of this circuit are influenced by 
temperature, transistors’ fabrication mismatch, and their 
secondary effects (short channel effect, etc).  They make 
the expected circuit characteristics in designing stage and 
actual behavior of the individual circuit inconsistent. 
Therefore, it is required to adjust bias voltages of 
transistors in silicon neuron circuit to get the desired 
dynamical behavior. 

The procedure to do it by hand has been established3, 
but it is not realistic to execute the procedure for each 
silicon neuron circuit when we build the large-scale silicon 
neuronal networks comparable to the human brain which 
contains about 100 billion neurons.  
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To solve this issue, a system to fit characteristics of 
silicon neuron automatically is essential. In this work,  the 
same metaheuristic algorithm used in the previous similar 
works2, 3, 4, the Differential Evolution (DE) method5, is 
used to find proper bias voltages. The DE method 
performed better in terms of convergence speed and 
simulation time, compared to other popular metaheuristic 
algorithms, such as Genetic Algorithm and Simulated 
Annealing.3 All the results in this work was obtained by 
circuit simulation using ngspice. 

Our silicon neuron model is explained in the next 
section and our parameter fitting algorithm is in section 3. 
The results and discussion are in section 4 and 5, 
respectively.  

2. A low-power analog silicon neuron model

Our silicon neuron circuit is composed of two blocks, the 
 and ݊ -blocks (Figure 1). Each block’s dynamics is - ݒ
represented as below.
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ൌ ௩݂ሺݒሻ െ ݃௩ሺݒሻ ൅ ௔௩ܫ െ ௡ሺ݊ሻݎ ൅  ୱ୲୧୫, (1)ܫ
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 where ݒ and ݊ represents the membrane potential and the 
dynamics of ionic channels, respectively. 
 For each function, ௫݂ሺݒሻ	ሺݔ ൌ ,ݒ ݊ሻ  is an ideal I-V 
characteristics of a differential pair circuit, ݃௫ሺݒሻ  and 
 ௡ሺ݊ሻ are ideal I-V characteristics of a cascoded transistorݎ
circuit with source degeneration with a detached bulk 
voltage. Both of them are in sigmoidal shape and the latter 

has shallower gradient than the former. They are combined 
to construct the mathematical structures in the neurons. 
 ,ୱ୲୧୫  are constant current and input stimulusܫ ௔௫ andܫ
respectively. They are generated by transconductance 
amplifiers.
 There are nine bias voltages to tune this circuit, one of 
which is related to the time constant of ݊ and the others 
affect the shape of the sigmoidal curves. 
 Our circuit can reproduce Class1 and 2 neurons in the 
Hodgkin’s classification6, by reconstructing specific 
dynamical structures for each class. In this work, we 
concentrated on the Class1 neuron mode of our circuit.
 To estimate the dynamical structures in our circuit, the 
transconducance amplifiers (TAV and TAN in Figure 1) 
are used to draw the nullcline of each variable. The 
nullclines are drawn by measuring the current  ܫ௩ , the 
output current of TAV, and ܫ௡, the output current of ݎ௡ሺ݊ሻ, 
while sweeping େܸ୚ in DC analysis.  Their equations are 
represented as below.

௩ܫ ൌ ௩݂ሺݒሻ െ ݃௩ሺݒሻ ൅ ௔௩ܫ ൅  ୱ୲୧୫ (3)ܫ

௡ܫ ൌ ௡݂ሺݒሻ െ ݃௡ሺݒሻ ൅  ௔௡ (4)ܫ

3. Automatic parameter voltages fitting
algorithm

Figure 2 illustrates the block diagram of our automatic 
parameter fitting system. Here, we use circuit simulation 
instead of actual circuit measurement because this work 
focuses on the efficient verification of our fitting 
algorithm in this system. It finds the appropriate parameter 
values by optimizing the difference between the reference 
data and the simulation result. 
 This optimization is done by using the DE method 
which searches for the best-fitted parameter vector by 
repeating the mutation, crossover, and selection of 
parameter vectors for a number of generations. The 

Fig. 1.  Block diagram of our qualitative-modeling-
based low power silicon neuron circuit 

Fig. 2.  Automatic bias voltages tuning system for
silicon neuron 
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automatic parameter fitting algorithm we suggest is 
composed of the 2 steps explained below.  

3.1. Step1: Fitting nullclines 

At first, we fit the shape of the ݒ- and ݊-nullclines to a 
given reference nullclines. Figure 3 shows the nullclines 
in the Class1 neuron mode without stimulus. The two 
nullclines intersect each other at three points, “S”, “T”, 
and “U”. They represent a stable node, a saddle point, and 
an unstable node, respectively. Point “S” corresponds to 
the resting state and “T” is responsible for the threshold 
phenomena of neuronal spike generation.
 The fitness function for the DE method is calculated by 
summing the difference between the nullcines obtained in 
the simulation and the reference nullclines. The fitness 
function is written as follows:

ଵܨ ൌ
ଵ

ே
∑ ൫ݏ௜ሺݔሻ െ ௜,௫൯ݎ

ଶே
௜ୀଵ ,  

݅ ൌ 1, 2	⋯ܰ,ܰ ൌ ݔ ,75 ൌ ,ݒ ݊,  
(5) 

where ݏ௜ሺݔሻ and ݎ௜,௫ represent the coordinate of  a point on 
the nullclines in simulation result and the reference 
nullclines, respectively. ݅	 is index of each point and ݔ 
represents ݒ or ݊. The voltage range of the nullclines is 
limited to between 300 and 450 mV. This range covers the 
three intersections of the nullclines in the Class1 neuron 
mode. Four parameters, fx_Vb, fx_Vdlt, gx_Vm, Iax_Vin 
(x=ݒ, ݊) are tuned for each nullcline. Parameter rn_Vm is 
fixed at a random value in this step.

Initial vectors are generated in the range between -
100mV and +100mV compared to the values used for 
generating the reference data. The DE method’s 
optimization step was repeated for 400 generations and 40 
vectors were contained in each generation.

3.2. Step2: Fitting neuron characteristics 

 The nullcline fitting procedure in Step1 was not sufficient 

to produce the desired  behavior similar to the reference 
model, because our circuit’s dynamical properties are 
sensitive to the shape of the nullclines and rn_Vm cannot 
be fitted in Step1. In this step, we fit the dynamical 
behavior in response to stimulus using the DE method. 
Threshold current, spike width in response to pulse 
stimulus, and spike frequency in response to sustained 
stimulus are used for fitness function.  
 The definition of the threshold current is the minimum 
amplitude of the pulse stimulus that makes the membrane 
voltage exceed 400mV. The spike width is defined as time 
width when the membrane voltage at the middle of the 
spike amplitude. 

 Our silicon neuron circuit is equipped with 
transconductance amplifiers for generating current 
stimulus. Pulse stimulus with 500ݏߤ  time width was 
generated by applying a pulse voltage to the 
transconductance amplifier. We applied pulse stimulus 
with a variety of amplitude by increasing the pulse voltage 
by 7mV step for 20 pulses. The threshold current and the 
spike width were measured with the firstly observed spike 
in this sequence.
 For the spike frequency, two amplitudes of sustained 
stimulus, 10pA and 15pA, were applied for 300ms using 
the transconductance amplifier. 
 All of the 9 parameters are tuned in this step. The initial 
parameter value was distributed in the range within the 
value obtained by Step1 േ 2 mV except for rn_Vm. For 
rn_Vm, an initial value was found by sweeping until 
spikes are generated in response to both pulse and 
sustained stimulus with the other parameters’ value 
obtained by Step1. The range for this sweeping was 
between the reference model’s parameter value (435 mV) 
-6mV to +12mV.

In this step, the fitness function is calculated as follows:

ଶܨ ൌ |ሺࢇ െ  ,|ࢃሻ࢈
where 
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,
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,
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௙భఱ౦ఽ౨౛౜

൨. 

(6) 

 is obtained by each transient simulation result and ࢇ
 is obtained by the reference model. Elements of weight ࢈

Fig. 3.  Nullclines in the Class1 neuron mode 
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vector, ࢃ, are calculated by dividing  ܫ୲୦୰౨౛౜ by elements 
of ࢈, respectively. 

In this step, the DE method’s step was repeated for 
200 generations and 45 vectors were contained in each 
generation.

4. Results

Table1 shows the characteristic of our silicon neuron 
circuit with the parameters obtained by our fitting 
algorithm. For all the criteria, the error is less than 4%. 

Figure 4 shows the reference transient data and 
simulation results of the fitted circuit. The amplitude of 
spikes seems to be well fitted.

The reference data was generated by using ngspice 
simulation. Thus the ideal fitting result is identical to the 
parameter set used for the reference data generation, with 
which the error is zero. But as shown in Table 1, our 
algorithm could not find the original parameter set but 
found a local optimum point.  

5. Discussion

In this research, we proposed an algorithm to find proper 
parameter values to obtain the desired dynamical 
properties for individual silicon neuron circuit instance. 
This algorithm will be crucial for operation of large-scale 
silicon neuron networks. The error for the criteria in the 
fitting procedure was less than 4%. From the viewpoint of 
engineering application, defining the maximum 
acceptable error is a difficult problem, because it depends 
on specific applications but they are not established yet. 
From the viewpoint of neuromimetics, this error is 
acceptable when our algorithm is used to tune a number of 
silicon neuron instances to Class 1, because there is a wide 
distribution (far larger than 4%) of dynamical properties 
in the same class of neuronal cells. 

We will also try to apply this algorithm in fitting Class2 
neuron. In addition, our algorithm will be improved to be 
applicable to the three variable ultralow-power silicon 
neuron circuit.7 This circuit can realize a wide variety of 

neuronal classes such as the regular spiking, the square-
wave bursting, and the elliptic bursting.  
 In the future, we will apply this algorithm to a real 
circuit. 
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Reference Tuned Error (%) 

୲୦ሾpAሿ 262.1 259.6 -0.953ܫ
ୱ୵[ms] 18.0 17.4 -3.30ݐ

ଵ݂଴୮୅ [Hz] 29.9 30.8 +3.01

ଵ݂ହ୮୅ [Hz] 42.9 43.5 +1.40

Fig. 4.  Transient data of the reference (top) and the
simulation results of the tuned circuit (bottom) 

Table 1. Comparison of silicon neuron characteristics
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