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Abstract 

Restricted communication in unmanned aerial vehicle (UAV) swarms means that configuration needs to vary 
dynamically with changing tasks. We propose a mission planning model that uses a motif, a grouping of related 
functions, as the basic task unit. The planning model automatically generates a mission planning scheme from a task 
priority execution order given as an input. The selection of the best scheme from among possible solutions is a multi-
objective optimization problem with calculation complexity rapidly increasing with the number of tasks. To address 
this difficulty, we enhance the NSGA-III algorithm by adding adaptive genetic operators when generating the 
offspring population. We apply the improved NSGA-III algorithm to optimize mission planning schemes with 
changing task priority execution orders. We validated the feasibility and effectiveness of the improved algorithm via 
a case study. 
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1. Introduction 

Unmanned aerial vehicles (UAVs) have changed combat 
styles profoundly. Faced with an antagonistic, uncertain, 
and dynamic battlefield environment, the UAV combat 
style is evolving from a single platform operation to a 
networked swarming operation1. As such, mission 
planning is one key to UAV swarm operation. 
Current mission planning methods for UAV swarms 
mainly focus on solutions to path planning problems2–4 
or reconnaissance mission planning problems5–7. These 
methods solve mission planning problems for UAV 
swarms effectively in some aspects but notably do not 
apply to combat mission planning problems, for two 
reasons. First, both path planning and reconnaissance 
mission planning apply to single function UAVs. UAV 
operation is a complex action that requires UAVs with 
different functions to coordinate with each other. Second, 
the existing mission planning methods do not take 

communication restrictions between UAVs into 
consideration. At the present time, technological 
restrictions greatly limit communication between UAVs. 
Strong electromagnetic interference from the battlefield 
enemy limits communication still further. 
Further, the permutations and combinations of desired 
tasks produce a tremendous number of possible task 
priority execution orders. This number increases with the 
increase in the number of tasks. Selecting suitable 
planning schemes that meet requirements from this large 
pool of possible schemes has become a difficult problem.  
The last and most notable difficulty is that the choice of 
mission planning schemes is a multi-objective 
optimization problem. Having a large number of 
objectives slows down the search for a Pareto front, a 
result of increasing computational complexity. This 
optimization is on top of the already time-consuming 
complexity arising from each objective function itself. 
These time-consuming processes complicate real-time 
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mission planning in a quickly changing confrontational 
environment. 
To address these challenges, we propose a motif-based 
mission planning model. We group UAVs with different 
functions into motifs, each of which needs only a few 
communication connections. The motif is used as the 
basic task unit rather than an individual UAV. Our model 
generates a mission planning scheme automatically by 
using a multidimensional dynamic list scheduling 
(MDLS) algorithm that, in turn, uses a task priority 
execution order as input. Finally, we address the 
complexity problem by reducing the number of planning 
optimization indicators to three. 
We introduce an evolutionary many-objective algorithm 
using a reference point-based non-dominated sorting 
approach (NSGA-III) to optimize planning schemes. 
NSGA-III is an advanced search technique offering 
better performance for multi-objective problems 
compared to other best-in-class MOEAs such as NSGA-
II8, MOEA/D9 and MOEA/D-TCH10. To speed up 
iterative convergence, we apply adaptive genetic 
operators when generating offspring populations.  
We also present our case study to demonstrate the 
feasibility and effectiveness of the improved NSGA-III 
algorithm. 
The rest of this paper is organized as follows. Section 2 
introduces related work. Section 3 describes the motif-
based planning model and expresses it mathematically. 
Section 4 presents a customized and improved NSGA-III 
algorithm to solve the optimization problem. 
Experimental results are discussed in section 5. Section 6 
gives our conclusions. 

2. Related Work 

Most of the existing research on UAV mission planning 
has focused on single function mission planning, such as 
path planning and reconnaissance mission planning. 
Koohifar et al.11 introduced a receding horizon path 
planning algorithm for UAV swarms to localize a moving 
radio frequency transmitter cooperatively. Using this 
prediction model, they formulated the most favorable 
course of action to solve the path planning problem using 
local optimization, helping the whole system achieve the 
goal over a finite receding horizon. Choi et al.12 proposed 
a method for utilizing an UAV swarm when the 
communication infrastructure is disabled due to war or 

natural disasters. The proposed method was validated and 
its performance evaluated using an NS-2 simulation.  
Other researchers have begun to work on more complex 
mission planning. Slear13 designed and implemented a 
comprehensive mission planning system that integrated 
several problem domains including path planning, 
vehicle routing, and swarm behavior. Lamont, Slear, and 
Melendez14 designed and implemented a comprehensive 
mission planning system for swarms of autonomous 
aerial vehicles (UAV). Their system consisted of a 
parallel, multi-objective terrain path planner and a 
vehicle router. Both parts used evolutionary algorithms. 
Wei et al. 15 investigated the problem of complex 
dynamic mission planning for a UAV swarm and 
proposed a centralized-distributed hybrid control 
framework for mission assignment and scheduling. 
Boskovic et al.16 investigated an autonomous hierarchical 
architecture for controlling swarms of UAVs to carry out 
complex missions. The approach effectively combined 
mission planning using evolutionary algorithms and 
biologically-inspired swarm behaviors. Through 
simulation and experiment, the system was shown to be 
resistant to intermittent communications problems and 
adaptable to dynamic changes in the environment. In [17], 
Sampedro C presented a scalable and flexible 
architecture for real-time mission planning and dynamic 
agent-to-task assignment for a UAV swarm. The 
proposal consisted of a Global Mission Planner (GMP) 
responsible for assigning and monitoring high-level 
missions through an Agent Mission Planner (AMP) in 
charge of handling each task at the UAV level.  
Recent research applies swarm theory and methods in 
mission planning. However, existing research has not 
considered the communication restrictions of UAVs. In 
actual operation, communications cannot be maintained 
continuously due to complex working and 
electromagnetic environments. Thus, the system must 
change with communication ability and mission tasks. 

3. Mission Planning Model 

This section introduces our motif-based model that 
coordinates UAV operations by motif (related functions) 
rather than by individual UAV. Subsection 3.1 introduces 
7 basic motifs to perform tasks and the mapping of tasks 
into motifs. Subsection 3.2 does mission decomposition. 
A complex mission is decomposed into detailed tasks. 
These tasks are performed by the 7 kinds of motifs that 
are proposed in subsection 3.1. In subsection 3.3, mission 
planning schemes are generated automatically by using 
MDLS algorithm based on subsection 3.1 and subsection 
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3.2. After presenting our model, subsection 3.4 expresses 
the model mathematically. 

3.1 Motif-Based Configuration 

3.1.1 Basic motifs to perform tasks 

A motif is a subnet structure repeated in in one or more 
networks18. The motif idea is significant to our work as it 
serves as the functional unit in the framework 19. Lee and 
Lee used motifs in the calculations for combat 
effectiveness20. 
We use motifs as basic task units in our planning model. 
Decision-making, information transmission, and 
operational functions are distributed among UAV swarm 
members. We divide UAVs into five categories based on 
function: DUAV (decision-making), RUAV 
(reconnaissance), AUAV (attack), RAUAV 
(reconnaissance and attack), and CUAV (communication 
relay). 
 

 

Fig. 1. Motif-based configuration diagram 

Through observation and study of UAV operational 
networks, we have identified 7 types of significant motifs 
that appear with frequency. Fig. 1 depicts our groupings. 

3.1.2 Tasks assigning to motifs 

As communication plays an important role in UAV 
operation, we add a communication capability demand 
vector constraint. Fig. 2 shows the decomposition of task 
capability demand capability into operation capability 
demand and communication capability demand. We use 
the new capability demand vector to calculate the types 
and numbers of motifs needed to complete a task. A task 
is considered completable when the capability vectors of 
motifs is component-wise greater than or equal to the 
task’s capability demand vector. 
 

 

 

Fig. 2. Task requirement decomposition diagram 

According to the characteristics of UAV operation, we 
propose a new operation capability demand vector which 
has six components: low altitude detection capacity, 
aerial reconnaissance capacity, sky-to-ground attack 
capacity, sky-to-sky attack capacity, patrol strike 
capacity and information processing capacity.  
The six capabilities of the motif are defined based on the 
kind and number of UAVs, the capabilities of each UAV 
and the connection the motif involves. The jth operation 
capability of motif i is ijb . 
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kn  (the number of motif k) must satisfy the following 
linear inequality: 

( )1 7... T
hn n Cb ³i                     (2) 

Communication demand vector has two components: the 
average degree of network and the clustering coefficient. 
The average degree of network w  is measured:  

l
n

w =                                           (3) 

1 2 3 4 5 6 72 2 3 3l n n n n n n n= + + + + + +           (4) 

1 2 3 4 5 6 72 2 2 3 3 4 4n n n n n n n n= + + + + + +        (5) 
The average degree represents the average number of 
UAVs per UAV connected21. 
The clustering coefficient t  is measured by: 

2
( 1)
l

n n
t =

-
                               (6) 

representing the probability of communication between 
the two UAVs22. 
Restrictions in bandwidth and communication distance 
limit the operation range of UAV swarms. CUAVs have 
wide bandwidth and long distance communication 
abilities. We use a CUAV to connect motifs performing 
the same task. Specifically, CUAVs connect to DUAVs 
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in motifs. CUAVs are responsible for transmission of 
commands and the collection of battlefield information. 
Fig. 3 shows the communication structure in our model. 
 

 

Fig. 3. Diagram of UAV communication connections 

3.2 Mission Decomposition 

The fundamental question underlying the design of a 
mission planning model is, “Who or what should do 
which part of the mission?” It implies that a mission is 
decomposable into a set of tasks. We use a goal 
decomposition method23 to perform mission 
decomposition. We assume that a mission is 
decomposable into a task set ( 1,2,..., )i TT i N= , where 

TN is the number of tasks. We characterized every task 

iT  according to the following attributes: 
• estimated completion time ( 1,2,... )i Tt i N= ; 
• motif demand vector 1, 2, 7[ ..., ]i i im m m , where ijm  is 

the number of the jth motif required for successful 
completion of task iT . 

A mission is decomposable into a set of related tasks. Fig. 
4 shows our use of directed task chains to detail the 
following correlations between tasks: 
(1) Task priority24: In the case of insufficient resources, 

the task located at the front of the priority chain is to 
be carried out ahead of later tasks. In the case of 
sufficient resources, tasks can execute concurrently. 

(2) Task precedence25: The placement of task iT  ahead 
of task jT in a precedence chain means jT cannot 
start until iT  completes. 

 

Fig. 4. Task priority chains graph 

We treat task precedence correlations as special priority 
relations with strict restrictions in time. A mission 
planning scheme is feasible only if its task priority 
execution order fits all task priority chains. 

3.3 Mission Planning 

By decomposing the mission and assigning tasks to 
motifs, we obtain the types and numbers of motifs 
required for each task. According to the existing UAV 
resources and the needed, we use our MDLS algorithm 
to generate mission planning schemes automatically. 

3.3.1 Planning scheme generation with MDLS  

MDLS is often used in combat to schedule equipment 
and generate mission planning schemes, achieving good 
results26 27. MDLS contains two main steps. 
Step 1: Select the next ready task for processing. A task 
becomes ready when all tasks that have a priority over it 
have started and all its predecessors have been completed. 
Step 2: Select usable UAVs to be assigned to the motifs 
required for the task. A usable UAV is one that is not 
performing a task. 
The MDLS algorithm generates a mission planning 
scheme automatically upon receiving task execution 
priorities. The algorithm selects tasks one by one 
according to the task priority execution chain and then 
generates a mission plan automatically. Algorithm 1 
presents the algorithm in full. 

3.3.2 Scheme evaluation index 

Our strategy uses three operational effectiveness indexes 
to evaluate mission planning schemes. 
(1) Mission completion time (MCT): This is a common 

index of operational effectiveness.  
(2) The average number of altered connections (ANAC): 

Topology changes within a UAV network contribute 
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to communication delays28. A decrease in the 
number of altered connections reduces 
communication delays and enhances the stability of 
the UAV network. 

(3) The average number of working UAVs (ANWU): 
During operations, UAVs are easily destroyed. 
When UAVs are damaged and unable to continue to 
operational tasks, spare UAVs should replace the 
damaged UAVs. 

Algorithm 1: MDLS algorithm 
 

 

Input:  the set of tasks that have been completed CT =Æ ; the set of tasks that have started, ST =Æ ; 
the set of ongoing tasks’ completion times {0}FT = ;  

 Output:  mission planning scheme 

1   min( )
ft FT

f ft
Î

=  ( FT is a set of ongoing tasks’ completion times) 

 2   \{f}FT FT¬  
) 
l=1; 
3   { }c c ft t¬ !  ( ct  is a collection of all task completion times) 
4   ( )GSpare Spare m F¬ +  ( GF are the corresponding groups of tasks, Spare  is a set of spare UAVs) 
) 5   C C GT T F¬ !  

Update 
 
6   READY Update ( READY is a set of ready tasks.) 
R  generatereferencepoints(M,p);  7   if i READY" Î cannot satisfy ( ) 'iD m T Spare£!  ( ( )im T  is the motif demand vector of iT ) 
for t 1 to maxGen 

 

 

8       Go to Line 1. 
else Go to Step 3. 
end if 

F_P objectiveFunction(P); 

9   else Go to Line 11 
end if 

      Non-dominated sorting(P); 
10  end if 
    Oc Crossover(P,pc); 11  if  READY =Æ  
    Fc objectiveFunction(Oc); 12     Go to Line 1 
Om Mutate(P,pm); 13  end if 
14 { }c c ft t¬ !  
15 1 { | [ ( ), ( ) '] }T iREADY i READY n F D m T Spare= Î £!  
16  Select  1i READYÎ  

 
  

17 \{ }READY READY i®  
18 S ST T i¬ !  
19 ( )iFT FT f t¬ +!  ( it is the processing time of iT ) 
 20  Select ( )im T from Spare  
 21 - ( )iSpare Spare m T¬  
22  do until ( ) 'iD m T Spare³! , i READY" Î  
 23      Go to Line 11 
 
 
24  end do 
 25  if ( ) 'iM m T Spare³! , i READY" Î  
 26     Go to Line 1 

 
 

3.3.3 Dynamic Reconfiguration 

The MDLS algorithm requires three conditions to be met 
to begin a task. First, all tasks with higher priority than 
the target task must have started. Second, all of the target 

task’s predecessors must have completed. Third, existing 
UAV resources must meet the demands of the task.  
The MDLS algorithm selects tasks one by one according 
to task priority execution order. As long as the priority 
execution order fits all task priority chains, i.e. the 
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mission planning scheme is feasible, the first condition is 
satisfied. When the second and third conditions are 
satisfied, the task can start. UAV resources are released 
only when ongoing tasks are completed. When 
considering the first or second conditions, the starting 
time of a task is 0 or the time of completion of an earlier 
task. Changing tasks requires reorganization of 
communication connections to suit the upcoming task. 

We use existing motifs as much as possible to reduce 
communication delays. During a changeover, all CUAVs 
disconnect from previous motifs and connect to new 
motifs. As a result, the number of altered connections 
attached to the CUAVs is constant and not counted in the 
number of altered connections. Fig.5 shows the 
persistence of previous motifs required for upcoming 
tasks. Motifs that are unneeded in the upcoming task 
disconnect their internal connections to allow for the new. 

 

 

Fig. 5. Preservation and reconstruction of motifs graph. 

3.4 Mathematical Model of Mission Planning 

3.4.1 Optimization variable 

Once the priority execution order of tasks is determined 
and used as an input into MDLS algorithm, our algorithm 
automatically generates a mission planning scheme after 
calculating the three scheme evaluation indexes. Our 
mathematical model also includes the priority execution 
order of tasks as variables, as a planning scheme is 
feasible only if its task the priority execution order fits all 
priority chains. 

3.4.2 Objective functions 

As is mentioned in Section 3.3.1, there are three objective 
functions: 
1. MCT: It is equal to the finishing time of the last 

completed task: max( )t FT= . 
2. ANAC: Communication connections change when 

a task completes. If no task is immediately ready, 

the motif disconnects all its connections to prevent 
enemy snooping. 
We calculate the number of altered connections for 
a single task according to 

( ) ( ) ( ) (1,1,1,2,2,3,3)Tr k c k s kn t m t m t= - !    (7) 
where ( )c km t  is the total motif vector of tasks 
completed at time kt , ( )s km t is the total motif 
vector of tasks starting at time kt (if no task starts, 
( )s km t  is 0). The number of total altered 

connections is  
( )

j c

r k
t t

n n t
Î

=å                           (8) 

where kt  is a collection of all task completion times. 
3. ANWU: The number of working UAVs changes 

when a task completes. s eT t t= È  is the set of all 
times, ordered from smallest to largest in the set. 
The number of working UAVs from T(i) to T(i + 1) 
is 

( ) ( )
( ) ( 1)

( ) (2,2,2,3,3,4,4)
s
e

T
k

t k T i
t k T i

s i m
£
³ +

= å !      (9) 
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The average number of working UAVs is 
( )

1

1 ( )
( )

n T

i
s s i
n T =

= å                         (10) 

4. Planning Scheme Optimization through an 
Improved NSGA-III Algorithm 

The MDLS algorithm generates a mission planning 
scheme from the task priority execution order. The 
computational complexity increases dramatically with 
the number of tasks and their related priorities.  
To efficiently solve the mission planning problem, we 
use a multi-objective evolutionary algorithm (MOEA) 
heuristic called NSGA-III, which has been demonstrated 
to outperform most MOEA approaches on multiple 
objective benchmarks.29. We also apply adaptive genetic 
operators in the generation of offspring population and 
propose an improved NSGA-III algorithm for better 
performance in this application. Specifically, the 
probability of crossover operation and mutation are no 
longer constant. Instead, we adjust them according to the 
non-dominated sorting levels of chromosomes. 
Chromosomes with high rankings in the sorted 
population have a higher probability of crossover and 
lower probability of mutation, which helps preserve good 
chromosomes. The use of adaptive genetic operators 
accelerates the determination of the Pareto set. 
The following subsections present the components of our 
algorithm.  Additional details are available in [29]. 

4.1 Framework of the Algorithm 

NSGA-III algorithm is an elitist ( + )µ l  approach, as is 
shown in Fig. 6. It can preserve the elite population 
members. 
 

 

Fig. 6 +µ l（ ） elitist framework. 

The NSGA-III algorithm applies the general framework 
of the NSGA-II algorithm30, which consists of population 
initialization, reference point generation, genetic 
operators, non-dominated sorting, adaptive 
normalization, association operations, and niche-
preservation operations, as is seen in Fig.7. 
We use two adaptive functions to indicate the probability 
of crossover and mutation. Population members which 
perform well have a higher probability of crossover and 
lower probability of mutation, which helps preserve good 
chromosomes. Because the probability of the crossover 
operation and mutation of a chromosome is decided by 
its nondominated sorting level, we add non-dominated 
sorting of population P before the crossover operation 
and mutation. 
Unlike other MOEAs, population sorting and selection 
among population members in the NSGA-III algorithm 
is aided by supplying and adaptively updating a number 
of well-spread reference points on a normalized 
hyperplane. 
Initially, random N candidate population members, P and 
H reference points, R are generated. The candidate 
population members and reference points are then 
evolved for a fixed number of generations. In each 
generation t, parent population tP  is first classified into 
non-dominated levels. Then tP is subjected to adaptive 
genetic operators to produce N offspring tC according to 
parent chromosomes’ non-dominated levels. tP  and tC  
are then pooled respectively, and the combined 
population is classified into non-dominated levels. We 
select population members from level 1 until the number 
of selected population members is greater than or equal 
to N. If the number of population members from level 1 
to level l exactly equals N, no further operations are 
needed. If the number is greater than N from level l, then 
we sort population members and choose k members of 
them from level l according to their association with the 
reference points. 
It is worth noting that each solution is a task priority 
execution order which is subjected to all task priority 
chains. First, we must guarantee that each solution in the 
initial population is feasible, i.e., conforming to all task 
priority chains. As a result, we design a solution 
generator to generate the eligible initial population. 
During the genetic process, in order to prevent producing 
ineligible solutions in the offspring, we use a segment 
crossover operator and introduce a heuristic mutation 
operator. 
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Fig. 7. The improved NSGA-III framework graph 

We present the improved NSGA-III algorithm in 
Algorithm 2.  
Line 1 initializes the offline archive BestF to the empty 
set ∅. 
Line 2 initializes level l population members needing 
association with reference points and selection to 1. 
Line 3 initializes population members on from level 1 to 
level l-1 to empty set ∅. 
Line 4 initializes population members on level l to empty 
set ∅. 

Lines 5 and 6 generate the initial population P 
conforming to all task priority chains and the initial 
reference point set R. 
Line 8 calculate objective functions of the current 
population. 
Line 9 performs a non-dominated sorting operation on 
the population P,	 dividing population members into 
different non-dominated levels. 
Lines 10 and 11 perform the crossover operation on the 
population and calculate the objective functions for the 
resulting offspring population. 
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Lines 12 and 13 perform the mutation operation on the 
population and calculate the objective functions for the 
offspring population resulting from mutation. 
Lines 14 through 16 sorts the combined population 
members on different levels, adaptively normalizes the 
population members from levels 1 to l, and selects N 

population members from members on levels 1 through 
level l through their association with reference points. 
 Line 18 performs a non-dominated sorting operation on 
the population of the last generation P and archives non-
dominated population members in BestF. 

Algorithm 2. The improved NSGA-III algorithm 
 

 

Input: Initial population members, P of size N, maximum number of generations, 
maxGen, the number of objectives, M, the number of divisions along each 
objective, p, reference points, R of size H, crossover probability, pc, mutation 
probability, pm 

Output: P, BestF 

1 BestF ;¬Æ   
2 l=1; 
3 P1 ;¬Æ  (P1 are population members on level 1 to level l) 
4 P2 ;¬Æ  (P2 are population members on level l) 
5 P¬  generatepopulation(N); 
6 R¬  generatereferencepoints(M,p);  
7 for t¬1 to maxGen 

 

 

8       F_P¬objectiveFunction(P); 
9       Non-dominated sorting(P); 
10     Oc¬Crossover(P,pc); 
11     Fc¬objectiveFunction(Oc); 
12     Om¬Mutate(P,pm); 
13     Fm¬objectiveFunction(Om); 
14     (JointP,JointF)¬multisetUnion(P,Oc,Om,F,F_c,F_m); 
15     (P1,l,P2,K)¬nondominatedsorting(JointP,JointF); 
16     P2N¬normalization(P1,P2); 

 
  

17     P¬Associationandselection(P2N,K,R); 
18 end 
19 BestF¬nondominatedsorting(P); 

 
 
 

4.2 Eligible Population Generator 

Members in a population must conform to the orders in 
all task priority chains. First, the input population must 
be feasible, i.e., with all members meeting all task 
priority chains. To ensure this, we randomly select a 
ready task over that tasks have a priority over have been 
selected out. Next, we update all task priority chains by 
removing the selected task. We then select a ready task 

and update the task priority chains again until all tasks 
are selected out. Finally, we generate an eligible task 
priority execution order. This process is repeated until an 
initial population conforming to all task priority chains is 
filled. 

4.3 Crossover Operator 

This operator performs crossover determinations on the 
chosen parent chromosomes to generate the offspring 
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chromosomes. First, we select a random pair of 
chromosomes from the population. We use a varying 
probability pc determined by. 

1 21 1

1
2 2l lpc - -=

×
                              (11) 

where l1and l2 are the non-dominated levels of the two 
chromosomes. They are calculated during the non-
dominated sorting of population P. By including the 
adaptive probability, chromosomes which perform well 
are more likely to crossover. This speeds up convergence 
and determination of the Pareto set. 
In order to keep chromosomes feasible after crossover 
operation, we use a segment crossover operator. The 
middle point located at / 2TNé ùê ú divides parent 

chromosomes into two gene segments. Gene segment 1 
is from 1 to / 2 1TN -é ùê ú , and gene segment 2 is from 

/ 2TNé ùê ú  to TN . The new offspring chromosome is 
constructed by leaving gene segment 1 unchanged and 
constructing gene segment 2 based on the sorting of these 
tasks in another parent chromosome. This is known as a 
segment crossover, which maintains the relative orders of 
tasks in chromosomes. Fig. 8 provides an example of the 
crossover operator. Chromosome 1 is on non-dominated 
level 2 and chromosome 1 is on non-dominated level 3. 
The probability of crossover operation is 

2 1 3 1

1 1=
82 2

pc
- -

=
×

. 

 
 

 

Fig. 8. Crossover operation example 

4.4 Mutation Operator 

This operator performs mutation on the chosen parent 
chromosome to generate an offspring chromosome. First, 
a percentage mu of chromosomes are selected out one by 
one from Pc for mutation. When a chromosome is 
selected, a random number is generated. If this number is 
less than or equal to mu, a mutation operation is 
performed on this chromosome. Otherwise, processing 
advances to the next chromosome. 
After a chromosome is selected out, the probability of the 
chromosome mutation is determined by. 

1

1
2l

pm -=                                   (12) 

where l is the non-dominated level of the chromosome. 
Population members whose non-dominated ranking is 
near the front have a smaller probability of mutation. The 
adaptive mutation operator attempts to preserve solutions 
that perform well. 
This mutation operator performs mutation by exchanging 
points. The algorithm determines whether or not there is 
a point that can be exchanged with a selected point. If 
neither the point before nor the point after can be 
exchanged with the selected point, mutation of the 
selected point cannot occur. In that event, we randomly 

select another point and repeat the test until reaching a 
point which can be exchanged. This point is indicated by 
pi. 
After selecting pi, we calculate the exchangeable range 
of pi. We select all previous tasks of pi in all priority 
chains. If it did not exist, it is denoted as 0. We archive 
these points in the previous task set Bi. Similarly, we 
select the next task for pi and, if it did not exist, denote it 
as 1TN + . We archive these points in the next task set Ai. 
The range [b,a] (bÎB, aÎA), represents a gene segment 
from b to a in the chromosome. The exchangeable range 
of pi is [bi,ai], which contains the fewest points in the 
chromosome. To ensure a diversity of mutation, we first 
determine all points in [bi,ai] that could be exchanged 
with pi and then select one of them randomly. Algorithm 
3 shows the pseudocode steps. 
Figure 9 provides an example of the mutation operator. 
The task priority chains are 2-1-6-7, 2-4-3, and 8-6-5-9. 
We randomly choose 4 and find the set {1,8,6} which can 
be exchanged with 4. Next, we choose 8 for the exchange 
and obtain a new offspring chromosome. The 
chromosome’s non-dominated level is 3. The probability 

of mutation is 
3 1

1 1=
42

pm
-

= . 
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Algorithm 3. Function mutation operator (P, pc, mu) 
 

Input: Initial population members, P of size N, mutation percentage, mu, mutation 
occurring probability, pm, priority order chains, Tor 

Output: Offspring Om 
 1 Pc¬  popselection(P, pm); 
 2 t=1; 
 3 while t N pc 
 4   k¬  random(0,1); 
 5   if k>mu 
 6      Om(t)¬chromosome(t); 
 7      k=k+1; 
 8   else pi¬ rand(random( (0, )TN )); 
 9      if pi is not exchangeable 
10        Go to line 7; 
11        else C¬ exchangeableset(chromosome(t),Tor,pi); 
12        q¬ rand(random( (0,| |)C )); 
13        Om(t)¬exchange(chromosome(t),pi,C(q));          
14      end 
15   end      
16 end 

 
 
 
 

 

Fig. 9. Mutation operator example 

5. Case Study 

We performed our experiment with a mission consisting 
of 6 CUAVs, 20 DUAVs, 19 RUAVs, 17 AUAVs, and 
12 RAUAVs. The percentage of each type of UAVs has 
important impacts on the results. It will greatly limit the 
concurrent completion of tasks. It is a complicated 
process to study the relation between the percentage of 
UAVs and the results. The case study is based on the 
fixed number of UAVs. 
The mission included capturing a power station, 
capturing a waterworks and destroying a command 
center. The mission geographic layout is shown in Fig.10. 
We used the goal decomposition method to decompose 
the mission into 15 detailed tasks, as is shown in Fig.11.  

 

Fig. 10. Geographic constrains for the case. 
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Fig. 11. Mission decomposition diagram. 

These tasks have two kinds of correlations among them: 
task priority and precedence. We calculated the numbers 
and types of motifs required to complete each task as 
given in Table 1 along with the task estimated times. The 

task priority chains were T9-T10-T14-T15, T4-T1-T2, 
and T8-T7-T3. The task precedence orders were T7-T3 
and T14-T10.

 

Table 1. Detailed information of tasks. 

 motif M1 M2 M3 M4 M5 M6 M7 time (min) 

task 

T1 1 0 3 2 0 1 2 15 

T2 3 1 1 2 1 0 0 8 

T3 3 3 0 2 3 1 1 7 

T4 2 3 3 1 2 1 1 12 

T5 1 2 1 2 0 1 1 11 

T6 1 1 2 1 0 1 0 6 

T7 2 0 1 2 1 0 1 8 

T8 3 3 2 3 4 3 2 6 

T9 4 2 3 3 2 1 2 7 

T10 2 1 2 1 0 2 1 10 

T11 1 2 1 3 1 2 1 11 

T12 2 3 1 1 1 0 1 8 

T13 3 0 1 2 2 1 0 10 

T14 1 1 2 0 1 0 0 12 

T15 2 0 0 1 1 1 1 15 

As we explained in the introduction, the selection of the 
best mission strategy is a difficult problem. We wanted 
to optimize the three combat effectiveness indexes 
simultaneously. We encoded the solutions and used the 

improved NSGA-III algorithm to solve this problem 
using the parameters given in Table 2. 
We applied both the improved and original algorithms to 
solve this problem. Figs. 10 provides the 3D and 2D 
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results of the last generation got by two algorithms. Red 
circles represent the last generation obtained from the 
original NSGA-III algorithm. 

Table 2. Algorithm parameters 

Parameters Values 

Population size N 100 
Maximum generations maxGen 50 
Divisions on each axis 10 
Mutation percentage mu 0.3 

 
Blue stars (*) represent the last generation from the 
improved NSGA-III algorithm. Figure 12 includes a 3D 
representation of the population members of the last 
generation, showing three objects. As shown in the 3D 
figure in Figure 10, blue * are nearly covered by red 
circles, i.e. blue stars are dominant over red circles. 
Population members in the last generation obtained by 
the improved NSGA-III are dominated over those 

obtained by the original NSGA-III algorithm. Figure 12 
also depicts a 2D figure of the population members where 
each represents 2 objectives of the 3. These figures show 
that solutions can achieve better combat effectiveness 
obtained by the improved NSGA-III algorithm than the 
original NSGA-III algorithm. In summary, the improved 
NSGA-III algorithm is more efficient than original 
NSGA-III algorithm. 
From Fig.12, we also observe that the mission 
completion time had a significant negative relationship 
with the average number of used UAVs. In other words, 
a mission planning strategy for UAV swarms which 
causes fewer communication delays will cost more time. 
Based on the specific requirements of a battle, 
commanders can choose a mission plan from the non-
dominated points. For example, if commanders give 
priority to completion time, it should be the first 
parameter taken into consideration to ensure the 
completion time of the mission, with the other functions 
optimized as much as possible beyond that. 

 

 

Fig. 12. Comparisons of Pareto front of the last generation got by two algorithms 

We used the simple case study to validate the feasibility 
and effectiveness of the proposed mission planning 

method. In the case study, the number of UAVs is small 
and the percentage of each type of UAVs is fixed. The 
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method is also applicable when the number of UAVs 
grows or the percentage of UAVs changes. In the paper, 
we did not take war loss of UAVs into consideration. 
When considering the war damage, we should use a time 
dependent function related to the war loss instead of a 
fixed number to indicate the total number of UAVs. We 
will continue to study it in our future work. 

6. Conclusions and Future Work 

In this paper, in order to solve the mission planning 
problem under conditions of limited communication, we 
proposed a mission planning model using motifs as the 
basic task units. Furthermore, given the task execution 
ordering, we used the MDLS algorithm to schedule 
UAVs. As a result, selecting a good task execution order 
was key to a mission planning strategy. To achieve 
mission goals optimally, we used an improved NSGA-III 
algorithm optimize task execution order. Our process 
obtains a set of non-dominated solutions from which 
commanders can choose the most adequate one. We 
demonstrated the feasibility and effectiveness of the 
algorithm through a case study validation. 
Due to time limitations, there are some shortcomings to 
our study. First, we simplified calculations by 
disconnecting all CUAVs from motifs at task completion. 
Furthermore, during a connection change, redundant 
motifs disconnect all internal connections, and single 
UAVs construct new motifs. These two practices do 
minimize the number of altered connections. Second, the 
percentage of each type of UAVs in the case study is 
fixed. Third, we did not take war loss of UAVs during 
combat process into consideration. 
In the future, we plan to use an optimization algorithm to 
minimize the number of altered connections during the 
reconfiguration process. Furthermore, we would like to 
study the relation between the percentage of UAVs and 
the scheme evaluation indexes through setting 
contrastive experiments. In addition, we would take war 
loss of UAVs into consideration. We will find 
appropriate functions to represent the war loss of UAVs. 
We will replace fixed numbers with UAV number 
functions to indicate numbers of each type of UAVs in 
MDLS algorithm. 
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