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Abstract 

Convolutional Neural Network (CNN) has become an increasingly important research field in machine learning and 
computer vision. Deep image features can be learned and subsequently used for detection, classification and 
retrieval tasks in an end-to-end model. In this paper, a supervised feature embedded deep learning based tire defects 
classification method is proposed. We probe into deep learning based image classification problems with 
application to real-world industrial tasks. Combined regularization techniques are applied for training to boost the 
performance. Experimental results show that our scheme receives satisfactory classification accuracy and 
outperforms state-of-the-art methods. 
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1. Introduction 

There has been an increasing interest in the use of NDT 

techniques of defects from steel [1], castings [2], [3], 

textile [4], TFT-LCD panel [5], nanostructures [6], [7], 

titanium-coated aluminum surfaces [8], and 

semiconductors [9] etc. Among these topics, tire defects 

inspection research is a significant research topic that 

has been investigated by researchers from both academy 

and industry areas over the past few decades [10], [11], 

[12], [13], [14] and is considered as one of the most 

challenging problems in industrial information 

revolution era [15] due to its unique properties 

illustrated in our previous study [11]. Much work has 

been done on automatic tire defect detection and has 

been applied in tire X-ray inspection systems to carry 

out computer vision based automatic defect inspection. 

Tire defect classification is one of the three steps in 

computer vision (radiographic) based tire inspection in 

which the first step is an X-ray imaging system, the 

second is defect detection and the last one is defect 

classification. However, in most real-world applications 

tire defect classification and defective products handling 

thereafter still require human observers. The reason for 

this is that the complexity, high-variety, and high 

dynamic range real-world defect pattern cannot be 

described with analytical equations. Because the 

dynamics are either too complex or unknown and 

traditional shallow methods, which contain only a small 

number of non-linear operations, do not have the 

capacity to accurately model such complex data [16]. In 

previous work, low-level features were used for tire 

Received 7 January 2017  

Accepted 8 May 2018  

 
___________________________________________________________________________________________________________

Copyright © 2018, the Authors.  Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1056

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1056-1066



defects detection and classification. In [11], optimal 

scale and threshold parameters were selected to 

distinguish defect edges from the background textures 

using wavelet multi-scale features. To model complex 

real-world data, exquisite features, either supervised or 

semi-supervised, are selected to capture relevant 

information in classification tasks. 

However, on the one hand, developing domain-specific 

features for each specific task is expensive, time-

consuming, and requires expertise of the data. On the 

other hand, unsupervised feature learning [17], [18] is 

an alternative to learn feature representations from 

unlabeled data which would result in performance 

degeneration because of overfiting when a large number 

of features are utilized. Dimensionality reduction and 

feature selection techniques have been applied to 

address the problem of dimensionality, which is 

becoming a significant branch in the machine learning 

and data mining research area [19], [20]. 

Deep networks, with the goal of learning to produce a 

useful higher-level representation from the lower-level 

representation output by the previous layer from 

unlabeled data, are motivated in part by knowledge of 

the layered architecture of regions of the human brain 

such as the visual cortex, and in part by a body of 

theoretical arguments in its favor [21]. Deep networks 

have been used to achieve state-of-the-art results on a 

number of benchmark datasets for solving difficult 

artificial intelligence (AI) tasks. A variety of deep 

learning algorithms have been proposed, e.g., Deep 

sparse auto encoders (Bengio) [22], Stack sparse coding 

algorithm [23], Deep Belief Network (DBN) (Hinton) 

[24] and their extrapolations, which learn rich feature 

hierarchies from unlabeled data and can capture 

complex invariance in visual patterns. In recent 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) competitions [25], deep learning methods 

have shown to be successful for computer vision tasks 

by extracting appropriate features while jointly 

performing discrimination and thus have been widely 

adopted by different researchers and achieved top 

accuracy scores [26], [27]. There have been applications 

based on these techniques in diverse vision tasks. In 

[28], Shi and Zhou et al. proposed a stacked deep 

polynomial network based representation learning 

method for tumor classification. A discriminant deep 

belief network was proposed in [29] to characterize 

SAR image patches in an unsupervised manner in which 

weak decision spaces were constructed based on the 

learned prototypes. Various deep learning approaches 

have been extensively reviewed and discussed in [27]. 

However, much work has been done in the deep 

learning community, researchers focus mainly on 

developing models for static data and not so much on 

optimal representation for practitioners in real-world 

applications, e.g., what makes a optimal representation 

for practitioners in real-world applications; and can 

unsupervised pre-training criteria be applied to initialize 

deep networks for better classification? 

In this work, a supervised feature embedded deep 

learning based tire defect classification method is 

proposed. We probe into deep learning based image 

classification problems with application to real-world 

industrial tasks. The deployment of deep neural 

networks in industrial application domains are well 

explored and discussed. 

This paper is organized as follows. Section 2 provides 

an overview of deep learning model and architecture. 

Starting from the related work of CNN based deep 

feature learning and Caffe (Convolution Architecture 

for Feature Embedding, Caffe) framework, we discuss 

related existing works and present a generalized 

formulation of the state-of-the-art AlexNet architecture. 

In section 3, we describe the dataset used in this work 

and introduce data preparation and augmentation 

processes. Section 4 presents experiments that 

qualitatively study of classification accuracies for each 

tire defect category and validates the effectiveness of 

the scheme compared with other state-of-the-art 

methods using the same dataset. Section 5 summarizes 

our findings and concludes our work. 

2. Deep Network Model for Learning 

Representations 

Different from the general idea of face recognition, 

universal object recognition, which aims at learning 

thousands of objects from millions of images, is 

becoming a booming research field while still is a huge 

challenge for the reason that datasets contain a huge 

number of features, noise, and a variety scale of 

different objects which exceeds the capacity of 

traditional classification schemes. The problem to be 

addressed in this work however, faces similar 

difficulties such as multiple categories, scale varieties, 

magnanimous features and noise.  
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To describe object instances, various local features such 

as Scale Invariant Feature Transform (SIFT) [30] and its 

variants like Speeded-Up Robust Features (SURF) [31] 

etc., binary descriptors including FREAK [32] and 

BRISK [33], are extracted, with or without embedding 

them into Global Features Representations. For example, 

BRISK is a 512-bit binary descriptor that computes the 

weighted Gaussian average over a select pattern of 

points near the key point. However, in some real-world 

applications, existing classification methods using a Bag 

of Words model based on low level features and global 

representations as well cannot yield satisfactory 

presentations, especially when the high-level concepts 

in the user’s mind is not easily expressible in terms of 

the low-level features as is shown in Fig. 1. 

In recent years, by virtue of its appropriate features 

representation and their jointly discrimination, deep 

networks have been shown to be successful for 

computer vision tasks [34], [35] and have outstripped 

traditional techniques in the ILSVRC (ImageNet Large 

Scale Visual Recognition Challenge, ILSVRC) which 

has become the standard benchmark for large-scale 

object detection as well as image classification since 

2010. In 2012, as the major milestone of deep learning 

based methods AlexNet [36] trained on ImageNet 2012 

reached a great success in the ILSVRC after which deep 

learning based methods such as ZF [37]，SPP [38] and 

VGG [39] choose AlexNet as their baseline deep model 

and also achieved excellent performance. Thereafter 

more approaches [38], [40], [41] were proposed based 

on the scheme by fine-tuning the parameters according 

to their specific applications. However, few toolboxes 

or trained models of published results offer truly off-

the-shelf deployment of state-of-the-art models such 

that they are not sufficient for real-world applications or 

even commercial deployment.  

To address such problems, a fully open-source 

framework Caffe was proposed to afford clear access to 

deep architectures [42]. Caffe is an open-source deep 

learning framework for state-of-the-art deep learning 

algorithms and a collection of reference models. The 

framework provides a complete toolkit for training, 

testing, fine tuning, and deploying models. Moreover, it 

is one of the fastest available implementation of these 

algorithms, making it immediately useful for industrial 

deployment. In this work, we address the tire defects 

classification using deep learning based on convolution 

neural network under the Caffe framework. 

Compared with previous schemes such as Cifar 10 and 

LeNet, AlexNet has been improved by Hinton et al. by 

adding Rectified Linear Units (ReLU) nonlinearity and 

Dropout [43] model regularization strategy at fully-

connected layers which make it several times faster than 

their equivalents and prevent substantial overfitting at 

the same time. Fig. 2 shows the flowchart of the 

proposed tire defects classification scheme. 

 

Fig. 2.  The flowchart of the proposed tire defects classification scheme. 

   
(a)                   (b)                    (c) 

   
(d)                   (e)                    (f) 

Fig. 1.  Low level features of tire radiography image. (a) Brisk; 
(b) FAST; (c) Harris; (d) MinEigen; (e) MSER; and (f) SURF. 
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2.1. Network architecture 

As a milestone of CNN based deep learning scheme, 

AlexNet has a significant architecture. As is shown in 

Fig. 3, in this work there are five convolutional layers 

namely conv1, conv2, conv3, conv4 and conv5 with 

kernel sizes 11×11, 5×5, 3 × 3, 3 × 3 and 3 × 3 pixels 

respectively. Considering the geometric dimensions and 

scales of tire defects in the dataset, we set the fixed-

resolution (127 × 127) images as the input to the first 

convolutional layer which with 96 kernels of size 11 × 

11with a stride of 4 pixels. The second convolutional 

layer filters the output of pooled output of the first 

convolutional layer with 256 kernels of size 5 × 5 and 

with a stride of 1 pixel. The pooled output of the second 

convolutional layer is connected to the rest three 

convolutional layers without using any pooling layers 

with 384, 384 and 256 kernels of size 3 × 3 and with a 

stride of 1 pixel respectively. The fifth convolutional 

layer is followed by a max-pooling layer and two fully-

connected layers which have 4096 neurons each. Finally, 

the output of the last fully-connected layer is fed to soft 

max which produces a distribution over the 6 class 

labels as is shown in Fig. 3. 

Table I. Network architecture. 

 

 

 

 

 

 

 

 

 

 

 
 

In this architecture, three max-pooling layers are used 

after the first, second and fifth convolutional layers with 

the pooling size of 32 pixels and the stride of 2 pixels. 

In each fully-connected layer, ReLU non-linearity 

activation function is applied for a better convergence 

speed than that using sigmoid and tanh activation 

functions. A more detailed configurations and primary 

parameters of the CNN model are listed in Table I. 

2.2. Pre-training and fine-tuning 

Consider that our dataset has limited quantities of 

samples, in this work we used a pre-trained network on 

ImageNet to initialize the networks with pre-trained 

parameters and thus to accelerate the learning process 

and to improve the generalization ability. Moreover, 

data augmentation and dropout techniques were used to 

regulate data. 

There are many research works indicated the feasibility 

and efficiency of transferring the pre-trained model to 

new tasks with a variety of datasets [44]. They indicated 

how well features at that layer transfers from one task to 

another and concluded that initializing a network with 

transferred features from almost any number of layers 

can give a boost to generalization performance after 

 

Fig. 3.  The flowchart of the proposed tire defects classification scheme. 

Layer Type Maps & neurons Kernel Stride 
0 Input 3 maps of 127×127 neurons   
1 Convolutional 96 maps of 30×30 neurons 11×11 4 
2 Max pooling 96 maps of 15×15 neurons 3×3 2 
3 Convolutional 256 maps of 15×15 neurons 5×5 1 
4 Max pooling 256 maps of 7×7 neurons 3×3 2 
5 Convolutional 384 maps of 7×7 neurons 3×3 1 
6 Convolutional 384 maps of 7×7 neurons 3×3 1 
7 Convolutional 256 maps of 7×7 neurons 3×3 1 
8 Max pooling 256 maps of 3×3 neurons 3×3 2 
9 Fully connected 4096 neurons 1×1 1 
10 Fully connected 4096 neurons 1×1 1 
11 Fully connected 6 neurons 1×1 1 
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fine-tuning to a new dataset. To adapt the pre-trained 

nets to our specific classification task, fine-tuning 

process is necessarily of great concern. We use the pre-

trained AlexNet model to initialize all layers except the 

output layer in which a limited number of category 

labels are used compared with that in the ILSVRC.  

Class labels are given for our new training dataset to 

compute the loss functions. Moreover, in this work, we 

decrease the spatial resolution of each hidden layer, and 

thus to increase the number of feature plane in order to 

detect more types of features for tire defects. A more 

detailed network architecture that illustrates the fine-

tuning process will be given in Section 4. 

The most direct way to improve the feature 

representation or classification ability of CNNs is to use 

a deeper network and more neurons, namely deeper and 

wider. However, deeper networks also bring over-fitting 

problem. Existing studies have shown that dropout 

technique helps preventing overfitting even though this 

roughly doubles the number of iterations required to 

converge. Because the neurons which are “dropped out” 

do not contributed to the forward pass and do not 

participate in backpropagation. A neuron cannot rely on 

the presence of particular other neurons. In this work, 

we use dropout in the first two fully-connected layers 

with dropout_ratio=0.5 as is shown in Fig.3. 

3. Dataset 

3.1. Data Source 

In this work, a dataset composed of 1582 images 

belonging to 6 typical defect categories, namely Belt-

Foreign-Matter (BFM), Sidewall-Foreign-Matter (SFM), 

Belt-Joint-Open (BJO), Cords-Distance (CD), Bulk-

Sidewall (BS) and Normal-Cords (NC), was used to 

perform the tire defect classification experiments. The 

images were collected from a typical tire manufacturing 

enterprise in China. Source images were derived from 

real-world defect detection system at the end of the 

manufacturing line and thereafter were labeled manually 

by human labelers. Moreover, the proportion of defect 

samples is consistent with that of the production line. 

Fig. 4 shows sample synopses of the evolving dataset. 

       

        

        

      

     

Fig. 4.  Sample synopses of the evolving dataset (Some of the images above were scaled for better visual effect). From top to bottom: 
Sidewall-Foreign-Matter, Belt-Foreign-Matter, Belt-Joint-Open, Bulk-Sidewall, Cords-Distance.  
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3.2. Data Preparation and Augmentation 

According to the statistics on the tire defects dataset, it 

consists of variable-resolution defect images arrange 

between 50×50 and 200×500 pixels due to the 

uncertainty of tire defects occurrences in the production. 

In order to meet the requirements of a constant input 

dimensionality of the classification scheme, characterize 

tire defects to the maximum extent and reduce 

computational complexity at the same time, the images 

in the dataset were down-sampled or up-sampled to a 

fixed resolution of 127×127. Given a rectangular image, 

we first rescaled the image such that the shorter side 

was of length 127, and then cropped out the central 

127×127 patch from the resulting image. We did not 

pre-process the images in any other way, except for 

subtracting the mean activity over the training set from 

each pixel. Therefore, aiming at practical applications, 

raw gray values of the pixels are used in this work. 

In deep learning based tasks, sufficient amount of data 

is usually needed to avoid severe overfitting problem. 

Under different applications, the geometric 

transformation of the image using one or more 

combination of data augmentation transform can be 

used to increase the amount of input data. In AlexNet, 

two forms of data augmentation were employed: image 

translations and horizontal reflections and altering the 

intensities of the RGB channels while in Fast R-CNN 

[45] only horizontal flip was used. In this work, we 

abandon altering the intensities of the RGB channels 

given that the radiographic images are in gray value in 

our dataset and add reflection, zoom, scale and contrast 

translations to produce more training examples with 

broad coverage. 

4. Experiments and Discussion 

The performance of the proposed deep learning scheme 

was evaluated by applying it to our tire defects dataset. 

For test, 20% of each defect category were selected 

randomly as test dataset, another 20% of each defect 

category are selected randomly as validation dataset, 

and the rest were selected as training dataset. Ten 

groups of selections were used for experiments and their 

mean classification accuracy was taken as the final 

results. 

We use images with fixed resolution of 127×127 as the 

input of the network which would convolve and pool 

the activations repeatedly, then forward the results into 

the fully-connected layers and classify the data stream 

into 6 categories. Considering the small quantities of 

validation dataset, to prevent the error descending too 

fast we set the initial learning rate base-lr as 0.001. For 

test dataset, we set test batch volume batch as 246, test 

batch test-iter as 1, and test interval test-interval=200, 

namely test once every 200 iterations and displays 

classification accuracy. Unlike AlexNet in which two 

GPUs are used, in this work we set the solver_mode as 

CPU. The remaining parameters of the deep architecture 

were the same as the default parameters in the CaffeNet 

optimization model. 

Fig. 5 shows the filters on the first convolutional layer 

(upper left), and the second convolutional layer (upper 

right) of the network and filtered features respectively. 

Notice that the weights of the first convolutional layer 

are smooth and without noisy patterns, indicating nicely 

converged network while the second convolutional layer 

weights are not as interpretable, but it is apparent that 

they are still smooth, well-formed which would 

guarantee high regularization strength to avoid 

overfitting. 

  
    (a)                                             (b) 

  
    (c)                                             (d) 

Fig. 5.  (a) Filters on the first convolutional layer, and (b) the 
second convolutional layer of the network, (c) and (d) filtered 
features respectively. 
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In the three fully-connected layers, Fc6 and Fc7 are 

hidden layers with 4096 neurons while Fc8 is the soft 

max output layer of 6 categories. Fig. 6 (upper row) 

shows the statistics of Fc6 and Fc7 in which the 

horizontal axis represents the number of neurons and the 

vertical axis represents each neuron's response value. 

Fig. 6 (bottom row) shows the histogram respectively, 

the horizontal axis is the neuronal response value, the 

vertical axis is the number of occurrences of each 

response value. 

Fig. 7 illustrates the classification accuracy versus loss 

relation graph in which the horizontal axis denotes the 

number of iterations while the left vertical axis 

representing the value of the loss function (LF) and the 

right vertical axis denotes the average validation 

recognition rate. The loss function represents the price 

paid for inaccuracy of predictions in classification and 

therefore measures the optimal strategy. The smaller the 

LF value is the better the system is. As can be seen in 

Fig. 5, after 1200 iterations the loss curve tends to zero 

while the classification accuracy curve tends to 1 which 

meet the requirements of the optimization objectives. 

The validation classification accurate reaches as high as 

0.98374 when the iteration is 1200 while decreases to 

0.97561 when the iteration is 2000 and, the actual test 

accuracy is 0.94521. 

Table II shows the detailed classification accuracies for 

each tire defect category. As is shown that the overall 

classification accuracy reaches 96.51% for all categories. 

Correct classification accuracy for BS defect is the 

lowest, 88.89%, while SFM and BFM defects own the 

highest correct classification accuracies, 100%, among 

all categories. BS defects were mainly mistakenly 

classified as normal cords which is because the weak 

edge of tire BS defect is too weak to be extracted by the 

feature representation scheme. Most of BS defects can't 

be identified even by qualified human observers as is 

shown in Table II.  

 

 

 

Fig. 7.  The relation between classification accuracy and 
the loss function value. 

 

Fig. 6.  The statistics of fully-connected layers (Fc) Fc6 and Fc7. 
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Table II. Detailed classification accuracies for each tire defect categories. 

Positive/Negtive 

classification 
SFM BFM BJO CD BS NC 

Correct 

classification 

Total 

sample 

Accuracy 

% 

SFM 68 0 0 0 0 0 68 68 100 

BFM 0 53 0 0 0 0 53 53 100 

BJO 0 2 50 0 0 0 50 52 96.15 

CD 0 0 0 53 1 1 53 55 96.36 

BS 0 0 0 0 40 5 40 45 88.89 

NC 0 0 0 0 2 41 41 43 95.35 

Total sample       305 316 96.51 

On the other hand, the scheme reached satisfactory 

classification accuracies for other tire defect categories, 

especially for SFM and BFM defects, 100% accuracies 

were reached. Deep learning is almost the only end-to-

end machine learning system available in which the 

most expressive deep features can be learnt and 

classified automatically. This mechanism therefore is 

consistent with the human visual process. 

To validate the effectiveness of the scheme, we 

experimented on available state-of-the-art methods for a 

general comparison on the same dataset, shown in Table 

III. We experimented PCA+BP neural network, 

ScSPM09 [46], LLC10 [47], KSPM-200-3 [48], KSPM-

400-2 [48] and LeNet [49] methods. Here in KSPM-

200-3 method, we set dictionary size N=200 with a 3 

layer pyramids structure while in KSPM-400-2 we set 

N=400 with pyramid structure of 2 layers. SIFT features 

were used in ScSPM09, LLC10 and KSPM methods, 

and linear SVM classifier was used in ScSPM09 and 

LLC10 methods while in KSPM-200-3 and KSPM-400-

2 methods nonlinear SVM classifier was used. As is 

shown in Table III that our method outperformed state-

of-the-art methods on our tire defect dataset with the 

overall classification accuracy of 96.51% and validation 

classification accuracy of 98.37%. 

Table III. Comparison on state-of-the-art methods using the same dataset. 

Methods Overall 

Accuracy % 

Validation 

Accuracy % 

Test times 

In second 

PCA+BP  69.44 / 30.23 

ScSPM09 95.56 / 84.67 

LLC10 94.85 / 22.37 

KSPM-200-3 92.77 / 15.26 

KSPM-400-2 92.37 / 15.35 

LeNet 91.89 93.46 26.36 

Our method 96.51 98.37 37.16 

Notice that the validation classification accuracies are 

slightly better than the test overall classification 

accuracies in both LeNet and our method. There are two 

reasons for this. Firstly, insufficient training samples 

were used. And secondly, parameters were not 

optimized. Given that tires are of nonlinear composite 

material structure, the manufacturing process is 

complicated such that there are a broad variety of tire 

defects with different shapes, scales, positions and gray 

levels etc. that consist of large number of features in 

both foreground and background of radiographic images. 

On the other hand, deep nets have a too large number of 

parameters to be trained that only large quantities of 

training samples can be sufficient for training a network 

with strong generalization capability. ScSPM09 and 

LLC10 are two successful sparse coding based methods 

that have been extensively studied and applied in 

various domains. Both of them received acceptable 

classification accuracies however, in the two methods 

and KSPM method researchers need to be involved in 

the extraction of image features and the selection of 

classifiers. Most importantly, these selections would 

affect the classification accuracies directly. 

Compared with these methods, the proposed scheme 

outperformed them in classification by virtue of the 

advantages of CNNs such as well-matched topology 

structure of the input image and the network, weight 

sharing and feature representation etc. However, it is 

worth noting that the relationship between network’s 
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size and performance can be complicated even though it 

is believed that with a larger network the results can be 

improved under this deep convolutional neural network 

architecture.  

The last 3 layers of the given model are fully 

connected layers (Fc6~Fc8). Notice also that prior 

convolution and the pooling layers have reduced the 

dimensionality of the features to the acceptable size 

such that the use of the three fully connected layers will 

not result in a serious computational burden. The test 

time of the proposed method for the test dataset is 

37.16s on a workstation with 3.60 GHz 4-core CPUs 

and 16 GB RAM, on an Ubuntu 16.04, Caffe and 

python 2.7 platform. The average processing time of the 

proposed method for the final representation of an input 

image is 0.1176 seconds. The LetNet method was tested 

on the same platform and workstation. The PCA+BP, 

ScSPM09, LLC10 and KSPM methods were tested in 

MATLAB R2009b, on a 64-bit Windows 7 platform, on 

the same workstation. A detailed test times comparison 

is shown in Table III. 

5. Conclusions 

In just a few years, deep learning almost subverts the 

thinking of image classification, speech recognition and 

many other fields, and are forming an end-to-end model 

in which the most reprehensive deep features can be 

learnt and classified automatically. This model tends to 

make everything easier. Moreover, in deep nets each 

layer can be adjusted according to the final task and 

ultimately to achieve co-operation between the layers 

which can greatly improve the accuracy of the task. 

However, the detection and classification of universal 

objects or generalized automatic deployment, e.g. tire 

defects, is often an ambiguous and challenging task 

especially in real-world application. Inspired by recent 

successful approaches, the approach we investigate in 

the present work, that is, using a supervised feature 

embedded deep learning based scheme to classify tire 

defects which is an application of deep learning to real-

world industrial tasks. Combined regularization 

techniques were applied for training to boost the 

performance. Experimental results show that our 

scheme received satisfactory classification accuracy and 

outperform state-of-the-art methods. This work would 

provide practical usefulness to both researchers and 

practitioners in various industrial fields. 
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