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Abstract

 

Clustering is a well-known approach in data mining, which is used to separate data without being labeled. Some clustering 
methods are more popular such as the k-means. In all clustering techniques, the cluster centers must be found that help to 
determine which object is belonged to which cluster by measuring the dissimilarity measure. We choose the dissimilarity 
measure, according to the construction of the data. When the overestimation and the underestimation are not equally 
important, an asymmetric dissimilarity measure is appropriate. So, we discuss the asymmetric LINEX loss function as a 
dissimilarity measure in k-means clustering algorithm instead of the squared Euclidean. We evaluate the algorithm results 
with some simulated and real datasets. 

Keywords: LINEX loss function, dissimilarity measure, k-means clustering

. 

 

1. Introduction 

Clustering is a popular approach in data mining, which is used to separate data without being labeled [10]. Using a 
clustering algorithm, a dataset is partitioned into groups with the largest similarity within a group, in comparison 
with others [12]. In all clustering methods, each object belongs to a cluster according to the cluster center, by 
measuring the dissimilarity. The optimal centers of a clustering algorithm depend on the loss function. The most 
popular partitioning algorithm is the k-means. It partitions a dataset into some different class of similar entities, 
which minimizes the dissimilarity between the entities and their related cluster centroids [3]. The dissimilarity 
measures have an important role in clustering. Many loss functions such as Euclidean squared, City-Block, 
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Minkowsky and Relative Entropy have been used to measure the dissimilarity in the clustering and the Euclidean 
squared measure is the widely used one. Clustering with the Bregman divergence was introduced by Banerjee et 
al. [4] in which the loss of Bregman information is minimized. The minimum is always equal to the expected 
Bregman divergence of data and their relative cluster centroid [4]. The optimal point in a symmetric loss function 
is the conditional mean of the variable. 

Suppose that 𝜃 ∈ Θ be an unknown parameter and 𝛿(𝑋) be an estimator of 𝜃 based on a random observation 
X. Granger (1999) stated some required properties for a loss function 𝐿(∆) where ∆ is the estimated error, 𝛿(𝑋) −

𝜃, and 𝐿(∆) is the loss of estimating 𝜃 by the value 𝛿(𝑋), as the following [7]. 
a) 𝐿(0) = 0, 
b) 𝑚𝑖𝑛∆𝐿(∆) = 0, so 𝐿(∆) ≥ 0, 
c) 𝐿(∆) is monotonic non-decreasing. 

He also stated that a loss function might have some of the following properties: 

a) Symmetry, i.e., 𝐿(∆) = 𝐿(−∆), 
b) Homogeneous, i.e., 𝐿(𝑎∆) = 𝑄(𝑎)𝐿(∆), where 𝑄(𝑎) is a positive function, 
c) Differentiability in order 𝑝. 
The convex k-means clustering algorithm was proposed by Modha and Spangler [14]. They stated that the loss 

function, which is used as the dissimilarity measure, should be non-negative, convex and symmetric. They 
generalize k-means to the convex k-means algorithm [14]. When the positive and negative errors are of the same 
importance, the symmetric loss functions are used to evaluate the dissimilarities. However, in many situations, we 
need asymmetric measures. In 2005, Kummamuru et al. [13] proposed the class of asymmetric dissimilarity 
measures and referred them as the context sensitive learnable asymmetric dissimilarity measures.  
      We choose the loss functions according to the construction of the data. Parsian and Kirmani [15], stated that 
when the overestimation and the underestimation are not equally important, the symmetric loss functions are not 
appropriate. For example, overfilling the containers in food-processing industries is more undesirable than under 
filling them [9]. The underestimation of water level is much more important than the overestimation when 
constructing a barrier [20]. Varian [19] proposed an asymmetric loss function, called linear exponential (LINEX) 
loss function. A LINEX loss function is convex and asymmetric. On one side of zero, it is approximately 
exponential and on the other side, it is linear. To study more about the properties of LINEX loss function, we refer 
to [20].  
      In this work, first, we review k-means and k-median algorithms and some required concepts. Then we propose 
k-means clustering algorithm based on the asymmetric loss function, LINEX. We use some benchmarked dataset 
that their labels are available to check if the k-means clustering with LINEX loss function (LINEX k-means) could 
separate data well and to show its application. The available labels are useful to evaluate the accuracy of the 
algorithm. We also use the normalized variation information and the Davies-Bouldin index to evaluate the 
clustering algorithm results. Some simulated datasets are generated to complete evaluations. 
 

2. The k-means clustering algorithm 

Suppose we have a dataset 𝑿 = (𝑿1, … , 𝑿𝑛)′, which contains 𝑛  entities 𝑿𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑚) with 𝑚 features. The 
k-means is an algorithm that used to partition 𝑿 into 𝐾 disjoint groups 𝑺 = {𝑆1, … , 𝑆𝐾} of similar entities, which 
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minimizes the dissimilarity between the entities and their related cluster centroids [3]. The cost (error) function 
between 𝑿𝑖 in group 𝑘 and its respective centroid, 𝑪𝑘, which is randomly selected, is as follows: 

𝐽 = ∑ ∑ 𝐿(𝑿𝑖, 𝑪𝑘),𝑿𝑖∈𝑆𝑘

𝐾
𝑘=1   

where 𝐿 is the Euclidean distance (or loss) between 𝑿𝑖 ∈ 𝑆𝑘 and 𝑪𝑘. Each entity assigns to the nearest centroid 𝑪𝑘, 
and the function 𝐽 is computed. The algorithm stops if it is less than a determined threshold. Otherwise, the cluster 
centers are updated to the mean of S, until the new centroid does not differ from the previous one. The 
implementation of this algorithm depends on the number of clusters and their initial centroids. Therefore, the 
algorithm must be performed many times with different initial centroids. Performing centers continue until there 
are no non-clustered entities. The optimal centers of a clustering algorithm mostly depend on the dissimilarity 
measure that is used. In k-means clustering, if we use the Manhattan distance which is the absolute difference 
between two points as the dissimilarity measure, then the centers are updated at their median rather than their means 
and the outliers have less influence on the centroids [6]. This algorithm is named ‘k-median’. 

 

3. LINEX loss function 

The LINEX is one of the interesting non-negative, convex and asymmetric loss function that is differentiable in 
order 𝑝 ≥ 1 and takes the following form [15], 

𝐿(∆) = exp(𝑎∆) − 𝑎∆ − 1,                                                       (1) 

where 𝑎 is a scalar and ∆ denotes the estimation error of using 𝛿(𝑋) in order to estimate 𝜃. If 𝑎 > 0 LINEX is 
exponential for positive ∆ and if 𝑎 < 0 it is linear in negative ∆. When 𝑎 = 1, 𝐿(∆), is quite asymmetric and the 
overestimation is costlier than the underestimation. For small |𝑎| (close to zero), the loss function is nearly (but not 
completely) symmetric and it is similar to the squared Euclidean loss function. So the optimal estimates which 
obtained by the squared and LINEX loss functions are not so different when  |𝑎| is small [15], but for larger values 
of |𝑎|, the optimal points are quite different. In Figure 1, for 𝑎 = −1, 𝑎 = 0.001 and 𝑎 = 1, we plot 𝐿(∆) versus 
∆. 

 
Fig. 1.  A LINEX loss function, 𝐿(∆), ∆∈ (−1,1), for different values of 𝑎 
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 We can extend the LINEX loss function to estimate multi parameters [15]. Suppose 𝛿𝑗(𝑋) is an estimator of 𝜃𝑗 
and ∆𝑗= 𝛿𝑗(𝑋) − 𝜃𝑗, for 𝑗 = 1, … , 𝑚. We extend (1) to the 𝑚-parameter case as bellow, 

                                      𝐿(𝚫) = ∑ {exp(𝑎𝑗∆𝑗) − 𝑎𝑗∆𝑗 − 1}𝑚
𝑗=1 ,                                        (2) 

where 𝑎𝑗 ≠ 0 and 𝚫 = (∆1, … , ∆𝑚). 

 
4. LINEX k-means clustering 

In this section, we want to use the LINEX loss function as the dissimilarity measure in k-means clustering algorithm 
when the overestimating and the underestimating are not of the same importance. The procedures are the same as 
a k-means clustering algorithm. We define the number of clusters (according to any knowledge, which is related to 
the data) and the initial centroids are randomly chosen from the entities. All the entities are assigned to their nearest 
centroid, using a LINEX loss function as the dissimilarity distance. The procedure continues until there is no change 
in clusters. Now consider the following optimization problem, 

𝐺(𝑯, 𝑪) = ∑ ∑ ℎ𝑖𝑘𝐿𝐿𝐼𝑁𝐸𝑋(𝑿𝑖 − 𝑪𝑘)𝑛
𝑖=1

𝐾
𝑘=1 ,  

 
where 𝑪 = (𝑪1, … , 𝑪𝐾)′, 𝑪𝑘 = (𝐶𝑘1, … , 𝐶𝑘𝑚), for 𝑘 = 1, … , 𝐾 and 𝐿𝐿𝐼𝑁𝐸𝑋 is the LINEX distance in (2) and H is 
an 𝑛 × 𝐾 matrix such that, for each  𝑖 = 1, … , 𝑛, 

1. ℎ𝑖𝑘 ∈ {0,1}, 
2. ∑ ℎ𝑖𝑘 = 1𝐾

𝑘=1 . 

Now, we want to minimize 𝐺(𝑯, 𝑪) according to the above conditions similar to k-means [5, 17]. Therefore, we 
may solve the problem in the following two steps: 

Step 1: Fix 𝑪 = 𝑪̂ and solve 𝐺(𝑯, 𝑪̂), it minimized if and only if 

ℎ𝑖𝑘 = {
1, 𝐿𝐿𝐼𝑁𝐸𝑋(𝑿𝑖 − 𝑪𝑘) < 𝐿𝐿𝐼𝑁𝐸𝑋(𝑿𝑖 − 𝑪𝑡) for 1 ≤ 𝑡 ≤ 𝐾,
0,                                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    

Step 2: Fix 𝑯 = 𝑯̂, then 𝐺(𝑯̂, 𝑪) is minimized if and only if for each component  

     𝐶𝑘𝑗 =
1

𝑎
log

∑ ℎ𝑖𝑘𝑒
𝑎𝑋𝑖𝑗𝑛

𝑖=1

∑ ℎ𝑖𝑘
𝑛
𝑖=1

, for 𝑗 = 1, … , 𝑚. 

To prove, it is sufficient to minimize the following inner summand for fixed k,  

∑ ℎ𝑖𝑘 (𝑒𝑎(𝑋𝑖𝑗−𝐶𝑘𝑗) − 𝑎(𝑋𝑖𝑗 − 𝐶𝑘𝑗) − 1)𝑛
𝑖=1 . 
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To do this, we differentiate with respect to 𝐶𝑘𝑗, and the result is obtained. One can use the following algorithm to 
optimize 𝐺(𝑯, 𝑪) [11]. 

1. Set an initial 𝑪0 and solve 𝐺(𝑯, 𝑪0) in order to obtain 𝑯0 (we set 𝑡 = 0). 
2. Put 𝑯̂ = 𝑯𝑡 to solve 𝐺(𝑯̂, 𝑪) and then obtain 𝑪𝑡+1.  

We stop the algorithm if 𝐺(𝑯̂, 𝑪𝑡) = 𝐺(𝑯̂, 𝑪𝑡+1), otherwise, we go to the next step. 
3. This time, let 𝑪̂ = 𝑪𝑡+1 and solve 𝐺(𝑯, 𝑪̂) to achieve 𝑯𝑡+1. 

    We stop the algorithm if 𝐺(𝑯𝑡, 𝑪̂) = 𝐺(𝑯𝑡+1, 𝑪̂), otherwise, put 𝑡 = 𝑡 + 1 and go to 2. 
It can be proved that 𝐺(∙ ,∙) is strictly decreasing and similar to [14], so after some iterations, this algorithm 
converges to a minimum point. 
      The k-means algorithm based on LINEX loss function (instead of Euclidean distance) is the same as k-means 
except in distance measure and the optimal cluster centers.  
 
5.   Evaluation 
In this section, we want to evaluate LINEX k-means clustering to partition some simulated and real datasets. To do 
it, we use the NVI, which is an external clustering evaluation measure and an internal criterion DB index. If NVI 
value lies in [0,1], the clustering performance considered as good. It decreases when the clustering is more 
homogeneous. Internal criterion is useful to evaluate a clustering algorithm, according to the inherited features and 
qualities of a dataset. DB criterion is based on the dispersion measure and the cluster similarity measure between 
each cluster. When DB index value is small, it means the clusters are separated better. 
  
 
5.1. Results on simulated datasets 

Gaussian dataset: We generated a Gaussian dataset of 500 observations, each with 6 features, a mixture coefficient 
equal to 0.2 and partitioned it into five clusters. This Gaussian model is generated using a NETLAB function and 
has spherical clusters of variance 0.1. The centers are generated independently from a 𝑁(0,1) [1]. Now consider 
the following density functions and the relations between their independent variables [18]: 
 

 Density, 𝒇(𝒙) Relations between 
 independent variables 

Log-

Normal 

(LN) 

1

𝑥𝜎√2𝜋
exp (−

(log(𝑥)−𝜇)

2𝜎2 ),  𝑥 > 0, 𝜎 > 0, 𝜇𝜖𝑅 
The product of 𝑛 iid LN random 
variables is LN. 

Cauchy 
1

𝜋𝜎(1+(
(𝑥−𝜇)2

𝜎
))

 , x, 𝜇 𝜖𝑅, 𝜎 > 0 The sum of 𝑛 iid Cauchy, Gamma 
and Poisson random variables 
have the same distributions, 
respectively. Gamma 

𝛽𝛼𝑥𝛼−1𝑒−𝑥𝛽

Γ(α)
, 𝑥 ≥ 0,  𝛼, 𝛽 > 0 

Poisson 
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0,1, … 

“iid” means independent and identically distributed 
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 We generate four datasets according to the above density functions such that each dataset contains 100 dependent 
entities with m features and partitioned into two clusters. We state the procedure in Table 1. 
 

Table 1: The procedure of generating some datasets of 100 dependent variables with k features that partitioned into 2 clusters. 

 
Dataset 

                               𝒀 = (𝒀𝟏, … , 𝒀𝟏𝟎𝟎)′ 

M
ul

tiv
ar

ia
te

 w
ith

 3
 fe

at
ur

es
 

 𝒀𝑖 = (𝑋𝑖1 + 𝑋0, 𝑋𝑖2 + 𝑋0, 𝑋𝑖3 + 𝑋0) = (𝑌𝑖𝑗)    for 𝑗 = 1,2,3 

Cauchy 

 

𝑋0, 𝑋𝑖𝑗 Cauchy(0,1)~ 
𝑖𝑖𝑑 , 𝑌𝑖𝑗 Cauchy(0,2)~ 

𝑖𝑑  for 𝑖 = 1, … ,50 
 𝑋𝑖𝑗 Cauchy(4,1)~ 

𝑖𝑖𝑑 , 𝑌𝑖𝑗 Cauchy(4,2)~ 
𝑖𝑑  for 𝑖 = 51, … ,100 

 

Gamma 

 

𝑋0, 𝑋𝑖𝑗 Gamma(1,3)~ 
𝑖𝑖𝑑 , 𝑌𝑖𝑗 Gamma(2,3)~ 

𝑖𝑑  for 𝑖 = 1, … ,50 
 𝑋𝑖𝑗 Gamma(6,3)~ 

𝑖𝑖𝑑 , 𝑌𝑖𝑗 Gamma(7,3)~ 
𝑖𝑑  for 𝑖 = 51, … ,100 

 

LN 

 

 𝒀𝑖 = (𝑋𝑖1𝑋0, 𝑋𝑖2𝑋0, 𝑋𝑖3𝑋0) = (𝑌𝑖𝑗)    for 𝑗 = 1,2,3 

𝑋0, 𝑋𝑖𝑗 LN(1,1)~ 
𝑖𝑖𝑑 , 𝑌𝑖𝑗 LN(2,2)~ 

𝑖𝑑  for 𝑖 = 1, … ,50 
𝑋𝑖𝑗 LN(20,1)~ 

𝑖𝑖𝑑 , 𝑌𝑖𝑗 LN(21,2)~ 
𝑖𝑑  for 𝑖 = 51, … ,100 

 

 U
ni

va
ria

te
 

Poisson 

 

𝒀 = (𝑌1, ⋯ , 𝑌100),  𝑌𝑖 = 𝑋𝑖 + 𝑋0 

𝑋0, 𝑋𝑖 Poisson(1)~ 
𝑖𝑖𝑑 , 𝑌𝑖 Poisson(2)~ 

𝑖𝑑  for 𝑖 = 1, … ,50 
 𝑋𝑖 Poisson(10)~ 

𝑖𝑖𝑑 , 𝑌𝑖 Poisson(11)~ 
𝑖𝑑  for 𝑖 = 51, … ,100 

 

 
Now we run k-means, k-median, and LINEX k-means algorithms 500 times and compute the average accuracy 
results, i.e., an average of one minus percent of misclassification observations for 500 iterations. We note that, in 
LINEX k-means algorithm, the initial centers are chosen randomly from the dataset members similar to the k-
means. Then, all the n entities are assigned to their relative centers according to the minimum LINEX rule. The 
results are presented in Table 2. They illustrate that the LINEX k-means clustering algorithm is sometimes more 
accurate in comparison with the traditional k-means and k-median. In our simulated dataset, the overestimation and 
the underestimation are not important for us, so we choose the parameter a close to zero. Therefore, the LINEX k-
means performance is not so different from the k-means. If we choose 𝑎 ≥ 0.1 the accuracies decrease, and some 
of the data are pushed to the wrong clusters because of overestimation. 
     In some cases, an event might be near the border of two clusters and it is hard to assign it to the right cluster. 
For example, in each cluster of the above Poisson dataset, some events are of the same values. However, they are 
generated from two different Poisson distribution with different parameters. Suppose we like to assign these events 
to the cluster, which is generated from Poisson with 𝜆 = 1. Using the above algorithms (without assuming the over 
or underestimation) they might be misclassified. But if we use the LINEX k-means algorithm with 𝑎 > 0, it means 
that the overestimating is more important, these mentioned entities are guided to be placed in the second cluster 
and the results are improved, see Table 3. When assuming overestimating, we choose a in step of 0.1 from 0.1 to 
2. The lower values of NVI and DB helped us to choose a. When there are no overestimating and underestimating 
assumptions, a is chosen to be closed to zero. Now we want to see whether if the skewness of the entities might 
affect the value of a.  We generate three datasets from Exponential distribution and classify them into two classes.  
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Table 2: The accuracy percentage, NVI, and DB values for k-means, k-median, and LINEX k-means clustering algorithms in the simulated 
datasets. 

Algorithm 

Dataset 

 

Evaluation index 

k-means 

 

Results 

k-median 

 

Results 

LINEX k-means 

Results a 

Gaussian 

 

Accuracy 

NVI 

DB 

82.90 
0.243 
0.785 

83.01 
0.239 
0.813 

87.37 

0.221 

0.637 

10−2 

Log-normal 

 

Accuracy 

NVI 

DB 

71.00 
0.831 
0.737 

81.00 

0.720 

0.812 

79.04 
0.733 
0.862 

10−3 

Cauchy 

 

Accuracy 

NVI 

DB 

97.00 
0.322 
0.779 

98.00 

0.217 

0.786 

97.00 

0.247 
0.779 

10−2 

Gamma 

 

Accuracy 

NVI 

DB 

98.00 

0.217 

0.626 

98.00 

0.217 

0.626 

98.00 

0.217 

0.626 

10−2 

Poisson 

 

Accuracy 

NVI 

DB 

94.00 
0.525 
0.449 

96.01 

0.455 

0.448 

95.80 
0.457 
0.448 

10−2 

In the LINEX k-means algorithm, we assume that there is no overestimation or underestimation, so the parameter 𝑎 is closed to zero. 

 

Table 3: The accuracy percentage, NVI, and DB values for LINEX k-means clustering algorithms with different 𝑎  in the simulated 
Poisson datasets. 

 

We compute the skewness of them and run the k-means and the LINEX k-means algorithms with different values 
of a. The results are presented in Table 4. According to the results, it seems that the skewness affects the value of 
a, and in the skewed datasets, the accuracies of LINEX k-means algorithm with 𝑎 > 0 are better than k-means 
algorithm. Therefore, we suggest scrutinizing how choosing the value of a depends on the skewness of the 
frequency curve of a dataset. 

 

Table 4: Evaluating the result of clustering three Exponential datasets with LINEX k-means and k-means algorithm. The first row for   
each skewness parameter is the accuracy percentages and the second row is the DB index. 

 Algorithm k-means  LINEX k-means 

Skewness 

Parameter  

Validation 
Index 

 
𝒂: 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.65 
Accuracy 

DB 

91.00 
0.431 

 91.00 
0.431 

92.35 
0.453 

93.25 
0.423 

93.17 
0.421 

94.15 

0.420 

93.70 
0.421 

93.70 
0.421 

92.80 
0.429 

92.80 
0.429 

93.25 
0.423 

93.25 
0.423 

1.50 
Accuracy 

DB 
95.00 
0.445 

 95.00 
0.450 

95.00 
0.450 

95.00 
0.450 

95.00 
0.450 

95.00 
0.450 

95.00 
0.450 

99.00 
0.466 

99.33 

0.468 

98.66 
0.463 

98.33 
0.462 

97.33 
0.455 

2.00 
Accuracy 

DB 
93.00 
0.375 

 94.46 
0.389 

94.73 
0.391 

94.60 
.390 

94.86 
0.393 

94.86 
0.393 

94.73 
0.391 

94.60 
0.390 

94.60 
0.390 

84.00 
0.492 

80.26 
0.533 

79.20 
0.556 

 

 

Dataset 

 

Evaluation 

 Index 

𝒂: 𝟎. 𝟎𝟏 𝟎. 𝟏 𝟎. 𝟐 𝟎. 𝟑 𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟔 𝟎. 𝟕 

Poisson 

Accuracy 

NVI 

DB 

 94.14 
0.447 
0.448 

94.26 
0.447 
0.448 

94.38 
0.447 
0.448 

94.44 
0.447 
0.448 

96.12 
0.318 
0.449 

96.24 
0.225 
0.449 

96.64 

0.203 

0.450 

92.72 
0.504 
0.476 
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5.2. Evaluation in some real datasets 

Here we compare the results of LINEX k-means with k-means and k-median algorithms on some real datasets. We 
run the algorithms 500 times and compute the average of accuracies due to a random selection of centers for each 
algorithm. These datasets are all available in the UC Irvine Machine Learning Repository [2]. All the data are 
labeled so that we can evaluate the algorithms. We normalize the data before running the algorithm. The results are 
summarized in Table 5. 

a) The Iris data set is a collection of 150-flower specimen each with four features and is divided into three 
clusters. 

b) The Wine dataset consists of 178 chemical specimens of wine with thirteen features that partitioned into 
three clusters. 

c) The Hepatitis dataset contains 155 specimens with 19 categorical and numeric features, which is partitioned 
into two clusters. 

 

Table 5: The accuracy percentage, NVI, and DB values for k-means, k-median, and LINEX k-means clustering algorithms in different 
datasets. 

 

Dataset 

    Algorithm 

Evaluation Index 

k-means 

 

k-median 

 

LINEX k-means 

 

Iris 

Accuracy 

NVI 

DB 

85.33 

0.485 

0.618 

78.39 
0.528 
0.630 

84.87 
0.495 
0.539 

Wine 

Accuracy 

NVI 

DB 

98.87 
0.100 
0.489 

94.83 
0.302 
0.508 

99.77 

0.075 

0.474 

Hepatitis 

Accuracy 

NVI 

DB 

68.90 
0.766 
1.078 

64.98 
0.850 
1.620 

75.74 

0.549 

0.669 

 
In the LINEX k-means algorithm, we assume that there is no overestimation or underestimation. So we consider the parameter 𝑎 close to 

zero (𝑎 = 1 × 10−3).  

The results in Table 5 shows that LINEX k-means algorithm acts as well as the others and in some cases, it leads 
to better results. Normalizing the data improves the accuracy.  

As we state before, sometimes the overestimating or underestimating is of different importance (For example, 
estimating the number of earthquakes with high magnitude during a short period in an Earthquake-prone area) and 
classifying an event in a specific cluster is worse (or better). Now consider three datasets: Seismic bumps, 
Haberman’s Survival and Magic Gamma Telescope.  

d) The seismic bumps dataset includes 2584 data with 18 categorical and numeric features, which describe 
the problem of forecasting high energy (higher than 104 J) seismic bumps in a coal mine and is partitioned 
into two clusters, “high energy seismic bump” and “no high energy seismic bumps”. Clustering a high-
energy seismic bump as a no high-energy seismic bump is very hazardous.  

e) Haberman’s Survival includes 306 data with three integer features from a study on the survival of breast 
cancer patients who had tolerated surgery. It is partitioned into two groups, “the patient survived five years 
or more” and “the patient died less than five years”. 

f) Magic Gamma Telescope includes 19020 data with 11 real features, which use to describe high-energy 
gamma particles with the imaging technique in a ground-based atmospheric Cherenkov Gamma Telescope 
(The evidence of energy depositions is usually asymmetric along the major axis.). It is partitioned into two 
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clusters, single and background. Classifying a background event as a signal is worse than clustering a signal 
event as the background. Therefore, the simple k-means algorithm is not appropriate for this dataset. 

 
We use k-means and LINEX k-means algorithm with different values of 𝑎 (as explained in the previous part) to 
partition data. We choose a according to the accuracy results and the NVI and DB values. The results in Table 6 
shows that LINEX k-means algorithm is more accurate, especially when the overestimating and the 
underestimating are not of the same importance. The k-means and k-median algorithms that are based on 
symmetric dissimilarity distances are appropriate for data, which the negative and positive errors are of the same 
importance. However, the LINEX dissimilarity measure is useful in both symmetric and asymmetric cases. 

 

Table 6: The accuracy percentage, NVI, and DB values for k-means, k-median, and LINEX k-means clustering algorithms in 
Seismic Bumps, Haberman’s Survival, and Magic Gamma Telescope datasets. 

 
Dataset Algorithm 

 

k-means 

Results 

k-median 

Results 

LINEX k-means 

Results a 

Seismic Bumps 

Accuracy 

NVI 

DB 

90.91 
0.985 
0.419 

89.62 
0.981 
0.501 

93.42  

1.000 
0.401 

𝟏𝟎−𝟏 

Haberman’s 

Survival 

Accuracy 

NVI 

DB 

51.18 
0.999 
0.965 

57.03 
0.983 
1.050 

72.79  

0.974 

1.401 
𝟓 × 𝟏𝟎−𝟏 

Magic Gamma 

Telescope 

Accuracy 

NVI 

DB 

0.589 
0.989 
1.412 

58.91 
0.998 
1.412 

70.72 

0.957 

1.742 
𝟏𝟎−𝟏 

 
 

6.  Conclusion 

Sometimes we need an asymmetric dissimilarity measure to calculate the distance between data. We use the LINEX 
loss function as the dissimilarity measure in k-means clustering algorithm instead of the common measures such as 
squared Euclidean and Manhattan. So, the centers in each cluster are not the mean (or median) of their entities. To 
evaluate the accuracy of our algorithm, we partition some real and simulated datasets that their labels and their 
number of clusters are available and the NVI and the DB indexes help us both to compare the results and to choose 
a. In some of these datasets, the misclassifying the data into a special cluster may lead to a high loss. Therefore, it 
is important to use an asymmetric dissimilarity measure to make the different between overestimating and 
underestimating. Comparing the results, we conclude that LINEX k-means algorithm acts in almost cases well and 
partitioned the data accurately, especially when classifying an event in a specific cluster is worse (or better). 
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