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Abstract 

The theory of Pythagorean fuzzy sets possesses significant advantages in handling vagueness and complex 
uncertainty. Additionally, Pythagorean fuzzy information is useful to simulate the ambiguous nature of subjective 
judgments and measure the fuzziness and imprecision more flexibly. The aim of this research is to develop an 
effective assignment-based method using a novel concept of correlation-based precedence indices for conducting 
multiple criteria decision analysis within the Pythagorean fuzzy uncertain environment. Based on the ideas of 
information energy and correlations, this paper defines a novel concept of correlation-based precedence indices in 
the Pythagorean fuzzy context and discusses their desirable properties. Next, this paper presents some useful 
concepts of discordance indicators, weighted discordance indicators, comprehensive discordance indicators, and 
comprehensive discordance indices to construct a novel assignment model for acquiring a comprehensive ranking 
of candidate alternatives. As an application of the proposed assignment-based method, a practical example 
concerning a financing decision of working capital policies is provided to demonstrate its practicality and 
effectiveness. 
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1. Introduction 

Decision-making information provided by decision 
makers is often imprecise and uncertain because of a 
lack of data, time pressure, or the decision maker’s 
limited attention and information-processing capabilities. 
Accordingly, research pertaining to multiple criteria 
decision analysis (MCDA) problems has often been 
performed within a fuzzy uncertain environment1,4,11,18. 

The concept of Pythagorean fuzzy (PF) sets, which 
was introduced by Yager23 and Yager and Abbasov24, is 
a useful and valuable extension of Atanassov’s 

intuitionistic fuzzy sets2, in which the sum of the degree 
of membership and the degree of non-membership is 
less than or equal to one. Intuitionistic fuzzy sets are the 
most widely used type of nonstandard fuzzy models 
because of their great ability to handle imprecise and 
ambiguous information3,4,18. In a similar manner of the 
intuitionistic fuzzy model, PF sets are also characterized 
by degrees of membership and non-membership. 
However, their sum is not required to be less than one. 
Instead, the square sum of degrees of membership and 
non-membership is less than or equal to one8,12,17,25. 
Because of the relaxed constraint conditions, PF sets are 
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capable of managing more-complex uncertainty in real-
world decision situations than intuitionistic fuzzy 
sets6,7,25. From this perspective, PF sets are becoming 
increasingly popular in the MCDA field by the day5–7,15. 

Because PF sets possess superior ability to reflect 
the ambiguous nature of subjective judgments and 
model highly uncertain information in realistic 
applications, numerous valuable methods have been 
developed to solve MCDA problems within the PF 
environment. For example, Garg10 presented some 
series of geometric-aggregated operators within the PF 
environment and employed Einstein t-norm and t-
conorm for MCDA. By combining PF sets with hesitant 
fuzzy sets, Liang and Xu12 extended the technique for 
order preference by similarity to ideal solution (TOPSIS) 
to the hesitant PF environment. Mohagheghi et al.13 
introduced a last aggregation evaluating approach based 
on a group decision-making procedure and PF sets to 
enhance decision flexibility. Rahman et al.16 developed 
useful PF weighted geometric aggregation operators to 
solve a group decision-making problem concerning 
plant location selection. Wei19 proposed some PF 
interaction aggregation operators to solve MCDA 
problems in the PF context. Xu et al.21 proposed PF 
induced generalized ordered weighted averaging (OWA) 
operators to manage group decision-making problems. 

Based on useful concepts of displaced and fixed 
remoteness indices, Chen7 developed a novel 
VlseKriterijumska Optimizacija I Kompromisno 
Resenje (i.e., multicriteria optimization and compromise 
solution) (VIKOR) method for MCDA involving 
Pythagorean fuzzy information. Wei and Lu20 utilized 
power aggregation operators to develop some useful PF 
power aggregation operators for addressing MCDA 
problems. Xue et al.22 proposed the linear programming 
technique for multidimensional analysis of preference 
(LINMAP) based on the entropy theory and PF sets, and 
they applied the PF LINMAP to solve multiple attribute 
group decision-making problems. 

Considering the powerfulness of the PF theory in 
tackling imprecise and ambiguous information, the 
purpose of this paper is to propose an assignment-based 
MCDA method using correlation-based precedence 
indices for addressing MCDA problems under complex 
uncertainty based on PF sets. Concretely speaking, this 
paper first presents a valuable concept of correlation-
based precedence indices that can fully take into 
account the amount of information associated with PF 

sets and can effectively discriminate among evaluative 
ratings under complex uncertainty. In the PF context, 
this paper subsequently discusses some valuable 
properties of the developed correlation-based 
precedence index in detail. By use of correlation-based 
precedence indices, this paper constructs some useful 
concepts of a discordance indicator, a weighted 
discordance indicator, a comprehensive discordance 
indicator, and a comprehensive discordance index 
within the PF environment. Based on these valuable 
concepts and a permutation matrix, this paper 
establishes an assignment model for the purpose of 
addressing MCDA problems involving PF information. 
Furthermore, an effective algorithm is provided to help 
decision makers manage vagueness and uncertainty and 
conduct multiple criteria evaluation and selection in the 
PF context. Finally, a practical example is provided to 
illustrate the application of the proposed methodology 
and demonstrate its practicality and effectiveness. 

The remainder of this paper is organized as follows. 
Section 2 briefly introduces some basic concepts related 
to PF sets that are used throughout this article. Section 3 
develops a new concept of correlation-based precedence 
indices and investigates some interesting properties. 
Section 4 formulates an MCDA problem under complex 
uncertainty based on PF information. Section 5 proposes 
a novel assignment-based MCDA method for acquiring 
a comprehensive ranking of competing alternatives. 
Section 6 applies the developed methodology to a 
practical problem regarding a financing problem of 
working capital policies in order to demonstrate its 
feasibility and applicability. Section 7 investigates a 
comparison of the effects between the Pythagorean 
fuzzy and intuitionistic fuzzy approaches through a 
sensitivity analysis in the context of intuitionistic 
fuzziness. Finally, Section 8 presents the conclusions. 

2. Basic Concept of PF Sets 

This section first briefly reviews some basic concepts 
related to PF sets that are used throughout this article. 

Definition 1.14,23,24 A PF set P is defined as a set of 
ordered pairs of membership and non-membership in a 
finite universe of discourse X and is given as follows: 

  , ( ), ( )P PP x x x x X   , (1) 
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which is characterized by the degree of membership P : 
X[0, 1] and the degree of non-membership P : X[0, 
1] of the element x X  to the set P with the condition: 

    2 2
0 ( ) ( ) 1P Px x    . (2) 

Let ( ( ), ( ))P Pp x x   denote a PF value. The degree of 
indeterminacy relative to P for each x X  is defined as 
follows: 

    2 2
( ) 1 ( ) ( )P P Px x x     . (3) 

 
It is worth noting that the PF value ( ( ), ( ))P Px x   is 

reduced to an intuitionistic fuzzy value if ( ) ( )P Px x   
1 . Fig. 1 provides a convenient geometrical 

interpretation regarding the spaces of PF and 
intuitionistic fuzzy values. It is obvious to see that the 
main difference between a PF value and an intuitionistic 
fuzzy value is their different constraint conditions. As 
shown in Fig.1, the space of PF values is apparently 
larger than that of intuitionistic fuzzy values. As a result, 
PF sets can not only depict uncertain information, which 
intuitionistic fuzzy sets can capture, but also model 
more imprecise and ambiguous information, which the 
latter cannot describe. Because of the relaxed constraint 
condition 2 2( ( )) ( ( )) 1P Px x   , PF sets are more 
precise in the modeling of vagueness and complex 
uncertainty in MCDA problems compared with 
intuitionistic fuzzy sets. 
 

(1,0)(0,0)

(0,1)

Space of an 
intuitionistic fuzzy 

value

Space of a PF value

   2 2
( ) ( ) 1P Px x  

( ) ( ) 1P Px x  

( )P x

( )P x

 

Fig. 1.  Comparison of spaces for a PF value and an 
intuitionistic fuzzy value. 

Definition 2.7,9,13,14 Let p1, p2, and p be three PF values 
in X and 0  . Selected basic operations are defined as 
follows: 

 
 

 
1 2

1 2

1 2 max ( ), ( ) ,

               min ( ), ( ) ,

P P

P P

p p x x

x x

 

 

 
 (4) 

 
 
 

1 2

1 2

1 2 min ( ), ( ) ,

               max ( ), ( ) ,

P P

P P

p p x x

x x

 

 

 
 (5) 

 

     
  

1 2 1

2 1 2

2 2 2

1 2

0.52

( ) ( ) ( )

                ( ) , ( ) ( ) ,

P P P

P P P

p p x x x

x x x

  

  

   


  



 (6) 

 

   
    

1 2 1 2

1 2

2 2

1 2

0.52 2

( ) ( ), ( ) ( )

                ( ) ( ) ,

P P P P

P P

p p x x x x

x x

   

 

   


  



 (7) 

     2
1 1 ( ) , ( )P Pp x x

   
 

    
 

, (8) 

     2
( ) , 1 1 ( )P Pp x x

  
 

   
 

. (9) 

3. Correlation-Based Precedence Index 

Inspired by the idea of correlation coefficients for PF 
sets9, this section introduces a novel concept of 
correlation-based precedence indices within the PF 
environment and investigates their useful and desirable 
properties. 

It is worthwhile to mention that the core concept of 
the proposed methodology is an extended definition of 
correlation coefficients in the PF context. The concept 
of correlation coefficients is one of the most used 
indices in statistics and engineering sciences. With the 
aid of a measure of interdependency, correlation can 
reflect the joint relationship between two variables and 
indicate how well two variables move together in a 
linear fashion. However, the existing correlation 
coefficients based on the probability theory cannot be 
employed within the PF environment. In particular, 
massive fuzzy uncertainty exists in a complicated 
decision-making system, which leads to the difficulty in 
exact estimations of the probability of events. 
Accordingly, the correlation coefficients yielded by the 
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probabilistic approach have limitations to deal with 
built-in uncertainties contained in the PF information. 

Considering the usefulness of correlation 
coefficients in many real-world decision-making 
problems, this paper proposes a novel correlation 
coefficient to measure the relationship between two PF 
values. Different from the classical definition, pairs of 
membership, non-membership, and indeterminacy 
degrees within the PF values will be considered during 
formulation of PF correlation coefficients. Based on the 
extended correlation coefficient, a useful concept of 
correlation-based precedence indices is then constructed 
in this section. These new concepts can facilitate to 
establish an easy-to-use assignment-based model to 
manage MCDA problems with PF information. As can 
be expected, the results based on the proposed 
correlation coefficients and correlation-based 
precedence indices can provide useful and influential 
information to decision makers and hence the 
corresponding MCDA approach is adequate to account 
for highly complicated uncertainties within the PF 
environment. 
 
Definition 3. Let p be a PF value in X. The information 
energy T of p is defined as follows: 

      4 4 4
( ) ( ) ( ) ( )P P PT p x x x     . (10) 

 
Theorem 1. The information energy T of a PF value p 
satisfies the following properties: 
(T1.1) 0 < T(p) 1 ; 
(T1.2) T((1,0))=T((0,1))=T((0,0))=1. 
 
Proof. (T1.1) can be directly inferred according to 
Definition 1. (T1.2) is evident from Definition 3.  
 
Definition 4. Let p1 and p2 be two PF values in X. The 
correlation R between p1 and p2 is defined as follows: 

 
     
     

1 2 1

2 1 2

2 2 2

1 2

2 2 2

( , ) ( ) ( ) ( )

                 ( ) ( ) ( ) .

P P P

P P P

R p p x x x

x x x

  

  

  

  
 (11) 

 
Theorem 2. The correlation R between two PF values 
satisfies the following properties: 
(T2.1) R(p, p)= T(p) ; 
(T2.2) 1 20 R(p , p ) 1  ; 
(T2.3) 1 2 2 1R(p , p )= R(p , p ) . 
 

Proof. (T2.1)-(T2.3) are straightforward.    
 
Definition 4. Let p1 and p2 be two PF values in X. The 
correlation coefficient K between p1 and p2 is defined as 
follows: 

 1 2
1 2

1 2

( , )
( , )

( ) ( )

R p p
K p p

T p T p



. (12) 

 
Theorem 3. The correlation coefficient K between two 
PF values p1 and p2 satisfies the following properties: 
(T3.1) 1 2 2 1K(p , p )= K(p , p ) ; 
(T3.2) 1 20 K(p , p ) 1  ; 
(T3.3) 1 2K(p , p )= 1  if 1 2p = p . 
 
Proof. (T3.1) is obvious. 
(T3.2) According to (T1.1) and (T2.2), it can be easily 
obtained that 1 2( , ) 0K p p  . From Definition 4, one has: 

 
       

      
1 2 1

2 1 2

2 2 22

1 2

22 2 2

( , ) ( ) ( ) ( )

                      ( ) ( ) ( ) .

P P P

P P P

R p p x x x

x x x

  

  

  

  
 

Applying the Cauchy-Schwarz inequality, one obtains: 

 

       
    
        
        

      
      

1 2 1 2

1 2

1 1 1

2 2 2

1 1 1

2 2 2

2 2 2 2

22 2

2 2 22 2 2

2 2 22 2 2

4 4 4

4 4 4

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

   ( ) ( ) ( )

( ) ( ) ( )

   ( ) ( ) ( ) .

P P P P

P P

P P P

P P P

P P P

P P P

x x x x

x x

x x x

x x x

x x x

x x x

   

 

  

  

  

  

  

 

 
   
 
 
   
 

  

  

 

Thus, it is clear that: 

  2

1 2 1 2( , ) ( ) ( )R p p T p T p  , 

which yields 1 2( , ) 1K p p  . Therefore, (T3.2) is valid. 
(T3.3) It is known that 

1 2
( ) ( )P Px x   and 

1
( )P x  

2
( )P x  because 1 2p p . By use of (T2.1), one has 

1 1 1( , ) ( )R p p T p . Moreover, 1 2( ) ( )T p T p  Therefore, 

 1
1 2

1 1

( )
( , ) 1

( ) ( )

T p
K p p

T p T p
 


. 
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This completes the proof.  
 
Definition 5. Let p be a PF value in X, and assume that 

(0,0)p   without loss of generality. The correlation-
based precedence index I of p is defined as follows: 

 
( , (1,0))

( )
( , (1,0)) ( , (0,1))

K p
I p

K p K p



, (13) 

where (1,0) and (0,1) are the largest and smallest PF 
values, respectively. 
 
Theorem 4. The correlation-based precedence index 
I(p) can be determined as follows: 

 
 
 

2

2

( )
( )

1 ( )

P

P

x
I p

x







. (14) 

 
Proof. According to (T1.2), it can be obtained that: 

 

( , (1,0))

( ) ((1,0))
( )

( , (1,0)) ( , (0,1))

( ) ((1, 0)) ( ) ((0,1))

( , (1,0))

( )
       

( , (1,0)) ( , (0,1))

( ) ( )

( , (1,0))
       .

( , (1,0)) ( , (0,1))

R p

T p T
I p

R p R p

T p T T p T

R p

T p
R p R p

T p T p

R p

R p R p





 







 

Because 2( , (1,0)) ( ( ))PR p x  and ( , (0,1))R p   
2( ( ))P x  from Definition 4, one has: 

 
 

   
 
 

2 2

2 2 2

( ) ( )
( )

( ) ( ) 1 ( )

P P

P P P

x x
I p

x x x

 

  
 

 
. 

This establishes the theorem. 
 
Theorem 5. The correlation-based precedence index I 
of a PF value p satisfies the following properties: 
(T5.1) 0 (p) 1   ; 
(T5.2) I(p)=0 if and only if Pμ (x)= 0 ; 
(T5.3) I(p)=1 if and only if Pν (x)= 0 ; 
(T5.4) I(p)=0 if p=(0,1); 
(T5.5) I(p)=1 if p=(1,0). 
 
Proof. (T5.1) is straightforward because K(p,(1,0))  0, 
K(p,(0,1))  0, and K(p,(1,0)) K(p,(1,0))+K(p,(0,1)). 

(T5.2) For the necessity, if ( ) 0I p  , then it follows 
that the condition of ( ) 0P x   must be fulfilled 
according to Theorem 4. For the sufficiency, if 

( ) 0P x  , then it is easy to obtain that ( ) 0I p  . 
Hence, (T5.2) is correct. 
(T5.3) For the necessity, if ( ) 1I p  , then it implies that 

2 2 2 2( ( )) 1 ( ( )) ( ( )) ( ( ))P P P Px x x x        by use of 
Theorem 4. This indicates that ( ) 0P x  . For the 
sufficiency, if ( ) 0P x  , then 2 21 ( ( )) ( ( ))P Px x   , 
which yields that ( ) 1I p  . Thus, (T5.3) is correct. 
(T5.4) and (T5.5) can be easily inferred from (T5.2) and 
(T5.3), respectively, which completes the proof. 

4. MCDA Problem Under PF Uncertainty 

The discussed problems in this paper mainly are a type 
of decision-making problems which have limited 
numbers of candidate alternatives evaluated on multiple 
criteria. Additionally, in view that there are many real-
world situations where due to insufficiency in 
information availability, PF sets are appropriate to deal 
with such problems under complex uncertainty. 

Consider an MCDA problem in which 1 2{ , ,Z z z  
, }mz  is a set of m ( 2m  ) candidate alternatives and 

1 2{ , , , }nC c c c   is a finite set of n ( 2n  ) criteria. 
For numerous practical MCDA problems, the decision 
maker’s evaluations related to grades of importance of 
criteria and evaluative ratings of alternatives with 
respect to each criterion are often expressed by 
linguistic terms comprising vagueness and uncertainty. 
These uncertain, vague and hesitant judgments provided 
by the decision maker can be represented more 
comprehensively by using the PF sets. For example, 
Chen7 suggested a PF linguistic rating system to 
transform five- and seven-point linguistic rating scales 
into suitable PF values. 

By use of a linguistic rating system, the evaluative 
rating of an alternative iz Z  with respect to a criterion 

jc C  can be expressed as a PF value ( , )ij ij ijp   , 
such that [0,1]ij  , [0,1]ij  , and 2 20 ( ) ( )ij ij    

1 . In particular, ij  and ij  represent the degrees to 
which zi performs well and poorly, respectively, in 
terms of cj. The indeterminacy degree that corresponds 
to each pij is computed as 2 21 ( ) ( )ij ij ij     . The 
MCDA problem within the PF environment can be 
concisely expressed in the following PF decision matrix: 
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1 2

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2

p

                                                    

( , ) ( , ) ( , )

( , ) ( , ) ( , )
  .

( , ) ( , ) ( , )

ij m n

n

n n

n n

m m m m m mn mn

p

c c c

z

z

z

     
     

     


   

 
 
 
 
 
 





    


 (15) 

In the PF context, let a PF value ( , )j j jw    
denote the importance weight of criterion jc C , such 
that [0,1]j  , [0,1]j  , and 2 20 ( ) ( ) 1j j    . 
The indeterminacy degree j  that corresponds to each 
wj is determined as 2 21 ( ) ( )j j   . 

Having formulating the MCDA problem involving 
PF information, the next part of this research is to 
postulate and define a new assignment model by 
utilizing the developed concept of correlation-based 
precedence indices. 

5. A Novel Assignment-Based MCDA Method 

Based on the correlation-based precedence index, this 
section attempts to establish a novel assignment-based 
MCDA method to determine a comprehensive ranking 
of candidate alternatives that is in the closest agreement 
with the criterion-wise precedence ranks among 
alternatives. 

As demonstrated in the previous theorems, the 
correlation-based precedence index within the PF 
environment possesses certain useful and interesting 
properties. Consider a PF evaluative rating pij in the PF 
decision matrix p. The larger the I(pij) value is, the 
better the performance on the evaluation result it is, and 
the greater the preference is for pij. In contrast, the 
smaller the I(pij) value is, the worse the performance on 
the evaluation result it is, and the lesser the preference is 
for pij. Additionally, the same I(pij) value represents 
indifferent preference. Consequently, the criterion-wise 
precedence ranks among competing alternatives can be 
precisely determined in descending order of the I(pij) 
values. 
 
Definition 6. Let 

1i jp  and 
2i jp  be the PF evaluative 

ratings of two alternatives 
1i

z  and 
2i

z , respectively, 
regarding a criterion cj in p. The following precedence 
relationships between 

1i
z  and 

2i
z  are defined according 

to their correlation-based precedence indices: 

(D6.1) 
1i

z  is prior to 
2i

z  with respect to cj if 
1

( )i jI p   

2
( )i jI p ; 

(D6.2) 
1i

z  is indifferent to 
2i

z  with respect to cj if 

1 2
( ) ( )i j i jI p I p ; 

(D6.3) 
1i

z  is posterior to 
2i

z  with respect to cj if 

1 2
( ) ( )i j i jI p I p . 

 
Based on the precedence relationships obtained from 

Definition 6, the precedence ranks in terms of each 
criterion can be acquired with the aid of correlation-
based precedence indices. Let rij denote the precedence 
rank of an alternative iz Z  ( {1, 2, , }i m  ) with 
respect to criterion jc C  ( {1, 2, , }j n  ). In case of 
the occurrence of ties among the criterion-wise 
precedence ranks, a mean rank should be assigned to the 
tied alternatives. For example, when two alternatives are 
tied for the fourth rank, a precedence rank of 4.5 
(=(4+5)/2) should be assigned. In this way, the rank 
evaluation matrix r can be established as follows: 

 

1 2

1 11 12 1

2 21 22 2

1 2

                                         

r ,

n

n

n
ij m n

m m m mn

c c c

z r r r

z r r r
r

z r r r



 
 
      
 
 





    


 (16) 

where 1 ijr m   and 
1

( 1) 2
m

iji
r m m


   for all 

{1, 2, , }j n  . 
By using the proposed concept of correlation-based 

precedence indices and the criterion-wise precedence 
ranks, this paper attempts to develop some useful 
indicators to determine a comprehensive ranking for all 
competing alternatives. In particular, the comprehensive 
ranking is that ranking which is in best agreement with 
the obtained rankings based on criterion-wise 
precedence relationships and the criterion-wise 
performance based on correlation-based precedence 
indices. Such a comprehensive ranking can form an 
objective basis for arriving at a compromise of all 
precedence ranks in the rank evaluation matrix r. 
 
Definition 7. Given the set of alternatives Z and the set 
of criteria C, let rij be the criterion-wise precedence rank 
of iz Z  according to jc C . The discordance 
indicator 0k

id


 for zi to become the k-th comprehensive 
rank is defined as the sum of absolute distances between 
rij and k: 
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 0

1

n
k

i ij
j

d r k


 


. (17) 

Moreover, by coupling the PF importance weight wj into 
0k
id


, the weighted discordance indicator k
id


 is defined 
as the weighted sum of absolute distances for zi to be 
ranked k-th: 

 
1

n
k
i ij j

j
d r k w


   


. (18) 

Furthermore, based on the criterion-wise performance, 
the comprehensive discordance indicator k

id  that 
incorporates the correlation-based precedence index I(pij) 
into k

id


 is defined as the comprehensive sum of 
absolute distances for zi to be ranked k-th: 

  
1

( )
n

k
i ij ij j

j
d I p r k w


    . (19) 

 
Theorem 6. The comprehensive discordance indicator 

k
id  is a PF value that can be computed in the following 

manner: 

     
( )2 ( )

1 1

1 1 ,
ij ij

ij ij
I p r kn n I p r kk

i j j
j j

d  
 

 

 
   
 
 

   (20) 

for i,k = 1,2, ,m . Denote k k k
i i id = (δ ,σ )  for brevity. 

 
Proof. By mathematical induction on n, the following 
results are obtained. First, Eq. (20) holds for n=2 
because: 

 

     

    

    

     
  

  

1 1
1 1

2 2
2 2

1 1 2 2

1 1

1 1 1 2 2 2

( )2 ( )

1 1

( )2 ( )

2 2

( ) ( )2 2

1 2

( )2

1

(2

2

( ) ( )

1 1 ,

   1 1 ,

= 1 1 1 1

   1 1

   1 1

i i
i i

i i
i i

i i i i

i i

k
i i i i i

I p r k I p r k

I p r k I p r k

I p r k I p r k

I p r k

I p

d I p r k w I p r k w

 

 

 





 

 

 



     

 
   
 
 

   
 

     
    
 

  

    

2 2

1 1 2 2

0.5
)

( ) ( )

1 2

,

   

i i

i i i i

r k

I p r k I p r k 



 

 
  



  

 

  

  
    

    

1 1

2 2

1 1 2 2

( )2

1

0.5
( )2

2

( ) ( )

1 2

2 2( )2 ( )

1 1

1 1 1 1

  1 1 1 ,

   

1 1 , .

i i

i i

i i i i

ij ij
ij ij

I p r k

I p r k

I p r k I p r k

I p r k I p r k

j j
j j





 

 





 

 

 

            

          



 
   
 
 

 

  

Assume that Eq. (20) holds for n  , i.e.: 

     
( )2 ( )

1 1

1 1 ,
ij ij

ij ij
I p r k I p r kk

i j j
j j

d
 

 
 

 

 
   
 
 

  .  

When 1n   , one obtains: 

 
  

    

    

  

, 1 , 1
, 1 , 1

1

, 1 , 1 1

( )2 ( )

1 1

( )2 ( )

1 1

( )2

1

( )

  ( )

1 1 ,

  1 1 ,

1 1 1

  1 1

ij ij
ij ij

i i
i i

ij ij

k
i ij ij j

j

i i

I p r k I p r k

j j
j j

I p r k I p r k

I p r k

j
j

d I p r k w

I p r k w

 
 



  

 

 



 

 



 
 



  

 

 

 

 





     
 

  

 
   
 
 
 
   
 
 


   


 

 



  
  

  

   

, 1 , 1

, 1 , 1

, 1 , 1

( )2

1

( )2

1

0.5
( )2

1

( ) ( )

1
1

1

  1 1

  1 1 1 1 ,

    

1 1

i i

ij ij

i i

ij ij i i

I p r k

I p r k

j
j

I p r k

I p r k I p r k

j
j

 

 

 

















 

 

 

 













 




  
       

 
    
 

                 
 

      

 





    
1 1( )2 ( )

1 1

, .
ij ij

ij ij
I p r k I p r k

j j
j j

 

 
  

 

 
 
 
 

 

 

Thus, Eq. (20) holds for 1n   . Therefore, Eq. (20) 
holds for all n. Because 2 20 ( ) ( ) 1j j     for all j, it 
is clear that: 
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   

    

     

2 2

2 2
( )2 ( )

1 1

( ) ( )2 2

1 1

1 1

1 1 1.

ij ij
ij ij

ij ij ij ij

k k
i i

I p r kn n I p r k

j j
j j

I p r k I p r kn n

j j
j j

 

 

 

 

 

 

 



   
           

    

 

 

 

It is known that 0 1k
i  , 0 1k

i  , and 
2 20 ( ) ( ) 1k k

i i    . Hence, k
id  is a PF value. This 

completes the proof. 
 
Definition 8. Let ( , )k k k

i i id    be the comprehensive 
discordance indicator for an alternative iz Z  to be 
assigned to a comprehensive rank k, where 

1, 2, ,k m  . The comprehensive discordance index 
( )k

iD d  corresponding to each k
id  is defined as follows: 

 
   2 2

1
( )

2

k k
i ik

iD d
  

 . (21) 

 
Theorem 7. The comprehensive discordance index 

k
iD(d )  of k

id  satisfies the following properties: 
(T7.1) k

i0 D(d ) 1  ; 
(T7.2) k

iD(d )= 0  if k
id = (0,1) ; 

(T7.3) k
iD(d )= 1  if k

id = (1,0) ; 
(T7.4) k

iD(d )= 0.5  if k
id = (0,0) ; 

(T7.5) k k 2
i iD(d )= (δ )  if k k k 2

i i id = (δ , 1- (δ ) ) . 
 
Proof. (T7.1) According to k

i0 δ 1  , k
i0 σ 1  , 

and k 2 k 2
i i0 (δ ) +(σ ) 1  , it can be obtained that 

k 2 k 2 k 2
i i i(δ ) - (σ ) (δ ) 1   and k 2 k 2 k 2

i i i(δ ) - (σ ) -(σ )  
-1 . Because k 2 k 2

i i-1 (δ ) - (σ ) 1  , one can conclude 
that k

i0 D(d ) 1  . Thus, (T7.1) is valid. 
(T7.2)-(T7.5) are straightforward, which completes the 
proof. 
 

To arrive at a comprehensive ranking of alternatives, 
this paper constructs a novel assignment model to 
propose an assignment-based MCDA method. Let k

i  
denote a binary variable that is restricted to be either 0 
or 1. Let  denote a permutation matrix whose element 

k
i =1 if zi is assigned to the comprehensive rank k; 

otherwise, k
i =0. Note that 

1
1

m k
ik



  (i.e., zi should 

be assigned to only one rank in the comprehensive 
ranking) and 

1
1

m k
ii



  (i.e., a given rank k should 

only have one alternative assigned to it).  is expressed 
as follows: 

 

1 2
1 1 1 1

1 2
2 2 2 2

1 2

                             1st   2nd     -th

.

m

m
k
i m m

m
m m m m

m

z

z

z

  
  

 

  



 
 
      
 
  





    


 (22) 

To show the usefulness of the permutation matrix , 
consider the following simple example. Assume that 
there are three candidate alternatives z1, z2, and z3. For 
convenience, let Z=(z1, z2, z3) in this reference order. 
The ordering (z3, z1, z2) (i.e., the ranking 3 1 2z z z  ) 
could be obtained by multiplying Z by , where 

 1

23 3

3

                         1st  2nd  3rd

0 1 0

0 0 1 .

1 0 0

k
i

z

z

z

 


 
      
  

 

This gives that: 

    1 2 3 3 1 2

0 1 0

Z , , 0 0 1 , ,

1 0 0

z z z z z z
 
     
  

. 

Therefore, by varying the position of the zeroes and 
ones in the permutation matrix , all of the possible 
rank orders can be generated correspondingly. 

As far as the objective function in the developed 
assignment model is concerned, one can see that it 
combines the criterion-wise precedence rankings 
linearly by means of comparisons of the correlation-
based precedence indices. Nevertheless, the overall 
compensation hypothesis among criteria is captured by 
the choice of the sum of comprehensive discordance 
indices which is to be minimized. More specifically, the 
decision maker would like to determine an optimal 
comprehensive ranking that effects a best compromise 
among all criterion-wise precedence rankings. Namely, 
the objective function should assign an alternative to 
that rank order which has the smallest comprehensive 
discordance index. 

Reconsider the reference order Z=(z1, z2, z3) as an 
example. Suppose that the following comprehensive 
discordance indices are obtained: 1

1( )D d  0.92, 
2

1( )D d  0.83, 3
1( )D d  0.77, 1

2( )D d  0.85, 2
2( )D d   

0.76, 3
2( )D d  0.94, 1

3( )D d  0.75, 2
3( )D d  0.88, and 

3
3( )D d  0.86. If one arbitrarily chooses the ranking 

3 1 2z z z  , then the binary variables in  are as 
follows: 2 3 1

1 2 3 1      and 1 3 1 2 2
1 1 2 2 3          
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3
3 0  . Accordingly, the sum of the comprehensive 

discordance indices corresponding to the ordering (z3, z1, 
z2) is 2.52 (=

3 3 2 3
1 21 1

( ( )) ( ) ( )k k
i ii k

D d D d D d
 

      
1
3( )D d  0.83+0.94+0.75). Generally, the decision 

maker would think of examining all criterion-wise 
precedence rankings and choosing the one which yields 
the smallest value of 

3 3

1 1
( ( ))k k

i ii k
D d

 
  . Because 

the ordering (z3, z2, z1) yields the smallest value 2.28 (= 
3 2 1
1 2 3( ) ( ) ( )D d D d D d   0.77+0.76+0.75), the optimal 

comprehensive ranking in this example is 3 2 1z z z  . 
The smaller the degree of discordance indicated by 

( )k
iD d  is, the greater the concordance will be from 

assigning zi to the k-th comprehensive rank. It is clear to 
see that the decision maker prefers that overall ranking 
where 

1 1
( ( ))

m m k k
i ii k

D d
 

   is the smallest because it 
represents that ranking which effects the best 
compromise among all criterion-wise precedence 
rankings. Such an exhaustive search can be formulated 
using a simple linear programming model. Simply note 
that k

i  is unknown to be determined by the model. 
Consequently, the constraints on the problem are the 
constraints for k

i . Remember that 
1

1
m k

ik



  and 

1
1

m k
ii



 . For solution purposes, the following 

assignment model can be established: 

 

 
1 1

1

1

min ( )

subject to  1,   1, 2, , ,

                 1,   1, 2, , ,

                  0 or 1  for all  and .

m m
k k
i i

i k

m
k
i

k

m
k
i

i

k
i

D d

i m

k m

i k









 





 
 

 

 

 













 (23) 

Another way is to arbitrarily choose each of the m! 
possible rank orders to scrutinize which one yields the 
smallest value of 

1 1
( ( ))

m m k k
i ii k

D d
 

  . However, a 
linear programming procedure affects a solution easier 
and quicker. More precisely, solving the linear 
programming problem given by Eq. (23) yields the 
optimal permutation matrix ̂  as would be obtained by 
complete enumeration but much more efficiently. 

It can be verified that the ̂  yields the smallest 
value of the total sum of the comprehensive discordance 
indices as required. Let the reference order 

1 2Z ( , , , )mz z z   for notational convenience. Based on 
Eq. (24), the decision maker can find the optimal order 
by applying the permutation matrix ̂  to Z. Namely, 
the optimal comprehensive ranks of the m alternatives 

can be determined by multiplying Z by the optimal 
permutation matrix ̂ , as follows: 

  

1 2
1 1 1
1 2
2 2 2

1 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆˆZ , , ,

ˆ ˆ ˆ

m

m

m

m
m m m

z z z

  
  



  

 
 
     
 
  




   


. (24) 

By using correlation-based precedence indices, the 
proposed assignment-based MCDA method can be 
summarized as follows: 
 Step 1: Formulate an MCDA problem with the set 

of candidate alternatives 1 2{ , , , }mZ z z z   and the 
set of criteria 1 2{ , , , }nC c c c  . 

 Step 2: Establish the PF evaluative rating pij of each 
alternative iz Z  with respect to criterion jc C  
and the PF importance weight wj of each cj. Form a 
PF decision matrix p [ ]ij m np  . 

 Step 3: Apply Eq. (14) to calculate the correlation-
based precedence index I(pij) for each pij in the PF 
decision matrix p. 

 Step 4: Form the rank evaluation matrix r based on 
the descending order of the I(pij) values with 
respect to each cj. A mean rank should be assigned 
in case of the occurrence of ties. 

 Step 5: Employ Eq. (20) to compute the 
comprehensive discordance indicator k

id  for zi to 
become the comprehensive rank k. 

 Step 6: Use Eq. (21) to determine the 
comprehensive discordance index ( )k

iD d  of each 
k
id . 

 Step 7: Construct a permutation matrix    
[ ]k

i m m   and an assignment model using Eqs. (22) 
and (23), respectively. 

 Step 8: Solve for the optimal permutation matrix 
̂ . Obtain the optimal comprehensive ranks of the 
m alternatives using Eq. (24). 

6. Practical Application 

As an application of the proposed methodology, this 
section investigates a financing decision problem on 
aggressive/conservative policies of working capital 
management for a medical institution to demonstrate the 
feasibility and effectiveness of the developed approach 
in practice. 

Working capital whose main components are 
accounts payable, accounts receivable, and inventory 
concerns managing the day-to-day short-term operations 
of a firm. Working capital management has been 
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playing a pivotal role for corporate finance due to its 
significant influence on firms’ liquidity and profitability. 
Financing policy refers to the financing models 
implemented by firms to satisfy working capital 
requirements. The financing policy of working capital 
management can be generally determined as aggressive 
and conservative. Because of the particularity of the 
medical and health care system, financing decision on 
aggressive or conservative working capital policies 
becomes a highly complicated and ambiguous MCDA 
problem. 

The medical institution investigated in this real-
world case study is Chang Gung Memorial Hospital 
(CGMH). The main branch of CGMH is located in 
Linkou. Linkou CGMH is not only a multi-specialty 
hospital but also the largest medical center in Taiwan. 
Working capital management is important to Linkou 
CGMH because it can grant this medical center 
financial flexibility and reduce the dependence on 
external sources of finance. This case study comprises 
five plans related to working capital financing policy: 
aggressive dominant (z1) (i.e., 100% aggressive plan-
oriented), aggressive-leaning (z2) (i.e., 75% aggressive 
and 25% conservative), balanced aggressive and 
conservative (z3) (i.e., 50% aggressive and 50% 
conservative), conservative-leaning (z4) (i.e., 25% 
aggressive and 75% conservative), and conservative 
dominant (z5) (i.e., 100% conservative plan-oriented). 
To carefully evaluate the five types of alternative plans, 
managers consider the following six evaluation criteria: 
cash reserves (c1), maturity hedging (c2), interest rate 
fluctuation (c3), financial leverage (c4), return on assets 
(c5), and financing cost (c6). 

The proposed assignment-based MCDA method 
using correlation-based precedence indices was 
employed to help Linkou CGMH to select the most 
appropriate financing policy of working capital 
management. In Step 1, this MCDA problem is defined 
by five financing policies and six criteria for evaluating 
the alternatives. The set of alternatives is denoted by 

1 2 5{ , , , }Z z z z  , and the set of criteria is denoted by 

1 2 6{ , , , }C c c c  . 
In Step 2, based on managers’ knowledge and 

expertise in Linkou CGMH, the PF decision matrix p 
( 5 6[ ]ijp  ) was constructed as follows: 

 

1 2 3

1

2

3

4

5

                                                        

(0.21,0.83) (0.33,0.78) (0.49,0.54)

(0.36,0.74) (0.55,0.48) (0.61,0.42)

p (0.63,0.52) (0.77,0.25) (0.88,0.21)

(0.82,0.21) (0.77,0.25) (0.78

c c c

z

z

z

z

z



4 5 6

1

2

3

4

5

,0.27)

(0.94,0.14) (0.90,0.10) (0.61,0.42)

                                                         

(0.29,0.70) (0.91,0.13) (0.49,0.40)

(0.41,0.63) (0.80,0.17) (0.73,0.31)

      (0.61,0.

c c c

z

z

z

z

z









.47) (0.71,0.31) (0.92,0.11)

(0.74,0.31) (0.32,0.79) (0.84,0.18)

(0.82,0.26) (0.11,0.88) (0.51,0.59)









  

The grades of criterion importance were expressed 
using a seven-point scale, and the obtained linguistic 
evaluation terms were as follows: low for c1, fair for c2, 
high for c3, very low for c4, very high for c5, and 
extremely high for c6. Applying Chen’s seven-point 
rating system7, the PF importance weights of the six 
criteria were acquired as follows: w1=(0.35, 0.65), 
w2=(0.55, 0.45), w3=(0.65, 0.35), w4=(0.25, 0.75), 
w5=(0.75, 0.25), and w6=(0.85, 0.15). 

In Step 3, the computed results of the correlation-
based precedence index I(pij) for each pij in p are 
presented in the top part of Table 1. Consider I(p15) as 
an example. By using Eq. (14), one can obtain: 

 
 
 

2 2
15

15 2 2

15

0.91
( ) 0.9800

1 0.39371
I p




  


,  

where 2 2
15 1 0.91 0.13 0.3937     . 

Table 1.  Results of I(pij) and the original precedence rank. 

zi c1 c2 c3 c4 c5 c6 
 Computation results of I(pij) 

z1 0.0602 0.1518 0.4516 0.1465 0.9800 0.6001 
z2 0.1914 0.5676 0.6784 0.2975 0.9568 0.8472 
z3 0.5948 0.9046 0.9461 0.6275 0.8399 0.9859 
z4 0.9385 0.9046 0.8930 0.8507 0.1409 0.9561 
z5 0.9783 0.9878 0.6784 0.9086 0.0154 0.4277 
 The original criterion-wise precedence ranks 

z1 5 5 5 5 1 4 
z2 4 4 3 4 2 3 
z3 3 2 1 3 3 1 
z4 2 2 2 2 4 2 
z5 1 1 3 1 5 5 

 
In Step 4, as shown in the bottom part of Table 1, 

the original criterion-wise precedence ranks of all zi 
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were obtained according to the descending order of the 
I(pij) values. However, because z3 and z4 are tied at 
second place for c2, a mean rank of 2.5 (=(2+3)/2) was 
given to both alternatives. Moreover, a mean rank of 3.5 
(=(3+4)/2) was assigned to z2 and z5 because they are 
tied at third place for c3. Thus, the rank evaluation 
matrix r ( 5 6[ ]ijr  ) was constructed as follows: 

 

1 2 3 4 5 6

1

2

3

4

5

                            

5 5 5 5 1 4

4 4 3.5 4 2 3

r .3 2.5 1 3 3 1

2 2.5 2 2 4 2

1 1 3.5 1 5 5

c c c c c c

z

z

z

z

z

 
 
 
 
 
 
  

  

Note that 
5

1
15iji

r


  for all {1, 2, ,6}j  . 
In Step 5, by using Eq. (20), the comprehensive 

discordance indicator k
id  was calculated, as shown in 

Table 2.  

Table 2.  Results of k
id  and ( )k

iD d . 

zi 
k
id  ( )k

iD d  k
id  ( )k

iD d  

 1st rank  2nd rank  
z1 (0.9861, 0.0023) 0.9862  (0.9815, 0.0036) 0.9817  
z2 (0.9952, 0.0003) 0.9952  (0.9395, 0.0199) 0.9411  
z3 (0.9377, 0.0138) 0.9395  (0.9678, 0.0080) 0.9683  
z4 (0.9669, 0.0063) 0.9674  (0.5718, 0.4715) 0.5523  
z5 (0.9789, 0.0060) 0.9791  (0.9686, 0.0065) 0.9691  
 3rd rank  4th rank  

z1 (0.9755, 0.0056) 0.9758  (0.9675, 0.0087) 0.9680  
z2 (0.8405, 0.0999) 0.8483  (0.9708, 0.0099) 0.9712  
z3 (0.9879, 0.0023) 0.9880  (0.9994, 0.0000) 0.9994  
z4 (0.9414, 0.0191) 0.9429  (0.9930, 0.0004) 0.9930  
z5 (0.9532, 0.0070) 0.9543  (0.9523, 0.0037) 0.9535  
 5th rank    

z1 (0.9909, 0.0014) 0.9909    
z2 (0.9976, 0.0001) 0.9976    
z3 (1.0000, 0.0000) 1.0000    
z4 (0.9993, 0.0000) 0.9993    
z5 (0.9668, 0.0010) 0.9673    

 
Consider z4 to be assigned the second 

comprehensive rank as an example. First, the product of 

4( )jI p  and 4| 2 |jr   was calculated for each 
1, 2, , 6j   , and the following results were acquired: 

41 41( ) | 2 | 0.9385 | 2 2 | 0I p r      , 42 42( ) | 2 |I p r    
0.9046 | 2.5 2 | 0.4523   , 43 43( ) | 2 | 0.8930 | 2I p r      
2 | 0 , 44 44( ) | 2 | 0.8507 | 2 2 | 0I p r      , 45 45( ) |I p r  

2 | 0.1409 | 4 2 | 0.2818     , and 46 46( ) | 2 |I p r    
0.9561 | 2 2 | 0   . Then, one obtains: 

    

     

     


4 4
4 4

( ) 26 62 ( ) 22
4

1 1

0 0.4523 02 2 2

0.50 0.2818 02 2 2

0 0.4523 0 0 0.2818 0

1 1 ,

    1 1 0.35 1 0.55 1 0.65

       1 0.25 1 0.75 1 0.85 ,

       0.65 0.45 0.35 0.75 0.25 0.15

    0.5

j j
j j

I p r I p r

j j
j j

d  
 

 

 
   
 
 
      

    

    



 

 718,0.4715 .

 

In Step 6, by using Eq. (21), the comprehensive 
discordance index ( )k

iD d  of each k
id  was obtained, as 

revealed in Table 2. For example, 2 2
4( ) (1 0.5718D d    

20.4715 ) / 2 0.5523  . 
In Step 7, a permutation matrix  whose entry 

{0,1}k
i   for each ,  {1, 2, ,5}i k    was established as 

follows: 

 

1 2 3 4 5
1 1 1 1 1 1

1 2 3 4 5
2 2 2 2 2 2

1 2 3 4 5
3 3 3 3 3 3

1 2 3 4 5
4 4 4 4 4 4

1 2 3 4 5
5 5 5 5 5 5

           1st   2nd   3rd  4th   5th

.

z

z

z

z

z

    
    

     
    
    

 
 
 
 
 
 
 
 

  

Moreover, by using Eq. (23), the following 
assignment model was constructed: 
 

 

1 2 3
1 1 1

4 5 1
1 1 2

2 3 4
2 2 2

5 1 2
2 3 3

3 4 5
3 3 3

1 2 3
4 4 4

0.9862 0.9817 +0.9758

+0.9680 +0.9909 0.9952

0.9411 +0.8483 +0.9712

+0.9976 0.9395 0.9683

min +0.9880 +0.9994 +1.0000

+0.9674 0.5523 +0.9429

  

  

  

  

  

  

   

   

   

    

  

   
4 5 1
4 4 5

2 3 4
5 5 5

5
5

5

1

5

1

+0.9930 +0.9993 +0.9791

0.9691 +0.9543 +0.9535

+0.9673

subject to  1,   1,2, ,5,

                 1,   1,2, ,5,

              

k
i

k

k
i

i

i

k

  

  











 
 
 
 
 
 
  
 
 
 
   
 
    
 

  

 

 









   0 or 1  for all  and .k
i i k 
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In Step 8, the optimal objective value 4.2754 was 
acquired by solving the above model; moreover, 

4 3 1 2 5
1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ= 1        , and the other ˆ 0k

i  . By 
using (24), the optimal comprehensive ranks of the five 
financing policies were determined by multiplying Z by 
̂ , i.e.: 

 
 

 

1 2 3 4 5

3 4 2 1 5

0 0 0 1 0

0 0 1 0 0
ˆZ , , , , 1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

       , , , , .

z z z z z

z z z z z



 
 
 
   
 
 
  



  

From the above, it is clear that the optimal 
comprehensive ranking of the five financing policies is 

3 4 2 1 5z z z z z     that has the least disagreement 
with all of the criterion-wise precedence rankings of the 
alternatives. Moreover, the balanced aggressive and 
conservative policy (z3) is the best choice for Linkou 
CGMH. Having illustrated the solution process, the 
feasibility and effectiveness of the proposed 
methodology have been validated through the practical 
application of a financing decision on working capital 
policies. 

7. Comparative discussion 

This section attempts to employ the assignment-based 
MCDA method using correlation-based precedence 
indices to investigate the application effects within the 
intuitionistic fuzzy environment. More specifically, the 
sensitivities of applying the develop approach over 
implementations of intuitionistic fuzzy information are 
further explored to examine the applicability and 
effectiveness in the context of intuitionistic fuzziness. 

Consider the same financing decision problem. 
Inspired by the transformation procedure of interval 
type data introduced by Chen5, this paper converts the 
PF evaluative rating pij and the PF importance weight wj 
into intuitionistic fuzzy values ijp  and jw , respectively, 
using the following manner: 

 

 ,

    , ,

ij ij ij

ij ij

ij ij ij ij ij ij

p  

 
     



 
       

 (25) 

 ( , ) , ,j j
j j j

j j j j j j

w
 

 
     

 
        

(26) 

where 1ij ij ij      and 1j j j     . 
To adapt to the intuitionistic fuzzy context, some 

formulas in the proposed method have to be modified 
using intuitionistic fuzzy operations. First, the 
information energy of ijp  is computed as follows: 

      2 2 2
( )ij ij ij ijT p      . (27) 

The correlation between 
1i jp  and 

2i jp  is given by: 

 
1 2 1 2 1 2 1 2

( , )i j i j i j i j i j i j i j i jR p p            . (28) 

The correlation-based precedence index of ijp  is 
determined as follows: 

 ( )
1

ij
ij

ij

I p






. (29) 

Next, the comprehensive discordance indicator k
id  in 

the intuitionistic fuzzy context is computed as follows: 

    ( ) ( )

1 1

1 1 ,
ij ij ij ij

n nI p r k I p r kk
i j j

j j

d  
 

 

 
    
 

  . (30) 

The comprehensive discordance index ( )k
iD d  

corresponding to each k
id  is defined as follows: 

 
1

( )
2

k k
k i i

iD d
  

 . (31) 

Table 3 reveals the obtained results of the 
correlation-based precedence index ( )ijI p , as shown in 
the top part. The adjusted criterion-wise precedence 
ranks are listed in the bottom part. Furthermore, the 
computed results of k

id  and ( )k
iD d  in the intuitionistic 

fuzzy context are depicted in Table 4. 

Table 3.  Results of ( )ijI p  and the original precedence rank. 

zi c1 c2 c3 c4 c5 c6 

 Computation results of ( )ijI p  

z1 0.0602 0.1518 0.4516 0.1465 0.9800 0.6001 
z2 0.1914 0.5676 0.6784 0.2975 0.9568 0.8472 
z3 0.5948 0.9046 0.9461 0.6275 0.8399 0.9859 
z4 0.9385 0.9046 0.8930 0.8507 0.1409 0.9561 
z5 0.9783 0.9878 0.6784 0.9086 0.0154 0.4277 
 The adjusted criterion-wise precedence ranks 

z1 5 5 5 5 1 4 
z2 4 4 3.5 4 2 3 
z3 3 2.5 1 3 3 1 
z4 2 2.5 2 2 4 2 
z5 1 1 3.5 1 5 5 
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Table 4.  Results of k
id  and ( )k

iD d . 

zi k
id  ( )k

iD d  k
id  ( )k

iD d  

 1st rank  2nd rank  
z1 (0.9576, 0.0000) 0.9788  (0.9394, 0.0001) 0.9696  
z2 (0.9688, 0.0000) 0.9844  (0.8215, 0.0035) 0.9090  
z3 (0.8280, 0.0025) 0.9127  (0.8572, 0.0023) 0.9274  
z4 (0.9035, 0.0006) 0.9515  (0.3983, 0.2066) 0.5959  
z5 (0.9218, 0.0006) 0.9606  (0.9167, 0.0004) 0.9582  
 3rd rank  4th rank  

z1 (0.9134, 0.0005) 0.9564  (0.8762, 0.0016) 0.9373  
z2 (0.6369, 0.0361) 0.8004  (0.8283, 0.0058) 0.9113  
z3 (0.9117, 0.0008) 0.9554  (0.9891, 0.0000) 0.9946  
z4 (0.8142, 0.0045) 0.9048  (0.9573, 0.0000) 0.9786  
z5 (0.9113, 0.0003) 0.9555  (0.9293, 0.0001) 0.9646  
 5th rank    

z1 (0.9292, 0.0004) 0.9644    
z2 (0.9699, 0.0000) 0.9850    
z3 (0.9987, 0.0000) 0.9993    
z4 (0.9931, 0.0000) 0.9966    
z5 (0.9579, 0.0000) 0.9790    

 
By solving the assignment model based on Eq. (23), 

the same optimal comprehensive ranking 3 4 2z z z   

1 5z z   is obtained. According to the implementation 
results of the sensitivities with intuitionistic fuzzy 
information, this paper has demonstrated that the 
developed approach can yield solid and conscious 
results to support decision makers. In addition to the PF 
environment, the proposed methodology is also capable 
of addressing MCDA problems involving intuitionistic 
fuzzy information and producing reasonable and reliable 
outcomes for decision support. 

8. Conclusions 

This paper has developed a novel assignment-based 
MCDA method using correlation-based precedence 
indices for the purpose of managing vague or imprecise 
information and conducting multiple criteria evaluation 
and selection under complex uncertainty based on PF 
sets. The theory of Pythagorean fuzziness can 
accommodate much higher degrees of uncertainty 
compared to other nonstandard fuzzy models. Therefore, 
PF sets are more powerful at solving complicated and 
changeable real-world problems. Accordingly, the PF 
theory becomes popular and useful for solving various 
MCDA issues over the past few years. 

However, it has been observed that the mathematical 
formulation and operations required in the PF relevant 
approaches have certain limitations. Specifically, the 
main drawback of the existing PF approaches is the 

manipulation and computation of complicated PF data. 
In general, using considerate and rigorous models and 
techniques to process PF information is a troublesome 
and difficult task for most decision makers. To 
overcome the difficulty during mathematical 
manipulation, this paper has proposed easy-to-use 
measures of PF correlation coefficients and further 
established a simple assignment-based model for 
managing an MCDA problem with PF information. 

Inspired by the idea of the correlation coefficient for 
PF sets, this paper has presented some useful concepts 
of the information energy of a PF value, the correlation 
between two PF values, and the correlation coefficient 
for PF values in order to identify the correlation-based 
precedence index. Meanwhile, relevant desirable 
properties possessed by these concepts have been 
discussed and investigated as well. 

In addition to the correlation-based precedence 
index, this paper has proposed some interesting and 
valuable measures within the PF environment, 
consisting of the discordance indicator, the weighted 
discordance indicator, the comprehensive discordance 
indicator, and the comprehensive discordance index. 
Based on these indicators and the comprehensive 
discordance index, a simple and effective assignment 
model has been established to determine the optimal 
comprehensive ranking among candidate alternatives. 

For the sake of illustrative applications, a real-world 
problem concerning a financing decision on working 
capital policies for Linkou CGMH has been explored. 
The application results have examined the practicality 
and effectiveness of the developed methods and 
techniques that are capable of managing more-complex 
uncertainty in practice. 
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