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Abstract 

The four-wheeled omnidirectional platform is great to use for an indoor mobile robot. It can increasingly move and 

change heading directions. However, the robot is easy to slip when it is moving. One or more wheels are sometimes 

not touching the ground. This paper approaches to solving these problems by computational simulation in locomotion. 

The mathematical models simulate the robot movement. The robot struggles to go to the target with randomly 

simulated slips and untouched ground circumstances. The robot can estimate the positions using the Kalman filter 

and readjust itself to the planned path. Consequently, this paper demonstrates the motion improvement and compares 

the results of decreasing errors. 
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1. Introduction 

It is known that an omnidirectional mobile robot is a 

holonomic motion. It can travel in multi-directions and 

change direction rapidly. This platform is famous for use 

in the automated guided vehicles (AGVs), which use is 

growing in service robots.1 The robots can support home 

care. The robots can flexibly add on many functions for 

works or for human assistance. 

The omnidirectional mobile robot has many wheels 

that are placed in different directions. It has a 

complicated mathematical model to control the 

movement of robots.2  There is a constraint when moving 

on a flat, indoor terrain. However, it is difficult to move 

the robot to the desired position autonomously because 

the robot's motion is slippery. Therefore, the robot may 

miss its planned path or, in the worst-case scenario, get 

lost due to unrecognized circumstances. 

There are several techniques to solve the robot motion 

slippery of the omnidirectional type wheel. The design 

performance of the four-wheeled Omni wheelchair, with 

a suspension mechanism that utilizes a hydraulic shock 

absorber, was evaluated.3 The results claimed that the 

proposed mechanism design had lesser wheel slippage 

and vibration than the other existing designs. Moreover, 

the omnidirectional mobile can be used with the 

wheelchair platform, which added the human upper body 

model to the robot model.4 Normally, the dynamic model 

and modeling control methods are implemented in the 

system. The motion control has a dynamic model of three 

Omni wheels, which is formulated to stabilize the 

programmed motion and to track the trajectory of a robot. 

The performance investigations are based on the direct 

Lyapunov method and its extensions. Andreyev et al. 

created control laws and simulated it by using the 

numerical method.5 Similarly, the problem of trajectory 

tracking for a four-wheeled omnidirectional robot is 
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solved by obtaining the nonlinear error, which is brought 

to a quasi-Linear Parameter Varying (LPV). The 

simulation results showed the effectiveness of switching 

LPV control, using Linear Matrix Inequalities (LMI)-

based techniques in the tracking of the desired circular 

trajectory.6 The utilized trajectory can be generated for 

obstacle avoidance; the robot can travel in smooth 

vehicle velocities near obstacles. Galicki applied the 

Lyapunov stability theory, which is used to derive the 

control scheme.7 The simulations of an omnidirectional 

vehicle had collision-free movement with one obstacle 

and in cluttered task space. Flippo et al. developed a 

prediction algorithm in a skid steering turn8 to validate 

the use of single wheel testing to predict the full four-

wheel vehicle system and to control the side-slip angle 

estimation based on lateral dynamics control with 

optimal steering angle and traction/brake torque 

distribution.9 Both trajectory tracking and stabilization 

can be synthesized via the well-known adaptive 

backstepping approach for the dynamic models of 

nonholonomic mobile robots with dynamic effect and 

uncertainties.10 The robot that can localize or recognize a 

shifted position can adjust itself to the correct position. 

In fact, the robot has sensors to refer to the absolute 

position. An omnidirectional mobile platform has a 

closed-loop control scheme to control three degrees-of-

freedom motions. Cooney et al. adapted the optical mice 

as a sensor providing dead-reckoning for closed-loop 

PID control.11 Huang et al. have built in the electronic 

compass and the gyroscope sensors to measure the 

mobile platform azimuth and feedback for platform 

orientation control.12 They control the robot by knowing 

the robot rotation and orientation, relating to an 

intelligent fuzzy sliding mode controller (FSMC) for 

every wheel. The robot has the suspension system of 

Omni wheels to prevent non-ground contact on a 

unsmooth surface for better control. Research used a 

fault-tolerant odometry feedback using IMU, stereo 

camera, and laser scanner to recognize self-position and 

track the desired trajectory.13 Sanada et al. used a camera 

as a velocity sensor to calculate optical flow.14 The 

correct position is obtained by the optical flow sensor as 

opposed to the dead reckoning method. To solve the slip 

problem when a vehicle traverses over soft soil, use a 

downward-looking camera to capture images that contain 

both the soil surface and the wheel tire surface.15 The 

wheel slip can be estimated using the vision-based 

optical flow algorithm without wheel odometry 

information. The vision-based perception using an 

omnidirectional mirror can obtain a panoramic view, and 

the omnidirectional mobile robot can then move toward 

desired targets and avoid the obstacles. The particle 

swarm optimization (PSO)-learning algorithm is 

proposed to generate fuzzy decision rules16 

automatically. Odometry sensor is not suitable for such 

drives because of wheel slippage. Kundu et al. used a 

single camera for 360-degree scanning of multiple 

markers in the area.17 The markers were based on an 

augmented reality localization platform. The system 

required a scanning time of 5 seconds, and the robot had 

to stop traversing. The average error ranging was from 

2.5cm to 5cm in a test area of 5m X 5m. Active Beacon 

System is a radio frequency signal transceiver that has 

multiple ultrasonic sensors which transmit a package to 

every beacon. It is used to determine the absolute position 

of the robot.18 Algorithms are used to control the robot 

by reducing errors. For real implement in the robot, 

Hashemi et al. use a model-based PI-fuzzy control for 

four-wheeled RoboCup Small Size League 

omnidirectional robot.19 The robot had a path planner and 

associated low-level control system to satisfy planning 

prerequisites and prevent slippage with velocity and 

acceleration filtering. The robot can generate a real-time 

trajectory by constrained dynamic inversion.20 Another 

idea to improve the trajectory tracking of mobile robots 

is to use neural networks. The wheel slip error and 

external disturbance forces were defined as uncertainty.21 

The modified backpropagation neural networks have 

online weight updating laws for robustness. The 

boundary of system stability is proven using the 

Lyapunov method. The tracking error can be reduced 

according to the theoretical analysis of tracking a straight 

line and a U-shape trajectory. 

The four-wheeled omnidirectional mobile robot has 

four points to make contact with the floor. Its geometry 

is a rectangular shape with four connecting points, which 

are supposed to align all wheels in the same plane. In fact, 

the floor is not completely flat, and after running the 

robot many times, each wheel will become eroded 

unequally. The robot becomes unbalanced or shaky even 

though all wheels are designed and aligned in the same 

plane. It is possible that some wheels will not touch the 

floor when it moves. It is possible that the robot will get 

stuck and not reach its goal. These problems can be 

solved by mechanically designing it for rough terrain 

conditions.22 For example, the omnidirectional mobile 

robot employs a suspension system23 for supporting all 

wheels to touch the floor in order to cancel out the 

mechanical noise.  
The computational algorithm can reduce error from 

noises and make the robot move on its planned path. 

Dead reckoning is the motion estimation of the robot base 

on speed estimation, direction, and traveling time.24 The 

Kalman filter is great to use in noisy systems such as 

localization and navigation.25 
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This research is about to use the Kalman filter to solve 

the slip without the wheel touching the ground. The robot 

will use sensors and computation to resolve the problems. 

The research is done in simulation by creating the 

possible conditions of motion randomly using 

MATLAB. The first section is about the kinematics 

model; next section is the trajectory to define the state of 

motion. After that, the simulation section describes the 

steps of simulation and the conditions of motion, and then 

the motion improvement section uses the Extended 

Kalman Filter and shows the simulation results. Finally, 

conclusion section discusses and concludes the results 

from the simulation. 

2. Kinematics 

The omnidirectional mobile robot uses holonomic 

motion and has four wheels to move in multiple 

directions. It can be controlled through the planned path 

in three degrees of freedom. There are two kinematics 

models: the first is forward kinematics, and the second is 

inverse kinematics. The robot platform uses the forward 

kinematics to determine the robot’s velocities (𝑉𝑥 , 𝑉𝑦 , 𝜃̇) 

and the inverse kinematics to determine the wheel's 

angular velocities (𝑤1 , 𝑤2, 𝑤3, 𝑤4). The robot motion is 

in the XY coordinate as in Fig. 1. The robot's heading 

angle is determined by 𝜃. The robot can move through 

the planned paths of motion from the kinematics models. 

As such, there are eight basic directions for 

omnidirectional movement in Table 1. Each wheel turns 

in different directions. CW is clockwise, and CCW is 

counterclockwise. 

Table 1. Eight directions of the robot’s motion 

relate to the four wheels’ rotation direction. 

2.1.  Forward Kinematics 

The input of forward kinematics regards the wheels’ 

speed, and the output regards the robot’s velocities as in 

Eq. (1) to simulate the robot's motion. Converting the 

four wheels’ speed into the robot’s linear velocity 

requires the Jacobian matrix as seen in Eq. (2). The 

parameters R and r are set to 10 cm and 5 cm respectively 

for the simulation. 

𝑉𝑟 = [

𝑉𝑥
𝑉𝑦

𝜃̇

] = 𝐽 [

𝑤1

𝑤2
𝑤3

𝑤4

]   (1) 

𝐽 =
𝑟

2

[
 
 
 
 
 
 −𝑠𝑖𝑛 (𝜃 +

𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

𝜋

4
)

1

2𝑅

−𝑠𝑖𝑛 (𝜃 +
3𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

3𝜋

4
)

1

2𝑅

−𝑠𝑖𝑛 (𝜃 +
5𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

5𝜋

4
)

1

2𝑅

−𝑠𝑖𝑛 (𝜃 +
7𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

7𝜋

4
)

1

2𝑅]
 
 
 
 
 
 
𝑇

 (2) 

Where W1 is the angular velocity of wheel 1, W2 is the angular 

velocity of wheel 2, W3 is the angular velocity of wheel 3, and 

W4 is the angular velocity of wheel 4. R is the radius of the robot 

from the center to the wheel, r is the radius of the wheel, Vx is 

the robot’s velocity on the x-axis, Vy is the robot’s velocity on 

the y-axis, and  𝜃̇ is the heading angular velocity of the robot. 

2.2. Inverse Kinematics 

To inverse Eq. (1) will obtain Eq. (3), which provides 

the robot’s velocities.  

𝑉𝑤 = [

𝑤1

𝑤2
𝑤3

𝑤4

] =
1

𝑟

[
 
 
 
 
 
 
 −𝑠𝑖𝑛 (𝜃 +

𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

𝜋

4
) 𝑅

−𝑠𝑖𝑛 (𝜃 +
3𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

3𝜋

4
) 𝑅

−𝑠𝑖𝑛 (𝜃 +
5𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

5𝜋

4
) 𝑅

− 𝑠𝑖𝑛 (𝜃 +
7𝜋

4
) 𝑐𝑜𝑠 (𝜃 +

7𝜋

4
) 𝑅]

 
 
 
 
 
 
 

[

𝑉𝑥
𝑉𝑦

𝜃̇

] 

 (3) 

 

The planned path of the robot's velocities is assigned as 

input parameters to obtain the speed of four wheels. 

Direction W1 W2 W3 W4 

Forward CW CCW CCW CW 

Left CW CW CCW CCW 

Right CCW CCW CW CW 

Back CCW CW CW CCW 

+Diagonal Right 0 CCW 0 CW 

-Diagonal Right 0 CW 0 CCW 

+Diagonal Left CW 0 CCW 0 

-Diagonal Left CCW 0 CW 0  

 

W1

W2

W3

W4

π/2π

q 

3π/2

x

y

+Diagonal 

right+Diagonal 

left

Forward

Back

Right

Left

-Diagonal 

right-Diagonal 

left

 

 Fig. 1.  The robot’s configuration and eight directions of 

motion. 
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2.3. Trajectory model 

The robot can move smoothly. The trajectory is for path 

planning, which determines speed and acceleration of 

each wheel. The trajectory advantage is to increase and 

slow down velocity properly. The robot can rotate to 

change directions while it is moving. Accordingly, the 

trajectory of path planning will be applied to the inverse 

kinematics and then control the speed of four wheels. In 

reality, the robot has to have odometry sensors for 

feedback control to control the wheels’ speed and the 

robot's direction. For simulation, the velocity of four 

wheels can be applied to drive the animated robot. The 

trajectory uses a polynomial function of time. 

Polynomials are simple to compute and can provide the 

required smoothness and boundary conditions using 

Peter Corke’s MATLAB library.25 A quintic (fifth-order) 

polynomial is used, 

𝑆(𝑡) = 𝐴𝑡5 + 𝐵𝑡4 + 𝐶𝑡3 + 𝐷𝑡2 + 𝐸𝑡 + 𝐹      (4) 

𝑆̇(𝑡) = 5𝐴𝑡4 + 4𝐵𝑡3 + 3𝐶𝑡2 + 2𝐷𝑡 + 𝐸      (5) 

𝑆̈(𝑡) = 20𝐴𝑡3 + 12𝐵𝑡2 + 6𝐶𝑡 + 2𝐷      (6) 

where S is function of robot motion (𝑥, 𝑦, 𝜃), 𝑆̇ is derivative of 

S as robot velocity (𝑉𝑥 , 𝑉𝑦 , 𝜃̇) , 𝑆̈  is derivative of 𝑆̇ as robot 

acceleration (𝑎𝑥, 𝑎𝑦, 𝜃̈), t is interval time in step sampling, and 

(A,B,C,D,E,F) are coefficients.  

3. Simulation 

The simulation is implemented by a kinematics model 

and a trajectory model. The planned path is created for 

the robot motion, a straight line and a curved line. The 

trajectory is ready to use to control the robot's position, 

velocity, and acceleration using Eq. (4-6). Then, the robot 

converts its body velocity to four wheels’ speed using Eq. 

(3). To display the robot's motion, in animation, see Eq. 

(1). The Kalman filter is used to improve the robot's 

motion and simulate every condition of motion as in Fig. 

2. 

3.1. Conditions of Motion 

The robot may not move as the planned path because of 

friction and external force. However, the robot normally 

has the feedback control to compensate for the motor’s 

speed to maintain the speed input and direction of the 

robot. Another problem is the robot possibly getting 

stuck and being unable to move out from the trap field. 

However, the wheels still continue as the assigned 

wheels’ speed. 

There are two effects from changing the conditions of 

motion randomly. First, the robot position shifts from the 

planned path, and second, the robot cannot reach the 

goal's position. There are eight conditions of motion as 

 

Fig. 2.  The simulation procedures. 

 

Fig. 3.  There are eight possible cases involving the four 

omnidirectional wheels. This shows the rotation direction of 

each omnidirectional wheel, clockwise and counterclockwise. 

In case 1, not all wheels touch the ground. This is not used in 

the simulation. 
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shown in Fig. 3. The wheels can change the states of 

motion, as in Table 2, the four wheels drive in Case 2, the 

three wheels drive in Cases 3 through 6, and the two 

wheels drive in Cases 7 and 8.  

Table 2. The omnidirectional wheels touch and do 

not touch the floor in the conditions of motion. 

Eight cases have been determined. 

 

In the example, W1 and W3 are stuck, and the robot 

cannot keep moving in the desired direction in case 8. 

The robot needs to get out by struggling to the left and 

right, back and forth, as shown in Fig. 4. 

In motion case 2, all wheels are touching the floor 

while the robot is moving. This is the ideal condition for 

motion. However, not all wheels can touch the ground all 

the time in cases 3 through 8. 

4. Motion Improvement 

The planned path trajectory is assigned to the robot's 

moving path profile. This omnidirectional mobile robot 

cannot move along to the goal position when it is in 

motion case condition 3-8. The robot needs to adjust its 

position to the goal even when the robot goes into a trap 

field. Motion improvement aims to help the robot 

approach the goal position using the Kalman filter. 

4.1. Kalman Filter 

The Kalman filter was invented by Rudolf Kalman. It is 

a well-known algorithm that is used to estimate the 

output from a system model and sensor measurements. 

The Kalman filter was invented for the linear system, but 

many problems are non-linear. Thus, it needs to linearize 

the system model. Estimating the measurements of a non-

linear system requires a tool known as the extended 

Kalman filter (EKF). This paper uses the EKF for the 

four-wheeled omnidirectional mobile robot. The 

algorithm is iterative to predict, and an update follows 

Eq. (7-11). However, much research is needed in order to 

implement the EKF within the omnidirectional mobile 

robot. Guidelines following the algorithm's steps are 

described in Ref. 26-27. A difference in this work as 

compared to other works is the use of random states of 

motion for the state process. 

Predict: 

𝑥̂𝑡
− = 𝑓(𝑥̂𝑡−1

− , 𝑢̂𝑡
−) + 𝑤𝑡               (7) 

𝑃𝑡
− = 𝐹𝑥𝑃𝑡−1𝐹𝑥

𝑇 + 𝐹𝑣𝑈𝑡𝐹𝑣
𝑇 + 𝑄𝑡       (8) 

Update: 

𝐾𝑡 = 𝑃𝑡
−𝐻𝑡

𝑇(𝐻𝑡𝑃𝑡
−𝐻𝑡

𝑇 + 𝑅𝑡)
−1      (9) 

𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑡(𝑧𝑡 − 𝑧̂𝑡)             (10) 

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡
−          (11) 

Where 𝑥̂ is the estimated state. F is the state transition matrix 

(translation between states). 𝑢̂ is the control variables. 𝑤 is the 

modelled random white noise. 𝑃 is the state variance matrix 

(error of estimation). 𝑈 is the control input error covariance. 

𝑄 is the process variance matrix (error due to process). 𝑧 is the 

measurement variables. 𝐻 is the measurement matrix (mapping 

measurements onto state). 𝐾  is the Kalman gain. 𝑅 is the 

measurement variance matrix (error from measurements). 

Subscripts are as follows: t current time period and t-1 previous 

time period. Superscript (-) is intermediate steps.  

 

The EKF framework has various sensors for the step 

update that is referred to as a "sensor fusion.27" The 

values from simulation compared to the original sensors 

are the heading angle from a compass, the yaw rate from 

case W1 W2 W3 W4 

1 0 0 0 0 

2 1 1 1 1 

3 1 1 1 0 

4 1 0 1 1 

5 1 1 0 1 

6 0 1 1 1 

7 1 0 1 0 

8 0 1 0 1 

Note: 1 is touching and 0 is not touching the ground. 

 

 

 

 

 

 

 

 

Fig. 4.  The omnidirectional mobile robot attempts to move 

under the conditions of motion case 8. The trap field, or the 

freewheel, is random in the simulation. This means that the 

omnidirectional wheel is not touching the floor. 
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a gyroscope, the wheel’s speed from an encoder, the 

freewheel check from the wheel's rotation and the robot's 

movement using an encoder and an accelerometer, and 

target bearing from a camera. 

5. Simulation Results 

The planned path was a linear path from the start position 

(x = 20, y = 20) to the goal position (x = 150, y = 150). It 

started moving to the +diagonal right, as in Table 1, and 

then attempted to rotate itself because the heading angle 

was changed. The robot’s heading angle started from 0 

rad, as in the configuration in Fig. 1. Finally, the robot’s 

heading angle stopped at π ⁄4 rad. Moving under the 

conditions of motion randomly, the robot shifted from the 

planned path and had not reached the goal position when 

the time ended. The robot’s actual position is shown in 

Fig. 5.  

Accordingly, each wheel of the robot had the wheel’s 

speed, as shown in Fig. 6. The wheel’s speed dropped to 

zero in the trap field in case of free running, or the wheel 

did not touch the floor.  

The total simulation time was 0.5 seconds, with every 

0.01 second per step. After applying the EKF to the robot, 

the estimated positions x and y were smooth and could 

reach very close to the goal position as shown in Fig.7.  

 

Fig. 5.  The robot randomly moved under the eight conditions 

of motion, following the planned path from the start position to 

the goal position. 

 

Fig. 7.  The robot’s actual positions x and y shifted from the 

planned path. The estimated position x and y from the EKF had 

a better motion. 

 

Fig. 6.  The four wheels’ speed trajectory is related to the 

planned path. W1 and W2 rotated counterclockwise. W3 and W4 

rotated clockwise.  

 

Fig. 8. The robot’s heading angle simulated the actual position. 

The estimated and measured heading angle were the motion 

improvement from the EKF.  
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The robot maintained the position on the planned 

path. However, the robot’s heading angle from 

measurement and estimation changed a lot as shown in 

Fig. 8. 

The robot in x and y position could be compared in 

Fig. 9. The measured position was noisy and affected by 

the error of the actual position. 

For the motion improvement, each wheel’s speed was 

generated from the estimated positions. The estimated 

wheel’s speed was very noisy compared to the actual 

wheel’s speed because the robot struggled to the new 

positions as in Fig. 10. 

6. Conclusion 

The robot randomly changed its states of motion in four-

wheel, three-wheel, and two-wheel drive. The main error 

came from the robot motion model, which changed the 

number of the driving wheel. Generally, the EKF reduces 

the effects of slip noise and sensor noise in the dead 

reckoning problem. However, the simulation result 

shows that the EKF produces better robot motion along 

the planned path. The robot struggles to traverse its 

planned path with its assigned trajectory. 

The behavior of the robot during the real test may 

considerably differ from the simulation. Noises from 

signals are reduced, but the dynamic motion of the robot 

may not work like the control signals. For real tests in 

future work, the omnidirectional mobile robot has to have 

speed control sensors to monitor its wheel speed, and it 

will be important to check the freewheel and the floor 

touchless condition when some of the wheels rotate, but 

the robot does not move, or it moves in the wrong 

direction. 
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