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Abstract 

Slip-induced fall is one of the main factors causing serious fracture injuries among the elderly. In this paper, we 
propose a fall risk reduction measures for the elderly, based on deep reinforcement learning using mobile assistant 
robots. Our method involves online real-time risk analysis and risk reduction. The results suggest that our method is 
applicable to the prevention of not only slip-induced fall, but also other factors related to falling and other cases of 
accidents. 
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1. Introduction 

In some countries, including Japan, there is an increasing 
tendency in the number of accidents involving the elderly. 
Slip-induced falls are one of the main factors causing 
serious fracture injuries among the elderly, subsequently 
leading to them being bed ridden. To reduce the 
increasing fall accidents among the elderly, we propose 
an approach using mobile assistant robots. We consider 
safety in environments wherein humans and assist robots 
coexist to enhance the fields of medical welfare and assist 
living1-3.  

This paper proposes deep reinforcement learning 
(hereinafter called ‘DQN’)-based fall risk reduction 
measures by employing mobile assistant robots for the 
elderly. First, we collect preparatory data regarding past 
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incidents and accidents as the input data to analyze fall 
risks, and to assess the examples of risk reduction 
measures. Second, we use a deep convolutional neural 
network4 to analyze the fall risks of the elderly. Third, we 
apply DQN5-6 to control mobile robots according to the 

 
Fig. 1.  Reinforcement learning for fall risk reduction of 
the elderly. 
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results of risk analysis, and consequently reduce the slip-
induced fall risks of the elderly.  

2. Data Preparation  

We collect the images and movies, including information 
of the location where the real incidents and accidents had 
occurred, and where similar hazards exist. In addition to 
these data, we use open datasets, such as Caltech101 
datasets. Moreover, we expand the data by 14 times using 
data augmentation such as additional noise, rotation, 
zoom-in, zoom-out, foreground, and background. We set 
128 labels as risk levels3 based on the risk classification 
of the international standard ISO12100 for all collected 
data. 

3. Method for risk analysis 

Risk analysis is carried out through methods such as 
Fault Tree Analysis (FTA),7 Hazard and Operability 
Study (HAZOP),8-9 and Failure Modes Effects and 
Criticality Analysis (FMECA).10 Conventional risk 
analyses conducted manually or partially use a 
probability calculation tool when employed in 
applications such as system safety requirement analysis 
or design. This type of analysis has the following 
limitations: 
 Failure in identifying that hazards may occur owing 

to differences in the proficiency of the safety 
management officers, that is, their experience and 
capability, 

 Risk analysis procedures are complex and require a 
specific number of man-hours depending on the 
scale of the assessment. 

 
Most analyses and assessments are carried out offline 

based on prior information, and require time to be 
conducted; the results are not immediately available. 
Therefore, the measures of risk reduction are often 
delayed, and it becomes difficult to respond promptly and 
flexibly in continually changing situations. 

We develop an online real-time risk analysis based on 
the deep convolutional neural network. The input is 
environmental sensing data aimed at detecting Hazard 
Elements (HEs), Initiating Mechanisms (IMs, triggers of 
the accident), and Target and Threat (T/T) with reference 
to Ericson’s Hazard Theory11. According to this theory, 
an accident (mishap) occurs when HE, IMs, and T/T 
appear simultaneously at a specific time. In our study, the 
sensing data are mainly time-series images of the 
environment and distance information to the objects and 
parts of human body.  

The main output is the result of risk analysis and the 
level of risk as quantitative information. The risk is 
presented using the following formula: 

 
(1) 

(2) 

Eq. (1) shows that the risk is a product of the severity 
of the harm (S) and the probability of the harm (Ph).  This 
is one of the principal criterion of ISO1210012. Eq. (2) 
indicates that the probability of the harm (Ph) is a product 
of the following: the frequency of exposure to hazards 
(F), probability of occurrence of hazardous event (Ps), 
and possibility of avoiding or limiting the harm (A). We 
classify the risk level in 128 categories. Furthermore, 
according to the result of risk analysis, we generate an 
image of the future by blending a representative 
hazardous image per risk category with the current image. 

4. Method for risk reduction 

In general, regarding the safety of machinery, risk 
reduction is implemented by using methods such as 
inherently safe design measures, safeguarding 
implementation of complementary protective devices, 
and information for use.12-14 In addition, risk reduction 
can be performed by learning from previous incidents 
and accidents15, and this can further improve the 
environment; for example, removing hazardous elements, 
avoiding hazardous situations, and ceasing the triggering 
of incidents and accidents. 

𝑅𝑖𝑠𝑘 = 𝑅(𝑆, 𝑃ℎ). 
𝑃ℎ = 𝑃(𝐹, 𝑃𝑠, 𝐴). 

Table 1. Definitions of designed parameters for deep 
reinforcement learning. 

Designed 
parameter 

Components 

Action 34 actions (32 directions (including avoid hazard) + 
1 stop + 1 remove hazard). 

State Current sensing data by a multi-spectrum camera on 
the agent (e.g., the distance to the object by a stereo 
camera and by a laser range finder), 
current position and posture of the agent, 
current goal position (toilet or hospital room), 
time (current step count), and previous action. 

Reward Reachability (reach goal), transfer efficiency 
(approach the goal; minimum steps, timeout, and 
inertia), and safety (change in the risk: remove 
hazard, avoid hazard). 

Experiment Previous state, previous action, current reward, and 
current state. 
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In this paper, we propose online real-time risk 
reduction measures based on DQN. Figure 1 portrays our 
concept. The inputs are the environmental data involving 
the elderly individual’s outer and inner factors. The risk 
of the outer factors is estimated by a variety of sensing 
data, for example, images and distance information 
obtained from a stereo camera and a laser range finder. 
The risk of the inner factors is estimated by the elderly 
individual’s physical condition; for example, changes in 
the breathing  obtained from radio sensors on the mobile 
robots, and stability measures calculated from the signals 
of the accelerometers mounted in the individuals. 
Another input is the risk level, which is the result of risk 
analysis as one of the received rewards. The risk 
reduction policy selects an action using a deep neural 
network. The output is one of the actions including the 
risk reduction measures.  

Table 1 lists the definitions of the parameters that 
must be determined by humans for DQN. Each 
component of the parameters is normalized from 0 to ±
1.00. This DQN is trained with the Q-learning algorithm, 
5-6 by the epsilon-greedy strategy, and uses Adam16 for 
the parameter optimization. To accelerate the 
convergence rate of parameters, we apply experience 
replay, and reduce epsilon according to the learning 
status. Furthermore, to avoid over-fitting, we apply early 
stopping, use the generated model for our other scenes, 
and use dropout in the neural network. 

5. Experiments 

We performed experiments using a computer simulation. 
Figure 2 illustrates the conditions of the environment and 
agents. Mainly four types of scenes are shuffled and 
experimented upon. The hospital room and the toilet are 
located at random within a certain range. As a DQN-
based agent, the red circle “R” is an autonomous mobile 
robot that assists the elderly. The scenario is that agent 
“R” goes from the hospital room to the toilet at a certain 
interval, in the hospital. The floor is partially wet around 
the toilet at random spatiotemporally, and agent “R” 
detects those area. The fan-shaped area shows the sensing 
range of agent “R”. Agent “R” assists the prevention of 
slip-induced falls for the elderly. Moreover, we compare 
the DQN-based agent with conventional rule-based agent 
according to the potential method. 

6. Results and discussion 

Figure 3 depicts a feasible example of the deep neural 
network model that estimates the Q-value, and decides 
the risk reduction measures. We apply a deep fully 
connected network with nine layers. The deep 
convolutional neural network is not necessarily required 
to be applied to the scenes depicted in Figure 2, because 
we can determine the features of the environment by the 
combination of the components of the input data, without 
dimension reduction. The data of the input layer 
composes a normalized state vector. A state parameter 
includes the sensing data, robot’s position, posture, goal 
position, and time information as environmental data. 
The data of the output layer shows each estimated Q-
value for actions. Each activation function is a leaky 
ReLU. The initial value of epsilon ε, which indicates the 
probability of random action, is set as 0.2. The reduction 
rate of epsilon is 0.00005. The discount rate of the future 
reward is γ=0.9.  

Figure 4 describes the process explaining how the 
reward changes during training on the simulation. An 
increase in the reward indicates well-designed rewards 
and risk reduction. We validate the effects of our 

Fig. 3   A deep neural network model generating risk 
reduction measures. 

Fig. 2   Simulation environment for experiments. 
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approach through the variations in the reward graph and 
convergence of the loss function. We noted that the deep 
reinforcement learning-based agent not only surpasses 
the rule-based agent but also automatically reduces slip-
induced fall risks.  

Figure 5 shows the relationship between the number 
of goal steps of an agent and the number of episodes. It 
indicates enhanced convergence of steps and stability of 
actions by the reinforcement learning. 

Figure 6 discloses the result of comparison of the two 
methods. The agent in Figure 6(a) took 489 steps with the 
potential method, whereas the agent in Figure 6(b) took 
113 steps with DQN to reach the goal. The results 
indicate that the transfer efficiency of the DQN agent is 
equal or better than that of the rule-based agent. 

Furthermore, the highest priority of risk reduction 
measures is to “remove hazard,” followed in order by 
“avoid hazard”, and “post a warning.” We verified that 
these policy decisions were able to control actions by 
adjusting the safety reward design, such as assigning a 

more positive reward to the action with higher priority. 
Finally, the input data of our deep risk reduction 

network suggests that the features of our model include 
the local map, global map, trajectory planning, and 
screening for risk assessment. 

7. Conclusion 

In this paper, we propose fall risk-reduction measures for 
the elderly, by using mobile robots based on deep 
reinforcement learning, and present its usability. The 
results suggest that our method is applicable to not only 
fall prevention, but also to other factors influencing fall 
and other cases of accidents. 
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