


Abstract—Software Testing is a formal process of checking

whether a system or a product complies with the consumers need

and requirement. It is mainly done by a dedicated testing team

using different tools and techniques and the main intention is to

identify deviations in the software product and to ensure quality.

Testing is generally not done fully, instead it focuses on testing

different test stages like Unit, Integration, System, User

Acceptance etc., Testing also confirms with a product

performance before launching it to the real world. It mainly

prevents product failure or breakdown in large scale. The main

goal of testing is to access the quality of the end product delivered

to the customer. Testing life cycle focuses on different phases –
Test plan, Test design, Test execution, Defect reporting and

tracking it to closure etc., designing test cases based on

requirements are the main building blocks of testing. This work

is primarily focused during the test design stage of development.

To write effective test cases in shorter time which identifies

maximum defects is very crucial in testing life cycle. Effective test

case sequencing or prioritizing the test cases based on criticality

and risks is a key task of a tester. This methodology is to increase

the fault detection at the earlier stage in testing. This

prioritization technique organizes the test cases in sequential

order in either ascending or descending order. This paper mainly

focuses on effecting test sequencing identifying the right modules

for testing during the planning phase and prioritize the same

using OATS technique and application dependency structure

algorithms

Index Terms— prioritization, defects, test cases, cyclic block.

I. INTRODUCTION

oftware Engineering is an engineering discipline that

focuses on different stages of software production [1].

Software is not developed as a whole unit; it has different

stages namely “Plan”, “Analyze”, “Design”, “Coding”,
“Testing” and “Implementation”. Software Testing is a

separate study under Software Engineering which has a

detailed life cycle process that includes “Feasibility analysis”,
“Test Plan”, “Test Design”, “Test Execute” and “Defect

reporting and tracking”[2]. The main intent of software testing

is to identify all business-critical defects as much as possible

using various testing techniques and ensuring better quality

product reaches the customer [3]. Effective software testing

will contribute to the delivery of reliable and quality oriented

software product. A quality product has more satisfied users,

lower maintenance cost, and more accurate and reliable result.

Almost all software engineering projects involves dedicated

testing as a separate phase. Because of rapid technology

growth and competitiveness in real user business, “time” and

“budget” play a major role and these two are the key success

factors in task completion [4]. To lead the project in more

successful manner, utmost quality must be ensured at the same

time minimize the project cost and reduce the delivery time.

Consecutively, to increase the effectiveness and efficiency of

testing within limited planned resources, effective test case

prioritization considering the business demands can be

performed. TCP is a process of organizing or selecting the test

cases in sequence to increase the fault detection rate at the

earliest, which helps to find most critical defects as earlier as

possible in the software testing life cycle. Testing costs will

drastically go down if we identify defects as early as possible

in the testing life cycle.

Test Suite Optimizer developed for the purpose of testing

pair – wise combinations of the test design. It ensures test

optimization ensuring minimal test case designing with

maximum coverage. Infeasible unrealistic combinations are

also considered in test output. Test sequencing is a major

challenge that will lead to diminished quality of work product.

Improper test sequencing affects the proposed test schedule,

planned budget and testing overhead.

Project milestones are improper and not inclined to the

proposed test plan. Inadequate test planning due to lack of

time of management and lack of focus of testing activity

during estimation and testers aware of test estimation model

will delay the product to production. Delays occur because of

lack of resources to perform the activities in reasonable agreed

time frame. Schedule is estimated after the effort is estimated.

Developers underestimate the effort and resources required for

testing. As a consequence of which, deadlines are not met or

software is delivered only partially tested to the ultimate end

user.

When budgets are not correctly estimated, it becomes

relatively expensive; it might result in some test activities to

be canceled causing more insecurity about the quality of the

Test Suite Sequencing Using Dependency

Structure Matrix
1
M.Sangeetha,

 2
S.Malathi

 1Research Scholar, Computer Science and Engineering,

Sathyabama Institute of Science and Technology, Chennai. India.
2Professor, Computer Science and Engineering,

Panimalar Engineering College,Chennai. India.

sangeetharemi@yahoo.co.in., malathi_raghu@hotmail.com

S

116Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Conference for Phoenixes on Emerging Current Trends in Engineering and Management (PECTEAM 2018)
Advances in Engineering Research (AER), volume 142

project. [5]Usability testing is a black-box testing technique.

The aim is to observe people using the product to discover

errors and areas of improvement.

Usability testing generally involves measuring how well test

subjects respond in four areas: efficiency, accuracy, recall, and

emotional response. The results of the first test can be treated

as a baseline or control measurement; all subsequent tests can

then be compared to the baseline to indicate improvement.

Performance testing details how much time, and how many

steps, are required for people to complete their tasks during

normal and peak times.

Reliability has to do with the quality of measurement. In its

everyday sense, reliability is the "consistency" or

"repeatability" of our measures. Before we can define

reliability precisely we have to lay the groundwork. First, have

to learn about the foundation of reliability, the true score

theory of measurement. Along with that, need to understand

the different types of measurement error because errors in

measures play a key role in degrading reliability. With this

foundation, consider the basic theory of reliability, including a

precise definition of reliability. There will find out that cannot

calculate reliability -- can only estimate it. Because of this,

there a variety of different types of reliability that each has

multiple ways to estimate reliability for that type. In the end,

it's important to integrate the idea of reliability with the other

major criteria for the quality of measurement -- validity -- and

develop an understanding of the relationships between

reliability and validity in measurement

Security testing is a process to determine that

an information system protects data and maintains

functionality as intended. The six basic security concepts that

need to be covered by security testing are: confidentiality,

integrity, authentication, availability, authorization and non-

repudiation. Security testing as a term has a number of

different meanings and can be completed in a number of

different ways. As such a Security Taxonomy helps us to

understand these different approaches and meanings by

providing a base level to work from

Discovery - The purpose of this stage is to identify systems

within scope and the services in use. It is not intended to

discover vulnerabilities, but version detection may highlight

deprecated versions of software / firmware and thus indicate

potential vulnerabilities. Vulnerability Scan - Following the

discovery stage this looks for known security issues by using

automated tools to match conditions with known

vulnerabilities. The reported risk level is set automatically by

the tool with no manual verification or interpretation by the

test vendor. This can be supplemented with credential based

scanning that looks to remove some common false positives

by using supplied credentials to authenticate with a service

(such as local windows accounts).

Vulnerability Assessment - This uses discovery and

vulnerability scanning to identify security vulnerabilities and

places the findings into the context of the environment under

test. An example would be removing common false positives

from the report and deciding risk levels that should be applied

to each report finding to improve business understanding and

context.

Security Assessment - Builds upon Vulnerability

Assessment by adding manual verification to confirm

exposure, but does not include the exploitation of

vulnerabilities to gain further access. Verification could be in

the form of authorized access to a system to confirm system

settings and involve examining logs, system responses, error

messages, codes, etc. A Security Assessment is looking to

gain a broad coverage of the systems under test but not the

depth of exposure that a specific vulnerability could lead to

Penetration Test – Penetration test simulates an attack by a

malicious party. Building on the previous stages and involves

exploitation of found vulnerabilities to gain further access.

Using this approach will result in an understanding of the

ability of an attacker to gain access to confidential

information, affect data integrity or availability of a service

and the respective impact [6]. Each test is approached using a

consistent and complete methodology in a way that allows the

tester to use their problem-solving abilities, the output from a

range of tools and their own knowledge of networking and

systems to find vulnerabilities that would/ could not be

identified by automated tools. This approach looks at the

depth of attack as compared to the Security Assessment

approach that looks at the broader coverage.

Security Audit - Driven by an Audit / Risk function to look

at a specific control or compliance issue. Characterized by a

narrow scope, this type of engagement could make use of any

of the earlier approaches discussed (vulnerability assessment,

security assessment, penetration test). Security Review -

Verification that industry or internal security standards have

been applied to system components or product. This is

typically completed through gap analysis and utilizes build /

code reviews or by reviewing design documents and

architecture diagrams [7]. This activity does not utilize any of

the earlier approaches (Vulnerability Assessment, Security

Assessment, Penetration Test, and Security Audit)

The motivation of this work is to automate the combinatorial

test inputs and give the tester the optimized combinations for

test case generation. Ensures effective test planning keeping

all project constraints like schedules, budget etc. using

CODEC and OA Strategies. The work details the new features

required on suite optimization. This includes making it more

user friendly, making it up-to date to the database, making the

application more intelligent which includes ability to decide

on infeasible and prioritized combinations, improving the

reporting functionality of the application.

II. RELATED WORK

In existing system, it is impractical for a testing team to

decide on the exact sequence of application modules to get

117

Advances in Engineering Research (AER), volume 142

tested [1]. There is no effective tracking mechanism for

tracking the test progress when the number of iteration of

testing is high. Poor intra-group coordination with the

development / other support team which delays the

deployment of the product to production. There is no

availability of separate test environment for Regression

Testing to simulate the actual expectations [5]. Lack of focus

on Configuration Management Process which causes delays

due to changes. Test design challenges include test case

forecasting, over test cases, relevant test coverage and

optimum proving.

Many works pertaining to test case prioritization has been

proposed and implemented by many researchers in the past.

Some of the few important works has been cited in this

section. Existing approaches that uses [12] derived

dependency structures among various test cases in a test suite

is performed manually which consumes more time to test the

job by a tester as well as tests the system time. Hai dry’s

technique is used [1] for finding total number of dependents

for each test case using DSP (Dependency Structure

Prioritization) volume is not working properly. Hence,

propose a test sequencing methodology which identifies the

best sequence and worst sequence of module identification for

testing using dependency structure matrix during the planning

phase of testing life cycle. This overcomes all the existing

research techniques as we propose our work optimizing test

plan itself identifying the best and worst sequence of modules

for testing.

 Previously Alessandro Marchetto et al.,[4] proposed

technique aims at both early discovering faults and reducing

the execution cost of test cases by applying a metric-based

approach to automatically identify critical and fault-prone

portions of software artifacts, thus becoming able to give them

more importance during test case prioritization but in the

design phase of testing not in planning phase. Also Dan Hao,

Lu Zhang et al.,[6] implemented the ideal optimal test-case

prioritization technique, which schedules the execution order

of test cases based on their detected faults using optimal

coverage based test-case prioritization as an integer linear

programming (ILP) problem but not in more earlier phase in

order to produce the result in optimized manner.

III. PROPOSED WORK

Sequencing the test modules considering the functional

dependencies is crucial to plan testing. Figure 1 shows the

system architecture of testing which has two phases planning

and design

Testing
Planning Phase Design Phase

Test Case Optimization Identify Cyclic Blocks and

Levelling

Module Sequencing

AEAP ALAP

Fig. 1. Architecture of Test Sequencing

Test sequencing is a way or technique used to sequence the

modules of the application for testing as early as possible in

the testing life cycle. Test sequencing yields great outcomes

minimizing time and budget when effectively planned during

the planning stage of testing life cycle comparatively over test

design stage as other researches proved. Planning effective test

sequencing during test plan stage reduces the overall cost of

quality (COQ) minimizing the rework cost radically when

compared to other test prioritization techniques that targets the

test design stage. CODEC ensures Cyclic Block identification,

Leveling and Tagging outputs, Critical path identification,

AEAP and ALAP Sequencing. Cyclic Block identification

feature in Codec ensures that the tool identifies all modules

that has cyclic dependencies among them and lists for the

tester to tackle the same separately during test planning. The

testing team to understand in how many levels the application

modules can fit in. Also, it indicates the complexity of overall

project.

This methodology identifies the relational statistical input

provided is converted into As Early As Possible (AEAP)

sequencing and As Late As Possible (ALAP) sequencing.

AEAP sequencing tells the estimator the appropriate test

module sequencing with minimal risk. ALAP sequencing tells

the estimator the appropriate late sequencing with maximum

risk without schedule deviation.

AEAP – As early as possible testing and ALAP – As late as

possible sequencing are two extreme suggestions of test

sequencing. In AEAP risk is minimum and in ALAP risk is

maximum. Orthogonal Array test design technique calculates

the optimized combinations of combinatorial input, enables a

test designer to design test cases with minimal effort and

maximum coverage. Infeasible combinations feature will not

generate test combinations which logically may not happen.

Before generating the output, we can instruct the tool to skip

the possible combinations. Adding priority to specific

combinations, will generate more combinatorial output.

DSM – Dependency Structure Matrix analysis is mainly

used for test sequencing. It ensures the order of execution of

118

Advances in Engineering Research (AER), volume 142

modules and ensures which modules to be tested in parallel.

This determines the sequence of execution of all the modules

in the application and determines the modules to be kept under

a single team. It also tells the modules to be tested in parallel

without any dependency clash. SCE – System Complexity

Estimator feature, is mainly used for test effort estimation. The

main advantage here is the efforts are distributed across all

modules while testing. This analyze the dependencies and

gives the effort distribution across all modules. It also

determines the total effort required for testing. System

complexity estimator work is used for test effort estimation.

SCE addresses the distribution of efforts across all modules

while testing. It analysis the dependencies and gives the effort

distribution across all modules. It determines the total effort

required for testing, if past trend of similar system is available

SCIM - System Change Impact Matrix Analysis is used

during Maintenance Testing. It addresses to distribute testing

effort across modules after receiving change requests from the

customer. It also determines the impact on the system by each

change request. It gives the effort distribution across all the

modules in the maintenance phase and it also prioritize the

order of the change requests. is used during maintenance

testing to identify the additional test effort required because of

change requests raised by the customer that may affect the

original estimation plan. It distributes testing effort across

modules after receiving CRs. It determines the impact on the

system by each CR.

Test suite optimizer is a part of robust testing methodology,

which has been formulated to overcome the challenges of

reduce cycle time of test phases, to find maximum defects

with minimum test cases and offer maximum coverage with

minimum test cases. Systematic and statistical method of pair-

wise combinations of factors across their levels. It creates an

optimized test suite with lesser test cases, detects all single

mode and double mode defects and increases confidence in the

system by executing a concise set of tests and uncovering

most of the bugs as early as possible. This ensures improved

productivity with cycle time reduction, improved test

coverage, minimizes the size of test suite by eliminating

redundant test cases. These test cases can be customized based

on the available time and known problems. Test effort

reduction in terms of test case writing and execution,

Infeasible combinations can be removed and Priority can be

given for factors and levels.

Fig. 2. Sample flow graph for Banking Transaction

Fig.2 gives the flow graph, which illustrates a bank

example. There modules are Login, Loan, Bank Account,

Credit Card, Currency Conversion, Fund Transfer, Database

and Account Summary. There is a two-way relationship

between Fund transfer and Database. It means both are tightly

coupled, both the modules are inter-related to each other. If we

change fund transfer it affects the data in the database module.

If we change database module, it affects the fund transfers in

fund transfer module. This is otherwise called as “cyclic

dependency”. Other modules include Loans, Bank Account,

Credit Card and Currency Conversion are dependent on Login

module. Login acts as a root or entry point to access all other

modules which carries a greater dependency among all

modules.

Algorithm for the Update Routing Table

Input: Modules

Output: Return Path

Step 1: Add Route in Routing table.

Step 2: Get first entry of Routing table.

Step 3:If field list_node_link contains target nod

 Update List_node_link field

 Update Additive_cost field

 Update Restrict cost field

 Else Get more entry

Step 4: End.

IV. RESULTS AND DISCUSSION

The dependency structure matrix of the above example can

be represented in Table 1 shown below. The gray cells

indicate the self-dependency that every module has on itself.

Self-dependencies are identified automatically in proposed

methodology. Other external dependencies will provide in the

119

Advances in Engineering Research (AER), volume 142

matrix as a statistical input. If indicated “1” on the

interconnected cell between login and loan modules that

designates a coherent dependency between login and loan

modules.
TABLE I

DEPENDENCY MATRIX STRUCTURE

Considering the example of a simple banking functionality,

it has 7 modules – Login, Loan, Bank Account, and Credit

Card, Currency conversion, Fund Transfer, Database and

Account summary. Dependency structure matrix is a square

matrix which has n rows and n columns based on the number

of modules taken into consideration. This matrix defines the

relationship of one module over other modules with a

representation. The grayed diagonals with 1 represent self-

dependency of a module on its own. The other dependencies

will provide representing 1 as per the requirements.

On providing the statistical inputs considering the relations

and dependencies between the application modules using

Dependency matrix analysis the cyclic blocks – the modules

that holds a cyclic dependency among each other, the levels

where the modules are placed, tagging table that provides a

clear picture on to which level the corresponding module is

tagged. These results are very important and crucial to study

the complexities of the overall project which helps planning

the test activities considering the budget and schedule

constraints. As-early-sequencing and As-late-sequencing

outputs helps to derive the right sequencing technique to plan

our testing activities smoothly at the earliest in our life cycle

of testing.

Conclusion

 This technique is used to ensure test sequencing as early as

possible in the test plan stage itself based on dependency

structure algorithm which will improve the fault detection rate

drastically considering key project constraints of budget, time

in mind comparing with the existing techniques. Testing phase

to effective plan testing based on two extreme variants of test

sequencing AEAP and ALAP based on dependency structures.

This also helps to prioritize the test cases during test design

phase within a very short period time, as well as to minimize

the speed of test process and increase the rate of fault

deduction at earlier stage and hereby reduce the time taken to

deliver the end product to the client.

 This methodology can be further extended implementing

DevOps way automating the entire delivery pipeline of

application development considering various deployment and

infrastructure automation tools which will even speedup the

process of delivering the right product.

REFERENCES

[1] Annibale Panichella_, Fitsum Meshesha Kifetewy, Paolo Tonellay _SnT

,”Automated Test Case Generation as a Many-Objective Optimisation

Problem with Dynamic Selection of the Targets”- DOI

10.1109/TSE.2017.2663435, IEEE Transactions on Software

Engineering.

[2] Marco Autili, Antonia Bertolino, Guglielmo De Angelis, Davide Di

Ruscio, and Alessio Di Sandro ,“A Tool-Supported Methodology for

Validation and Refinement of Early-Stage Domain Models-IEEE

transactions on software engineering, VOL. 42, NO. 1, January 2016.

[3] Matthew B. Dwyer and David S. Rosenblum,” Editorial: Journal-First

Publication for the Software Engineering Community”, IEEE

transactions on software engineering, vol. 42, NO. 1, January 2016.

[4] Alessandro Marchetto et al.,” A Multi-Objective Technique to

Prioritize Test Cases “, IEEE Transactions”. Vol. 42, No. 10, Oct 2016.

[5] Sepehr Eghbali and Ladan Tahvildari ” Test Case Prioritization Using

Lexicographical Ordering/IEEE Transactions On Software Engineering,

Vol. 42, No. 12, December 2016.

[6] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao Xie,

” To Be Optimal or Not in Test-Case Prioritization”, IEEE Transactions

On Software Engineering, Vol. 42, No. 5, May 2016.

[7] Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi, Fellow,

IEEE,” Supporting Self-Adaptation via Quantitative Verification and

Sensitivity Analysis at Run Time”, IEEE transactions on software

engineering, vol. 42, no. 1, January 2016.

[8] Joseph Krall, Tim Menzies, Member, IEEE, and Misty Davies, Member,

IEEE,” GALE: Geometric Active Learning for Search-Based Software

Engineering”, IEEE transactions on software engineering, vol. 41, no.

10, October 2015.

[9] Stefan Simon and Steven Liu, Member, IEEE,” An Automated Design

Method for Fault Detection and Isolation of Multi domain Systems

Based on Object-Oriented Models”, IEEE/ASME transactions on

mechatronics, vol. 20, NO. 3, June 2015.

[10] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta and Andrea

De Lucia, “Improving Multi-Objective Test Case Selection by Injecting

Diversity in Genetic Algorithms”, IEEE transactions on software

engineering, Vol. 41, No. 4, April 2015.

[11] Robert M. Hierons, “Generating Complete Controllable Test Suites for

Distributed Testing”, IEEE transactions on software engineering, Vol.

41, No. 3, March 2015.

[12] Indumathi C , Selvamani K, ” Test Cases Prioritization using Open

Dependency Structure Algorithm “,1877-0509 © 2015 , doi:

10.1016/j.procs.2015.04.178The Authors. Published by ELSEVIER

ICCC-2015.

[13] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli, “Incremental

syntactic-semantic reliability analysis of evolving structured

workflows,” in Leveraging Applications of Formal Methods,

Verification and Validation. Technologies for Mastering Change. New

York,NY, USA: Springer, 2014, pp. 41–55.

[14] S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-

tolerantcontrol systems with performance optimization,” IEEE Trans.

Ind. Electron.,vol. 61, no. 5, pp. 2402–2411, May 2014.

[15] K. Deb and H. Jain, “An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach,

part i: Solving problems with box constraints,” IEEE Trans. Evol.

Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[16] Kamel Rekab, Member, IEEE, Herbert Thompson, and Wei Wu,” A

Multistage Sequential Test Allocation for Software Reliability

Estimation”, IEEE Transactions on Reliability, Vol. 62, No. 2, June

2013.

[17] Cemal Yilmaz, “Test Case-Aware Combinatorial Interaction Testing”,
IEEE transactions on software engineering, Vol. 39, No. 5, May 2013.

[18] Gordon Fraser, Member, IEEE, and Andrea Arcuri,” Whole Test Suite

Generation”,IEEE Transactions on Software Engineering, Vol. 39, No.

2, February 2013.

120

Advances in Engineering Research (AER), volume 142

[19] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,

B.Turhan, and T. Zimmermann, “Local versus global lessons for defect

prediction and effort estimation,” IEEE Trans. Softw. Eng.,vol. 39, no.

6, pp. 822–834, Jun. 2013.

[20] Gordon Fraser, Member, IEEE, and Andreas Zeller, Member, IEEE

Computer Society,” Mutation-Driven Generation of Unit Tests and

Oracles”, Oracles/IEEE Transactions on Software Engineering, Vol. 38,

No. 2, March/April 2012.

[21] Siavash Mirarab, Soroush Akhlaghi, and Ladan Tahvildari, Senior

Member, IEEE,” Size-Constrained Regression Test Case Selection

Using Multicriteria Optimization”,IEEE Transactions on Software

Engineering, Vol. 38, No. 4, July/August 2012.

[22] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault

detection,isolation, and reconfiguration methods,” IEEE Trans. Control

Syst.Technol., vol. 18, no. 3, pp. 636–653, May 2010.

121

Advances in Engineering Research (AER), volume 142

	I. INTRODUCTION
	II. Related Work
	III. Proposed Work
	IV. Results And Discussion
	This technique is used to ensure test sequencing as early as possible in the test plan stage itself based on dependency structure algorithm which will improve the fault detection rate drastically considering key project constraints of budget, time in...
	This methodology can be further extended implementing DevOps way automating the entire delivery pipeline of application development considering various deployment and infrastructure automation tools which will even speedup the process of delivering t...

	References

