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Abstract 

As one of research and practice hotspots in the field of intelligent manufacturing, the machine learning approach is 
applied to diagnose and predict equipment fault for running state data. Despite deep learning approach overcomes 
the problem that the traditional machine learning approaches for fault diagnosis is difficult to characterize the 
complex mapping between the massive fault data, the exponentially grown and newly generated data is learned 
repeatedly, and these approaches cannot incrementally correct the model to adapt the situation that the states and 
properties of equipment are changed over time, resulting in the increase of time costs and the decrease of diagnosis 
accuracy of model. In this paper, a dynamic deep learning algorithm based on incremental compensation is 
proposed. Firstly, the feature modes of the newly generated data are extracted by using deep learning algorithm; it 
is then compared with the fault modes extracted from the historical data. Next, a similarity computing model is 
presented to dynamically adjust the weights of incrementally merged modes. Finally, the SVM algorithm is 
employed to classify the weighted modes by supervised way, and the BP algorithm utilized to fine tune the model, 
in order to complete the dynamic and compensatory adjustment of deep learning with original modes and 
incremental modes. The experimental results of bearing running data demonstrate that the proposed approach could 
significantly improve the accuracy of diagnosis and save the time cost, contributing to meet the varied needs of the 
real-time equipment fault diagnosis. 

Keywords: Deep learning; Dynamic compensation; Fault diagnosis; Denoising Autoencoder; Incremental learning; 

1. Introduction 

Under the background of the Industry 4.0, it is gradually 
crucial to figure out how to extract the feature 
information of fault from the equipment running state 

data and make an effective analysis to achieve the fault 
diagnosis and prediction, which has become a hotspot in 
the field of intelligent manufacturing. At the same time, 
with the development of the industrial Internet of things 
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and information technology, massive running state data 
emerge in the process of production, making it possible 
to use big data analysis approach for fault diagnosis. 

In recent years, with the increase of the equipment 
running state data, more and more worldwide 
researchers have applied machine learning approaches 
to the field of equipment fault diagnosis. Most of the 
traditional machine learning approaches are shallow 
learning, such as neural network1, 2, support vector 
machine3, 4 and  clustering5. These approaches can 
efficiently solve the problem that the mapping structure 
is relatively simple or the small sample is given multiple 
constraints; while faced with the complex problems 
from massive data, it will be difficult for them to extract 
the abstractly implicit features between multiple fault 
modes, and the convergence rate will be slow and easy 
to fall into the local optimum. Therefore, the traditional 
machine learning approaches has the limitations and is 
not suitable for handling the booming equipment state 
data. More recently, deep learning has made great 
achievements in the field of image processing and 
speech recognition with its strong modeling and 
characterized capabilities6-8. At present, some scholars 
have investigated deep learning to equipment fault 
diagnosis9-12, which effectively addresses the problems 
of traditional fault computing model. With the rapid 
development of industrial Internet of things, the deep 
learning approaches have new problems: Because of the 
exponential growth in the size of newly generated 
equipment state data, it is clearly unreasonable to rely 
on existing fault modes for matching. Therefore, how to 
mine the newly generated state data and merge it into 
the mining model of the existing deep learning 
algorithm becomes a new problem. The approach of 
merging all data to re-train model and mine again is 
very time-consuming, which is not suitable for 
equipment fault diagnosis and prediction with strong 
real-time performance. Thus, incremental learning 
becomes the first choice to solve this problem and it has 
many approaches and models, such as incremental 
extreme learning machine (IELM)13, 14, online 
incremental learning support vector machine (OI-
SVM)15, online learning neural network model 
(ONN)16, etc., it has achieved better effect of 
incremental mining in the existing literatures. However, 
in the field of fault diagnosis, the state and properties of 
the equipment will change over time, thus the newly 
generated data which at the recent time point has more 

important value for mining fault modes; meanwhile, 
some determined fault modes may also become invalid 
along with machine state changes. These characteristics 
hinder the further application of above incremental 
approaches in the field of equipment fault diagnosis. 

Through the above analysis, we consider to 
conduct a fault diagnosis model with dynamic deep 
learning algorithm based on incremental compensation 
(ICDDL). Firstly, denoising autoencoder (DAE) 
algorithm of deep learning is developed to extract 
feature modes from newly generated data. Then, for 
comparing the new modes with the modes extracted 
from the historical data, the proposed approach further 
provides a computation of similarity measure based on 
Kullback - Leibler divergence (KL Divergence), and 
adjusts the weights of modes dynamically according to 
the different similarities. Finally, the weighted modes 
are classified by supervised SVM algorithm, and the 
parameters of whole networks are fine-tuned by BP 
algorithm according to the error of model. Compared 
with the traditional deep learning algorithms, the 
proposed approach not only emphasizes the new fault 
modes, but also takes the original invalid modes into 
account, so as to achieve the dynamic and compensatory 
adjustment of deep learning with original modes and 
incremental modes. 

The proposed ICDDL approach utilizes feature 
weighting to measure the varying degree of the 
significance of feature modes with the time and state 
changed between original modes and incremental 
modes, and it achieves fault diagnosis of bearing 
running data. The innovation of proposed approach is 
illustrated in the following. First, a dynamic deep 
learning approach is proposed to dynamically adjust the 
weights of the feature according to the difference 
between the new feature modes and the existing feature 
modes, and effectively complete the incremental 
learning of the newly generated state data. Second, a 
computing model of similarity measure based on KL 
divergence is introduced to compute the similarity 
degree of feature, and further iterate the weight value of 
feature. Third, the study implements the dynamic 
learning and incremental learning of equipment fault 
modes, which could extract feature and diagnose fault 
for the newly generated data from the real-time 
operation of equipment, and solves the problem that the 
new state of equipment caused by abrasion is not 
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considered by original fault modes, improving the 
reliability of diagnosis model. 

The remainder of this paper is organized as 
follows: Section 2 summarizes the related literature of 
the research on fault diagnosis approaches, deep 
learning and incremental learning. Section 3 illustrates 
the theoretical basis, flow, and the step of 
implementation of the proposed dynamic deep learning 
algorithm based on incremental compensation (ICDDL) 
model in detail. Section 4 applies the ICDDL approach 
to the process of fault diagnosis for bearing equipment, 
and achieves the real-time extraction of state feature and 
the reliable classification of fault modes for bearing 
equipment. The validity of the ICDDL approach is 
proved by experiment. Finally, the brief summary of 
proposed approach and the potential future research 
directions are described in Section 5. 

2. Literature Review 

The current researches of equipment fault diagnosis, 
deep learning and incremental learning are summarized 
as follows. 

2.1. Equipment fault diagnosis 

At present, intelligent equipment is widely used in 
industry, aviation, national defense and other vital areas, 
and the consequences of fault are relatively serious, thus 
how to carry out reliable fault diagnosis and prediction 
has attracted extensive attention. Especially with the 
advent of the era of industrial Internet of things, the 
approach based on data analysis has become the 
mainstream of that field, and many scholars have a deep 
research on it1-5, 17, 18. H. Fernando et al.2 proposed an 
unsupervised artificial neural network for fault detection 
and identification based on Adaptive Resonance Theory 
(ART). The performance and practical ability of 
approach for detecting and identifying known, un-
known and multiple faults are superior to the traditional 
rule-based approaches. Y.S. Wang et al.4 developed a 
HHT–SVM model for intelligent fault diagnosis of 
engine noise feature. The Hilbert–Huang transform was 
exploited to the measured noise signals as the input 
vector to construct an optimal SVM model. It could deal 
with both the stationary and nonstationary signals and 
even the transient ones very well. The aforementioned 
machine learning algorithms utilize complex mapping 
function modeling and parameter space searching 

optimization to improve the accuracy of equipment fault 
diagnosis effectively; nevertheless there are some 
problems in uncertain relation of map and difficult 
selection of parameter. The fuzzy evaluation could give 
a quantitative evaluation of non-deterministic fuzzy 
problems. Combining it with the machine learning 
algorithm can improve the performance of models, 
enhance the adaptability of models and solve the 
uncertain problems. S. Yin et al.5 utilized principal 
component analysis to confirm the number of clusters of 
fuzzy positivistic C-means clustering for detecting faults 
of vehicle suspension, and then demonstrated the 
effectiveness of the approach. Another way to improve 
the performance of machine learning is the Hidden 
Markov model, which can find the hidden parameters of 
model through probabilistic reasoning. M. Yuwono et 
al.18 proposed an automatic bearing defect diagnosis 
approach based on Swarm Rapid Centroid Estimation 
(SRCE) and Hidden Markov Model (HMM). It achieved 
an increase in average sensitivity and specificity and a 
reduction in error rates.  

It can be seen from the above literature that the 
data analysis approaches have achieved good results in 
the field of equipment failure; however, in recent years, 
with the increase of the scale of monitoring group, 
measuring points and sampling frequency, the 
equipment condition monitoring data grew substantially. 
Although the traditional shallow models could 
efficiently solve the problem that the mapping structure 
is relatively simple or the small sample is given multiple 
constraints, they still could not meet the requirements 
when deal with the complex problems caused by the 
data streams of massive, heterogeneous and multi-
source. Hence, deep learning has been paid more 
attention to in order to represent the complex functions 
of high order and abstract concepts and solve the task 
related massive data. 

2.2. Study on deep learning in fault diagnosis 

The concept of deep learning is highly valued by 
academics with its powerful abilities of modeling and 
characterizing since it was put forward. As deep 
learning extracts the different levels feature of the 
original data from the hierarchical processing of input 
data, it facilitates the multi-level simulation of step-by-
step computation for the fault prediction. Meanwhile, 
the multi-level extracted features obtained by the deep 
learning could be repeatedly used in similar different 
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tasks, which are conducive to get more useful 
information for equipment fault diagnosis. At present, 
some scholars have investigated deep learning theory to 
the field of equipment fault diagnosis, P. Tamilselvan et 
al.9 presented a novel multi-sensor health diagnosis 
approach using deep belief network (DBN). The DBN 
employed a hierarchical structure with multiple stacked 
Restricted Boltzmann machines and worked through a 
layer by layer successive learning process to diagnosis 
the healthy state of equipment. The experimental results 
showed that the approach had better accuracy than that 
of the shallow machine learning approaches. However, 
thisapproach still extracted the fault feature manually, 
and only used the deep belief network as a classifier, 
ignoring its ability of mining fault features. On the basis 
of those approaches, F. Jia et al.10 constructed a deep 
neural network (DNN) by stacking five level 
autoencoders and used it to extract fault feature and 
diagnosis fault intelligently for rotating machinery 
spectrum. The approach was validated using datasets 
from rolling element bearings and planetary gearboxes 
that it had higher diagnostic precision compared with 
the existing shallow model. But they only apply the 
existing deep learning approach to equipment and did 
not adapt to the particularity of equipment state data. 
While M. Gan et al.11 proposed a construction of 
hierarchical diagnosis network based on deep learning. 
The two-layer deep belief network was utilized to 
identify the fault location and rank the fault severity of 
the rolling bearing, respectively. However, there was a 
problem that the second layer results of fault severity 
ranking depended on the accuracy of the first layer fault 
location recognition. The deep random forest fusion 
(DRFF) model proposed by C. Li et al.12 happened to be 
able to make up for the shortage of the above problems. 
Two deep Boltzmann machines (DBMs) were 
developed for the acoustic signal and vibratory signal of 
gearbox to extract the deep feature, respectively. A 
random forest was finally suggested to fuse the outputs 
of the two DBMs to get diagnostic results. The 
addressed approach improves the fault diagnosis 
capabilities for gearboxes.  

In summary, the deep learning has a stronger 
ability of representation than the shallow model, and it 
is more suitable for processing the equipment state data 
with complex structure and tremendous amount. With 
the development of the industrial Internet of things, the 
number of newly generated state data for equipment is 

proliferated, and even more than the amount of 
historical data. When processing the newly generated 
data, the existing deep learning approaches need to 
combine it with the original data to re-train the whole 
model, which undoubtedly increases computational 
complexity and consumes unnecessary time. Therefore, 
how to mine the newly generated state data and make it 
combine with the original fault modes has become an 
urgent problem to be solved. 

2.3. Study on incremental learning in fault 
diagnosis 

The problem of processing the new state data could be 
attributed to an incremental learning problem. 
Incremental learning means that a learning system could 
continuously learn new knowledge from new samples 
and could also keep most of the knowledge that has 
been learned previously. Incremental learning, as a very 
active research field, has been derived from a variety of 
incremental mining approaches to reduce the 
computation, improve the accuracy of models, and save 
time cost effectively. G. Yin et al.19 proposed an online 
fault diagnosis approach based on Incremental Support 
Vector Data Description (ISVDD) and Extreme 
Learning Machine with incremental output structure 
(IOELM). Nevertheless, in this model a priori 
knowledge should be provided to help make decision in 
the determining process. Taking into account the prior 
knowledge is difficult to obtain, H.H. Chen et al.20 
utilized the model space learning and the incremental 
one class SVM to diagnose fault of the TE process. It 
constructed the fault dictionary in real time by sliding 
windows, and put the new data which is not in the 
existing model into the candidate pool. This approach 
built a new one class until the number of data point in 
the candidate pool exceeded half the size of the sliding 
window. However, the fault which the model found was 
more than the actual existence due to the lack of fault 
information. Therefore, aimed at the problems that the 
data tend to be online imbalanced, W.T. Mao et al.13 
proposed an online sequential prediction approach for 
imbalanced fault diagnosis problem based on extreme 
learning machine. This approach introduced the 
principal curve and granulation division to simulate the 
flow distribution and overall distribution characteristics 
of fault data, respectively. Then in online stage, the 
obtained granules and principal curves were rebuilt on 
the bearing data which arrived in sequence, and after the 
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over-sampling and under-sampling process, the 
balanced sample set was formed to update the diagnosis 
model dynamically. On its basis, J. Liu et al.21 
introduced an adaptive online learning approach for 
support vector regression (Online-SVR-FID). The 
approach adaptively modified the model only when 
different pattern drifts were detected according to the 
proposed criteria. Additionally, it judged the current 
mode could be represented by a linear combination of 
the existing modes or not to determine to change the 
existing modes or add new modes. 

In summary, the different incremental learning 
approaches all have further improved the efficiency of 
mining modes. With the continuous improvement of 
industrial automation, the number of equipment state 
data is proliferated, and the newly generated data has a 
more important value for estimating the trend of fault. 
Up to now, deep learning approaches have already had a 
better performance in the field of equipment fault 
diagnosis, and it is more important to study the 
incremental mining of deep learning to further improve 
the accuracy of model. Therefore, a dynamic deep 
learning algorithm based on incremental compensation 
is proposed in this paper. Compared with the traditional 
mining mode of increment learning, this proposed 
approach is not only beneficial to strengthen the 
effective fault modes in the original fault sets, but also 
conducive to reduce the fault modes which get invalid 
with the change of equipment state. The proposed 
approach meets the specific requirements of equipment 
fault diagnosis, so it has great research value. 

3. Dynamic Deep Learning Algorithm Based on 
Incremental Compensation 

In this section, the ICDDL approach is introduced in 
detail. The approach firstly extracts the feature mode 
from the newly generated data by using the denoising 
autoencoder22, and it further proposes a similarity 
computing approach, which compares the new modes 
with the existing modes; next it adjusts the weights of 
modes dynamically according to the different 
similarities. Finally, the weighted modes are classified 
by supervised SVM algorithm, and the parameters of 
entire networks are fine-tuned by BP algorithm 
according to the error of model. 

3.1. Dynamic compensation of incremental 
learning 

As the primary step of ICDDL approach, the dynamic 
compensation of incremental learning is mainly 
composed of three steps: similarity computation of 
modes, increment and merged of modes and 
computation of dynamically compensatory weight. It 
could effectively solve the problem of the change of the 
feature modes caused by the variance of the state data 
and property with the abrasion of equipment. 

3.1.1. Similarity computation of modes 

Aiming at the particularity of high dimension and 
complexity of equipment fault modes, this paper 
proposed a similarity computing approach based on KL 
divergence. The approach could effectively distinguish 
objects that are difficult to be distinguished by 
geometric distance, and could improve the applicability 
and accuracy of similarity for fault modes. 

KL divergence23, also known as the relative 
entropy, is used to measure the difference between 
distribution P and Q. For discrete distributions, the KL 
divergence of P and Q is defined as Dkl(P||Q) 

Dkl(P||Q) = � P(i) log2
P(i)
Q(i)

i

              (1) 

where P and Q represent two different fault feature 
modes, P(i)  and  Q(i)  stand for the i th values of the 
feature modes P and Q, respectively. The smaller 
difference between P and Q is, the smaller value of KL 
divergence will be. Therefore, according to the above 
definition, the Sim(P, Q)  computing formula of 
similarity measure based on KL divergence is 
performed as 

Sim(P, Q) =
1

1 + Dkl(P||Q)                   (2) 

It can be seen that the smaller KL divergence 
between P and Q is, the greater value of the above 
equation will be, that is, the higher similarity between 
the features will be, so as to measure the similarity of 
the newly generated feature modes and original feature 
modes. 

It is known from the nature of KL divergence that it 
has no symmetry, that is Dkl(P||Q) ≠ Dkl(Q||P), but it 
needs symmetry when it is represented the similarity 
between two features. To this end, the symmetry of KL 
divergence is modified by 
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Dkls(P||Q) =
Dkl(P||Q) + Dkl(Q||P)

2
          (3) 

In the computation of KL similarity between the 
features, Dkl(P||Q) in Eq. (2) is replaced by Dkls(P||Q) 
as 

Sim(P, Q) =
1

1 + Dkls(P||Q)                (4) 

As the KL divergence is computed the dissimilarity 
based on the relative entropy between distributions, 
rather than through the distance measure, it can 
effectively distinguish objects that are difficult to be 
distinguished by geometric distance. Being superior to 
other distance-based similarity measures, it could 
accurately measure the degree of similarity between 
fault modes. 

3.1.2. Increment and merged principles of modes 

The KL similarity between the new feature modes and 
the original feature modes is computed by using Eq. (4), 
and the maximum value of Sim(P, Q)max  is served as 
the mode similarity value of feature. In general, the 
determination of generating or merging the mode is 
according to the following principles: 

α is a symbol for the minimum similarity threshold 
which makes the similarity between two contrast 
features meaningful, and its value is 
α = minSim�Fi, Fj� , which represents the minimum 
similarity between two features Fi and Fj in the existing 
feature modes. β  is used to stand for the critical 
threshold between general similarity and high similarity 
of feature, and its value is β = maxSim(Fi, Fj), which 
represents the maximum similarity between two features 
Fi and Fj in the existing feature modes. It can be seen 
that with the similarity threshold α < β, the threshold α 
and β are dynamically changed with the increment and 
merge of feature modes. 

(i) If β < Sim(𝑃, Q)max, it means that the new features 
are highly similar to those in the original modes, 
and these features should be merged by harmonic 
non-linear weighted averaging approach; 

(ii) If α < Sim(𝑃, Q)max < 𝛽 , it means that the new 
features are different from all the existing ones. 
And the new feature should not be replaced by 
merging with the existing features. So this feature is 
incrementally generated to the existing modes; 

(iii) If Sim(𝑃, Q)max < 𝛼 , it means that the similarity 
between the new feature and the existing feature is 
lower than the minimum threshold, which reveals 
the new feature is meaningless noise or disturbance 
value to be abandon. 

3.1.3. Computation of dynamically compensatory 
weight 

According to the principles of increment and merged for 
new modes, the dynamic compensation of weights are 
computed to measure the degree of importance changed 
over time for feature modes, and to enhance the 
effective modes and reduce the invalid modes in the 
form of weight compensation. Since the similarity of the 
new feature and the existing feature can reflect the 
importance of the new modes to the current model in a 
certain extent, the similarity value of modes is 
normalized using Eq. (5) and is computed for dynamic 
weight. 

Sim(P, Q)norm =
Sim(P, Q) − minSim(P, Q)

maxSim(P, Q) − minSim(P, Q)  (5) 

where minSim(P, Q) stands for the minimum of the 
whole mode similarities, and maxSim(P, Q)  for the 
maximum of the whole mode similarities. 

The principle of (i) for high similarity modes are 
took the merge operation. It shows that these modes are 
frequently appeared with the process of varying 
equipment state, and these modes are so essential that 
should increase their weights to enhance the effective 
modes. The dynamic weight computing approach is as 
follows, where the greater similarity of feature, the more 
important function of the feature in the modes. 

Wi+1 = Wi + Sim(P, Q)norm              (6) 

where the i + 1th weights of merge operations for 
original feature P are the sum of the i th merged weights 
and the similarities of original feature P and new feature 
Q. The i = 0, and the W0 is the initial weights when the 
first merged. W0  is set to maxSim(P, Q), which is the 
maximum similarity between two features in the 
original feature modes. 

The principle of (ii) for features which have 
incrementally added to the original modes are took 
newly generate operation. It shows that these modes are 
newly generated with the change of state data and need 
to be given the initial weights computed by following 
approach, where the importance of feature in current 
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model happens to be able to represent by the similarity 
of feature. 

W0 = Sim(P, Q)norm                      (7) 

The principle of (iii) for new modes which are 
abandoned are not took into account, but there are cases 
where the similarity of original modes with all the new 
features is less than the threshold α, which indicates that 
it does not appear in the new modes, and these original 
modes are gradually became invalid with the variance of 
state data. Therefore, the weights are slowly reduced by 
using Eq. (8). After several iterations of incremental 
learning, the weights of the feature that have not 
appeared will gradually decrease until it is less than the 
threshold α , indicating that the feature has become 
invalid and it needs to be removed from the existing 
modes. 

Wi+1 = Wi − Sim(P, Q)norm              (8) 

where the weights of the feature P which the i +
1th disappeared in the new modes are computed by the 
i th disappeared weights subtracted its similarity. The 
i = 0 and W0 is the initial weights when the feature did 
not appear for the first time. And W0  is also set to 
maxSim(P, Q) , which is the maximum similarity 
between two features in the original feature modes. 

Through the above computation scheme of weights, 
feature weights are dynamically adjusted in each 
comparison between the original modes and the new 
ones. The variance degree of importance for feature 
modes with the change of state data are compensated by 
using similarity, to achieve the goal ultimately that the 
effective modes are preserved and enhanced and the 
invalid modes are removed and decreased. 

3.1.4. Increment learning based on dynamic 
compensation 

Because of the incremental learning approach need not 
to preserve the historical data, the storage space has 
saved. Meanwhile, the time cost for modifying a trained 
system is generally much lower than the cost of 
retraining a system, so the computing resources are 
saved. Therefore, this paper proposes an incremental 
learning approach based on dynamic compensation. 

The incremental learning process based on dynamic 
compensation is shown in Fig.1. Firstly, the new feature 
modes are mined and extracted from the newly 
generated data by using the trained DAE model. 

Secondly, the similarity value of the new modes and 
original modes is computed by the similarity computing 
approach in Section 3.1.1, and the increment or merge 
operation of the new mode is determined depends on the 
similarity. Then, the dynamically compensatory weights 
are computed by using the scheme in Section 3.1.3. 
Finally, the new modes are input into the classifier 
together with the original feature modes, and the 
parameters of model are adjusted to complete the 
process of incremental learning. Compared with the 
traditional incremental mining, the dynamic 
compensation of incremental learning approach assigns 
the dynamic weights to the equipment state data at 
different time points. The effective modes are improved 
and the invalid modes are reduced in the form of weight 
compensation. 

 
Fig.1. Incremental learning process based on dynamic 
compensation 

3.2. Dynamic deep learning based on incremental 
compensation 

Deep learning approaches generally layer-by-layer pre-
train the deep network structure to extract the features 
with unsupervised learning approach at first. A classifier 
is then added to the top layer of the deep network to 
classify the feature modes. Meanwhile, the parameters 
of model are fine-tuned to further optimize the training 
results by back propagation algorithm with supervised 
learning. Considering the complex environment of 
equipment, the noise and information redundancy of 
state data, the denoising autoencoder22 which could 
remove the noise and disturbance is served as the 
unsupervised algorithm in the pre-training procedure. 
The Support Vector Machine (SVM) is selected as the 
classifier because of its excellent performance of 
classification for high-dimensional and complex data. 

3.2.1. Denoising autoencoder 

Because of the complexity of the environment, most of 
equipment state data contain noise and information 
redundancy, it is very essential to figure out how to 
force the hidden nodes to find more robust features and 

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 846–860
___________________________________________________________________________________________________________

852



 

effectively avoid learning identity function to improve 
the accuracy of fault diagnosis. DAE based on the 
Autoencoder24 (AE), is trained by adding noise which 
contains certain statistical features to the input samples, 
and the original form of disturbed samples is estimated 
through output layer, so as to obtain more robust feature 
from the samples contained noise. 

The autoencoder, a kind of three-layer neural 
network, includes input layer, hidden layer and output 
layer. It is composed of encoding network and decoding 
network as shown in Fig.2. The output target and input 
data of AE are as same as possible. The input data from 
high-dimensional space is transformed into coding 
vectors in low-dimensional through the hidden layer, 
and then the coding vectors are reconstructed to original 
inputs. The object is to make the reconstruction error 
minimum, and then the code vector could be regarded as 
feature representation of input data. 

 

Fig.2. Structure of AE 

Given an unlabeled n-dimensional sample set x as 
the input of autoencoder model, the mapping 
relationship from input sample to hidden layer is 
denoted by h, and the mapping relationship from hidden 
layer to output layer is denoted by y. Thus the mapping 
function between the input layer and the hidden layer 
could be defined as 

h = fθ(x) = σ(Wx + b)                  (9) 

where σ is the activation function of encoding 
network, and the sigmoid function usually used. 

θ = {W, b} is the parameter set of the encoding network, 
where W stands for the weights between the nodes of 
input layer and hidden layer, b for the bias of hidden 
nodes. The coding vector h is then transformed to a 
reconstructed representation y of x by decoding function 
gθ′. 

y = gθ′(h) = σ(W′h + b′)                (10) 

where the σ is the activation function as well. 
θ′ = {W′, b′}  is the parameter set of the decoding 
network, where W′  is the transpose of W , known as 
W′ = WT , b is bias. AE completes the training of the 
entire network by minimizing the reconstruction error 
L(x, y) between x and y as the objective function JAE , 
and using the gradient descent approach to optimize the 
parameters θ and θ′. 

JAE = arg min
θ,θ′

L(x, y) = arg min
θ,θ′

L(x, gθ′(fθ(x))) (11) 

The reconstruction error function L(x, y)  in the 
above equation is adopted the cross entropy loss 
function as following 

L(x, y) = −�[xi ln yi + (1 − xi) ln (1 − yi)]
n

i=1

 (12) 

The procedure of denoising autoencoder is shown 
in Fig.3. Firstly, the random noise is added to sample x 
according to the distribution of qD  , which makes it 
become the noisy sample x� as 

x�~qD(x�|x)                              (13) 

where the qD is the binomial random hidden noise. 
The DAE is then accomplished training by optimizing 
the following objective function. 

JDAE = arg min
θ,θ′

L(x, z) = arg min
θ,θ′

L(x, gθ′(fθ(x�))) (14) 

 

Fig.3. Procedure of denoising autoencoder 

3.2.2. Dynamic deep learning based on 
incremental compensation 

In this paper, the deep learning approach is performed to 
construct a deep network structure by stacking multi-
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layer connected denoising automencoders as shown in 
Fig.4. The outputs of the lower layer of DAE are treated 
as the inputs of the next higher layer of DAE, and the 
coefficients of each layer are greedy trained layer by 
layer to minimize the cost function. An output layer 
with classification function is added to the top layer of 
deep network structure, and the SVM is served as the 
classifier to supervised classification. The fine-tuning 
procedure enables the deep network to modify the 
parameters of each layer by BP algorithm through the 
error, and further optimize the whole network to achieve 
the global optimum. 

 

Fig.4. Structure of deep learning network 

3.2.3. Flow of algorithm 

The steps of proposed dynamic deep learning algorithm 
based on incremental compensation are described as 
follows and the flow chart of the algorithm is shown in 
Fig.5. 
• Step 1: The data samples are proportionally divided 

into training samples and testing samples by 
random sampling, and the testing samples are 
labeled. The training samples are divided into four 
groups. One group is used to train the deep learning 
model, and the remaining three groups are added to 
the existing model separately for three times to 
execute incremental learning based on dynamic 
compensation; 

• Step 2: With the parameters of model being 
initialized, the training samples for training deep 
learning model are added random noise as the input 
of denoising autoencoder, to greedy unsupervised 
pre-train the model layer-by-layer. The feature 
modes are then extracted from the data samples. 

The unified and initial weights W0 are given to the 
feature; 

• Step 3: If there are no newly generated data 
samples added, then to Step 4. If there are newly 
generated data samples added, then the features are 
extracted from new data by using the existing 
model to obtain the newly generated feature modes 
at first. The KL similarity of each feature in the 
new feature modes and the original feature modes 
is computed by using the Eq. (4), and the new 
feature modes are incrementally merged and 
dynamically weighted according to the following 
principles in terms of KL similarity: 
(a) If the KL similarity of newly generated feature 

is greater than threshold β, it indicates that the 
feature is highly similar to the existing features, 
then to develop  the harmonic non-linear 
weighted averaging algorithm to merge them, 
increasing the weight of feature according to 
Eq. (6); 

(b) If the KL similarity of newly generated feature 
is greater than threshold α , and less than 
threshold β , it indicates that the feature is a 
newly generated feature which occurs with 
time. The feather is then added to the feature 
set incrementally, and its weight is set 
according to Eq. (7); 

(c) If the KL similarity of newly generated feature 
is less than thresholdα , it indicates that the 
feature has little effect on the existing modes, 
and it may be a meaningless noise or 
disturbance value. It will be abandoned; 

(d) If the KL similarities between original feature 
and all newly generated features are less than 
the threshold α , it indicates that the original 
feature becomes invalid with time. The weight 
of feature is reduced according to Eq. (8) until 
it is less than the threshold α, and it will be  
removed from the current modes; 

• Step 4: The labeled data and the unlabeled data 
trained and weighted by dynamic deep learning are 
served as the input vector to train SVM classifier; 

• Step 5: The relevant parameters of the entire model 
are globally fine-tuned by using the BP algorithm 
to achieve the optimal parameters which minimize 
the value of loss function both in pre-training phase 
and incremental learning phase of model. 

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 846–860
___________________________________________________________________________________________________________

854



 

 

Fig.5. Flow chart of dynamic deep learning algorithm based 
on incremental compensation 

3.3. Application of ICDDL algorithm in bearing 
fault diagnosis 

The specific procedure of dynamic deep learning model 
based on incremental compensation for bearing 
equipment fault diagnosis is shown in Fig.6., and the 
steps of implementation are as follows: 
• Step 1: Preprocessing the state data of bearing 

equipment, and extracting the feature vector for the 
classification of fault mode after Wavelet Packet 
Transformation (WPT). The data samples are 
divided into training samples and testing samples 
by random sampling, and the testing samples are 
manually labeled the type of fault. In order to 
achieve the dynamic compensation of incremental 
learning, the training samples are equivalently 
divided into four groups: one group is used to train 
the deep learning model, and the remaining three 
groups are added to the existing model separately 
for three times to execute incremental learning; 

• Step 2: Initializing the parameters of model, and 
greedy unsupervised pre-training the denoising 
autoencoder layer-by-layer with the running data of 
bearing equipment which added random noise as 
the input. After extracting the feature modes of 
fault and giving the unified and initial weights to 
features, the labeled data and the unlabeled data 
which have trained and weighted, are as the input 
vector to train SVM classifier for classified 
diagnose of bearing fault modes. The relevant 
parameters of the entire network are fine-tuned by 
using BP algorithm; 

• Step 3: When new state data of equipment is 
generated, the new fault modes will be extracted by 
the existing model, and the newly generated fault 
modes will be incrementally merged and 
dynamically weighted according to the dynamic 
compensation of incremental learning strategy in 
Section 3.1. The newly weighted feature modes and 
the labeled data are then input to the SVM classifier 
for classified diagnose of bearing fault modes. The 
relevant parameters of entire network are fine-tuned 
by BP algorithm according to the model error of 
incremental learning procedure to complete 
dynamic deep learning. 

 

Fig.6. Procedure of fault diagnosis for bearing equipment 

4. Experiments 

In this section, the application performance of the 
proposed ICDDL algorithm for bearing fault diagnosis 
is analyzed by simulation experiments, in order to 
complete the extraction of state features and the 
classification of fault modes for bearing equipment. 
Firstly, the parameters of deep network structure which 
are suitable for fault diagnosis of bearing equipment are 
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determined by experiments. Then, the validity of 
ICDDL algorithm is proved by comparing with shallow 
learning approach as BP, SVM, and deep learning 
approach without incremental learning as AE and DAE 
algorithm. 

4.1. Data description 

The experimental data are bearing fault data which were 
derived from the Electrical Engineering Laboratory of 
Case Western Reserve University (CWRU)25. There are 
1,341,856 data points in total, and the bearing type is 
6205-2RS JEM SKF deep groove ball bearings. A 
single point fault of three fault levels was set up to the 
inner ring, the outer ring and the ball of bearing by 
using Electrical Discharge Machining technology, 
respectively. The fault diameters were 0.007, 0.014, 
0.021 inches. The ten conditions of vibration signals 
collected by vibration sensor on electric machinery 
drive end for normal state (N), inner ring fault (IRF), 
outer ring fault (ORF) and ball fault (BF) are selected 
and the sampling frequency is 12 kHz. The wavelet 
packet decomposition is developed to decompose the 
energy value of each band for the original vibration 
signals. For each class, 40 samples are selected as 
training samples and 10 samples as testing samples by 
random sampling, and each sample contains 2048 data 
points. The training samples are equally divided into 
four groups, and one group is used to train the deep 
learning model, the remaining three groups being added 
to the existing model separately for three times to 
execute incremental learning. The specific description 
of fault data samples is shown in Table 1. The 
simulation experiment is completed on the computer 
with Windows 7 64-bit system and Intel-i5 CPU by 
R3.2.5 platform. 

Table 1. Description of bearing fault data 

Class 
tag 

Fault 
 type 

Fault  
diameter 

(mm) 

Training 
samples 

Testing 
samples 

Samples  
length 

1 None 0 40 10 2048 
2 IRF 0.007 40 10 2048 
3 IRF 0.014 40 10 2048 
4 IRF 0.021 40 10 2048 
5 ORF 0.007 40 10 2048 
6 ORF 0.014 40 10 2048 
7 ORF 0.021 40 10 2048 
8 BF 0.007 40 10 2048 
9 BF 0.014 40 10 2048 
10 BF 0.021 40 10 2048 

4.2. Structure of model 

The numbers of hidden layers and hidden nodes in deep 
network structure have great influence on the effect of 
model. If the number is too small, it may lead to 
inaccurate extraction of feature and poor results of 
classification; otherwise, if the number is too large, it 
will result in exponential increase of computational 
complexity and much longer running time. Therefore, 
the number of hidden layers and hidden nodes are 
determined experimentally in this paper to minimize the 
reconstruction error of bearing fault diagnosis model. 

For the determination of the number of hidden 
layers, the other parameters of model are set the same 
and 40 groups of samples for each 10 categories of 
conditions are selected to experiment on,. The 
reconstruction error of model is tested by increasing the 
number of hidden layers from 1 to 10. The experimental 
results are shown in Table 2., it could be seen that the 
reconstruction error gradually decreases when the 
number of hidden layers is gradually increased from one 
layer, but the reconstruction error increases in 
fluctuation until the number of hidden layers is 
increased over four layers. Considering that the 
computational cost of the model will rapidly increase 
with the number of hidden layers, this paper selects four 
layers as the number of hidden layers to construct deep 
learning network model. 

Table 2. Influence of hidden layer on model 
reconstruction error  

Hidden layer Reconstruction error 
1 0.09205 
2 0.06246 
3 0.06051 
4 0.05865 
5 0.05976 
6 0.05898 
7 0.05849 
8 0.05808 
9 0.06009 
10 0.05831 

For the determination of the number of hidden 
nodes, the other parameters of model are set the same, 
and the number of hidden layers is 4, 40 groups of 
samples for each 10 categories of conditions are also 
selected to experiment on. In order to simplify and make 
the model conform to the characteristics of feature 
extraction, the numbers of nodes in the 4 hidden layers 
are set to increase by the ratio of 4: 3: 3: 3 according to 
the experiment. The variance of model reconstruction 
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error with the increase of nodes number at the first 
hidden layer is shown in Fig.7., and the nodes of the rest 
hidden layers could be estimated by the ratio. It could 
be seen from Fig.7., the model reconstruction error 
decreased with the increase of nodes at the initial stage, 
but it showed a clearly upward trend when the number 
of nodes exceeded 80, Therefore, the number of hidden 
nodes is selected 80, 60, 60, 60, respectively, to 
construct the deep learning network model. 

 
Fig.7. Influence of hidden nodes on model reconstruction error 

The proportion of noise added to DAE is also one 
of important factors which affect the effect of model, 
and the part of useful information may be lost when too 
much noise are added. Therefore, the parameter value of 
noise needs to be determined by experiment after 
constructing the structure of deep network model. The 
variance curve of model reconstruction error generated 
with the increase of noise ratio as shown in Fig.8. It can 
be seen from the figure, the model reconstruction error 
has an obviously downward trend when adding 5% -20% 
of noise. With the gradual increase of the noise, the 
model reconstruction error increases. It increases so 
obviously that reaching 0.06985 when the added noise 
is over 35%. Therefore, the DAE model is constructed 
by adding 20% noise. 

 
Fig.8. Influence of noise proportion on model reconstruction 
error 

From the above experimental results, the network 
structure of bearing fault diagnosis model based on 
ICDDL approach is composed of six layers, including 
input layer, four hidden layers and output layer. The 
number of nodes in the input layer is the same as the 
dimension of feature vector for bearing fault, and the 
numbers of hidden nodes are 80, 60, 60, 60, respectively. 
The number of nodes in output layer equals the number 
of fault categories for bearing. The model is set by 
adding noise at the proportion of 20%, and the rest of 
parameters are set to 100 of iterative times and 0.1 of 
learning rate. 

4.3. Experimental results 

Based on the model structure defined in above section, 
all of 400 training samples in 10 different fault states are 
divided into four groups. The proposed ICDDL 
approach is used for incremental learning by comparing 
with BP, SVM, AE, and DAE, respectively. The testing 
samples are used to test the diagnosed results of the 
model. The accuracy and running time of each 
incremental data group are experimented 10 times to 
compute the average value, and the comparison of 
average value for four incremental data groups are 
shown in Table 3. 

Table 3. Comparison of fault diagnosis results 

Approach Training 
accuracy 

Training 
time 

Testing 
accuracy 

Testing 
time 

ICDDL 96.85% 6'20'' 90.42% 0.10'' 
BP 90.35% 19'11'' 67.00% 1.02'' 

SVM 89.18% 3.97'' 78.55% 1.21'' 
AE 91.75% 12'02'' 85.80% 0.30'' 

DAE 94.41% 10'21'' 88.45% 0.13'' 

From Table 3., the proposed ICDDL approach is 
substantially superior to the other four algorithms in 
terms of accuracy and running time of model. From the 
aspect of diagnostic accuracy of model, the ICDDL 
approach reaches 96.85% in the training phase and 
90.42% in the testing phase. Compared with the shallow 
layer algorithm of BP and SVM, the accuracy of the 
proposed approach is improved by 6.5% and 7.67%, 
respectively. It is also improved 2.44%-5.1% by 
comparing with the deep AE algorithm and the DAE 
algorithm. With the variance degree of importance for 
feature modes which changed over time being taken into 
account, it can be seen that the fault diagnosed accuracy 
of proposed ICDDL model has a great improvement to a 
certain extent because the incremental feature modes are 
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weighted by dynamic compensation. From the aspect of 
running time of model, the proposed ICDDL approach 
outperforms other algorithms in training time and 
testing time, except that the training time is longer than 
SVM algorithm because the time cost for constructing 
the deep model is contained. The increase of running 
time is due to that the other four algorithms need to 
retrain the existing model in the face of incremental data 
indicating that the dynamic compensation of 
incremental learning has played a certain role in 
reducing the computation of model and saving the cost 
of time. The comparison of proposed DAE algorithm 
with dynamic compensation of incremental learning and 
the DAE algorithm without incremental learning for 
training accuracy and training time is shown in Fig.9. It 
could be clearly seen the high efficiency of proposed 
approach. 

 
(a) Comparison of training accuracy 

 
(b) Comparison of training time 

Fig.9. Comparison of model performance for incremental data 
diagnosis of DAE and ICDDL 

Next, the training of incremental data each added 
is analyzed. The curve of each training accuracy and 
training time are shown in Fig.10. that 400 training 
samples are divided into four groups to be successively 
added to the model. The proposed ICDDL approach is 
similarly compared with BP algorithm, SVM algorithm, 
AE and DAE algorithm without incremental learning. 
Fig.10. (a) shows that although the training accuracy of 
the proposed ICDDL algorithm is not very different 
from the other four algorithms at the initial stage, the 
advantage of proposed ICDDL algorithm is more and 
more obvious with the gradual generation of 
incremental data by comparing with the other non-
incremental learning algorithms. Fig.10. (b) shows that 
the proposed ICDDL algorithm requires more time than 
the SVM algorithm in the initial training, and is 
basically equal to the AE algorithm and the DAE 
algorithm, which is due to the training of deep network 
structure is more complex than shallow models. However, 

 
(a) Comparison of training accuracy 

 
(b) Comparison of training time 

Fig.10. Comparison of model performance for incremental 
data diagnosis of ICDDL and the other four algorithms 
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it is obvious that the training time cost by ICDDL 
algorithm is less than the other algorithms except SVM 
in the phase of incremental data added. Although the 
running time required by SVM algorithm for 
incremental learning is little, the training accuracy are 
substantial declined with the incremental data added. 

It could be seen that the proposed ICDDL approach 
has advantages in both accuracy and running time of 
model compared with the approaches without process of 
incremental learning. Besides, the proposed fault 
diagnosis model in this paper could incrementally 
merge and dynamically weight the newly generated 
feature modes through dynamic compensation of 
incremental learning. The proposed approach could not 
only effectively reduce the learning time of the fault 
feature modes by using the existing knowledge modes, 
but also significantly improve the accuracy of fault 
diagnosis by using the weighting of newly generated 
features. Both of newly generated modes and gradually 
invalid modes could be taken into account to satisfy the 
real-time requirement of bearing fault diagnosis. 

5. Conclusions 

A fault diagnosis model based on dynamic deep 
learning of incremental compensation algorithm is 
proposed in this paper in order to deal with the 
difference of importance for feature modes contained in 
the state data at different time points of equipment 
running process. The newly generated modes extracted 
from newly generated state data by deep learning are 
incrementally merged to the original modes through the 
strategy of dynamic compensation of incremental 
learning. The dynamically compensatory weights are 
given to the feature modes according to the variance 
degree of importance of the modes with process of time 
varying. In this manner, the weighted feature modes 
could achieving the dynamic adjustment of deep 
learning with original fault modes and incremental fault 
modes by acquiring more accurate accuracy of fault 
diagnosis and saving the time cost. The validity of the 
proposed fault diagnosis model based on ICDDL 
algorithm is verified by experiments. The efficiency of 
bearing fault diagnosis is reached 96.85%, which is 
improved by average 5.43% compared with other 
shallow approaches and deep learning without 
increment approaches. In all, the proposed ICDDL 
approach could complete both the real-time extraction 

of state feature and the reliable classification of fault 
modes for bearing equipment. 

However, there are still some limitations of the 
proposed approach in the application to the fault 
diagnosis of mechanical equipment in practical industry. 
Since the majority of data generated during equipment 
running are normal data, the proportion of data 
containing fault is very small, thus the future research 
should be on incrementally dynamic deep learning for 
samples with unbalanced categories. In addition, the 
large-scale equipment, often being composed of many 
components, exists in the situations of interrelated and 
mixed for the occurred fault; therefore, the more 
complex models should be required to study to adapt the 
actual situation of equipment running process. 
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