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Abstract

In this study, an optimized extended Kalman filter (EKF), and an interval type-2 fuzzy sliding mode
control (IT2FSMC) in presence of uncertainties and disturbances are presented for robotic manipulators.
The main contribution is the proposal of a novel application of Biogeography-Based Optimization (BBO)
to optimize the EKF in order to achieve high performance estimation of states. The parameters to be
optimized are the covariance matrices Q and R, which play an important role in the performances of EKF.
The interval type-2 fuzzy logic system is used to avoid chattering phenomenon in the sliding mode control
(SMC). Lyapunov theorem is used to prove the stability of control system. The suggested control approach
is demonstrated using a computer simulation of two-link manipulator. Finally, simulations results show
the robustness and effectiveness of the proposed scheme, and exhibit a more superior performance than
its conventional counterpart.

Keywords: Biogeography-Based Optimization; Interval Type-2 Fuzzy Logic System; Sliding Mode Con-
trol; Extended Kalman Filter; Two-Link Manipulator.

1. Introduction

One of the best classical nonlinear controllers is the
sliding mode controller (SMC), which is based on
the theory of variable structure system; it was first
introduced by Uktin in 1977. The SMC is known by
its robustness against uncertainties and external dis-
turbances. During the last two decades, fuzzy logic
systems (FLS) have been a dominant topic in intel-
ligent control systems. Many FLS schemes have
been developed for handling nonlinear systems to
improve the performance of SMC, e.g., Kapoor and
Ohri1, proposed fuzzy sliding mode controller with
global stabilization using a saturation function for
the trajectory control; they used fuzzy logic systems
for tuning the switching gain of the SMC and lin-
ear saturation boundary layer function for solving

the problem of chattering phenomenon (high fre-
quency vibrations). Soltanpour et al.2, combined the
feedback linearization control with the fuzzy sliding
mode controller using Takagi-Sugeno fuzzy model,
and the obtained result was free of undesirable chat-
tering phenomenon. Morover, Baklouti et al.3, com-
bined the SMC, proportional integral (PI) controller
and adaptive fuzzy systems for a robot manipulator;
fuzzy system is used to approximate the unknown
nonlinear functions and PI action is used to reduce
the chattering phenomenon. However, Naoual et
al.4, designed a fuzzy sliding mode controller for a
two-link manipulator, in which fuzzy logic is used
to approximate only the unknown dynamic parts of
the system. Chen et al.5, combined the SMC and
function approximation techniques for the DC mo-
tor control system, the function approximation tech-
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nique is used to transform the uncertain term into
finite linear combinations of orthogonal basis func-
tion. Note that in all this cited works the observa-
tion problem is not considered. Moreover, Med-
jghou et al.6, designed a type-1 fuzzy sliding mode
controller based on an EKF for a two-link manipula-
tor, in which fuzzy logic is used to approximate the
switching gain of the SMC.

Type-2 fuzzy logic is a generalization of type-1
fuzzy logic (conventional fuzzy logic), in which the
values of membership functions are themselves7,8.
The most commonly used type of Type-2 fuzzy
logic system is the interval type-2 fuzzy logic sys-
tem (IT2FLS), which uses interval membership
degrees9. Controllers based on IT2FLS are able
to maintain performance in the presence of high
level noise and nonlinearity9,10,11. Consequently,
by integrating IT2FLS in conventional SMC, a hy-
brid intelligent tracking controller with robustness
against measurement noise can be achieved. Al-
though the SMC performs well in the nonlinear
systems, it has a major drawback, the so-called
chattering phenomenon, which is caused by inap-
propriate selection of the switching gain. How-
ever, several researches were devoted to avoid this
problem12,13,14,15.

The robust nonlinear control of a given system
requires the knowledge of state variables, which are
rarely available for direct measurement. In most
cases, there is a real need for reliably estimated un-
measured states; the elaboration of a control law of
a given system often requires access to the value
of one or more of its states. For this reason, it
is necessary to design an auxiliary dynamic sys-
tem, named observer that is capable to deliver es-
timated states from the measurements provided by
physical sensors and applied inputs. In the case
of linear systems, the solution to observer’s synthe-
sis problem was completely resolved by Kalman16

and Luenberger17, and functional observer18. Con-
trarily, in nonlinear systems, there is not a gen-
eral solution to the problem of observer synthe-
sis, which prompted researchers to develop non-
linear observers. On this subject, several algo-
rithms exist in literature, namely extended Luen-
berger observer19,20, extended Kalman filter21,22,

sliding mode observer (SMO)23,24, model reference
adaptive system25, neural network observer26 and
fuzzy logic observer27,28.

Amongst all these algorithms, EKF provides the
suboptimal state estimator for its ability to consider
the stochastic uncertainties. EKF is a recursive al-
gorithm based on the knowledge of the statistics of
both measurement and state noises. Compared with
other nonlinear observers29,30,31,32, EKF algorithm
has better dynamic behavior, resistance to uncertain-
ties and noise, and it can work even in the presence
of a standstill conditions. Estimation performance
is the major problem associated to EKF; it strongly
influences the parameter values of the system, state
and measurement noise covariance matrices Q and
R, respectively. Following33, Q and R have to be ac-
quired by taking into account the stochastic proper-
ties of the corresponding noises that is why in most
cases Q and R are usually unknown matrices. How-
ever, since these are usually not known, in most
cases, the covariance matrices are used as weighting
factors (factors adjustment). Moreover, these ma-
trices were first tuned manually by trial-error meth-
ods, which are very tedious procedures due to large
time consumption34. To overcome this problem and
to avoid the computational complexity of trial-error
method, Shi et al.35, have used genetic algorithms
(AGs), downhill simplex algorithm36, and particle
swarm optimization (PSO)37, which were used to
optimize matrices Q and R.

This paper presents an interval type-2 fuzzy slid-
ing mode control combined with an optimized EKF
observer in the presence of parametric uncertain-
ties and external disturbances for robotic manipu-
lators. The main contribution is the proposal of
a novel application of BBO approach introduced
by Simon38, which is an evolutionary algorithm in-
spired by mathematical models of biogeography to
optimize the parameters of EKF in order to achieve
high performance estimation of states, and it is then
compared to PSO technique. The parameters to be
optimized are the covariance matrices entries Q and
R, which play an important role in the performances
of EKF observer. SMC is used for trajectory track-
ing, then an IT2FLS is used to adaptively tune the
switching gain of SMC for smoothing purposes to
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reduce the chattering phenomenon.
The rest of this paper is organized as follows. In

Section 2, some basics on the extended Kalman fil-
ter. Then, the principle of biogeography-based opti-
mization approach is given in Section 3. In Section
4, the problem description and formulation is pre-
sented and the detail of proposed scheme is display.
To validate the robustness and performance of the
proposed method, simulation results and their dis-
cussion are presented in Section 5. Finally, conclu-
sions are given in Section 6.

2. Extended Kalman Filter

The Kalman filter was developed by R.E. Kalman15.
The EKF is a generalization of the Kalman filter,
which is a stochastic observer for nonlinear dynam-
ical systems. In this paper, we shall attempt to find
the best estimate of the state vector Xk of the system.

Fig. 1. Extended Kalman filter structure

The discrete state-space model describing a non-
linear process is given by:{

Xk+1 = f (Xk,τk,wk)
zk = h(Xk,vk)

(1)

where τk and zk are the control input and output
vectors at time instant k. f (.) represents the evo-
lution function of the system, whereas h(.) repre-
sents the relationship between the state vector and
the measurement result zk. wk and vk are the process
and measurement white Gaussian noise vectors with
zero mean and with associated covariance matrices
Q = E[wk,wk]

T and R = E[vk,vk]
T , respectively.

To apply EKF to the nonlinearity, Eq. (1) must be
linearized by using the first order Taylor approxima-
tion around the desired reference point (X̂k, ŵk =
0, v̂k = 0), which gives us the following approxi-
mated linear model:

Xk+1 ≈ f (Xk,τk,wk)≈
f (X̂k,τk,0)+Fk(Xk − X̂k)+Wk(wk −0)

zk ≈ h (Xk,vk)≈
h (X̂k,0)+Hk(Xk − X̂k)+Vk(vk −0)

(2)

where the Jacobean matrices of f and h are given as
follows:

Fk =
∂ f (X ,0)

∂X

∣∣∣
X=X̂

, Wk =
∂ f (X̂k,w)

∂w

∣∣∣
w=0

,

Hk =
∂h(X ,0)

∂X

∣∣∣
X=X̂

and Vk =
∂h(X̂k,v)

∂v

∣∣∣
v=0

(3)

The EKF is a recursive algorithm that is used
for estimating state vector of the nonlinear systems,
given the measurement zk by filtering out the noises.
This is carried out using the Prediction and Correc-
tion. It can be described as follows

Prediction:

X̂k+1/k = f (X̂k/k,τk,0)
Pk+1/k = FkPk/kFT

k +WkQW T
k

(4)

Kalman filter gain matrix

Kk = Pk+1/kHT
k (HkPk+1/kHT

k +VkRV T
k )−1 (5)

Correcetion:

X̂k+1/k+1 = X̂k+1/k +Kk(zk −h (X̂k+1/k,0))
Pk+1/k+1 = Pk+1/k −KkHkPk+1/k

(6)

where X̂k+1/k+1 denotes the posteriori state predic-
tion vector, X̂k+1/k is the priori state prediction vec-
tor, Pk+1/k+1 denotes the posteriori prediction er-
ror covariance matrix, Pk+1/k is the priori predic-
tion error covariance matrix. Extended Kalman filter
framework is presented in Figure 1.

3. Biogeography-Based Optimization

BBO is a new evolutionary algorithm inspired by
biogeography, which is developed by Dan Simon in
2008. It is a population-based stochastic search al-
gorithm. Similar to other evolutionary computation
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algorithms, such as PSO, BBO is a search method
that exploits the theory of island biogeography38,39,
it is designed based on the migration strategy of (an-
imals, fish, birds, or insects) to solve the problem
of optimization. in BBO, the population represents
a number of habitats (or islands), each habitat rep-
resents a possible solution for the problem at hand,
and each feature of the habitat is called a suitabil-
ity index variable (SIV). A quantitative performance
index, called habitat suitability index (HSI), is used
as a measure of the quality of a solution; which
is analogous to fitness in other optimization algo-
rithms. High- HSI habitat represents a good solu-
tion and low-HSI habitat represents a poor solution.
Solution features emigrate from high-HSI habitats
(emigrating habitat) to low-HSI habitats (immigrat-
ing habitat). BBO algorithm works on the basis of
two concepts: migration and mutation

The migration operators, which are emigration
and immigration, are used to improve and evolve a
solution to the optimization problem. Migration in-
volves two main processes immigration (λs) and em-
igration (µs). These parameters are affected by the
number of species (s) in a habitat and they are used
to probabilistically share information between habi-
tats. Figure 2 shows the relationship between immi-
gration rate, emigration rate. It has two main opera-
tors, which are migration (including emigration and
immigration) and mutation. The immigration rate λs
and emigration rate µs and the number of species (s)
can be modeled as Figure 2.

Fig. 2. A Linear model of immigration and emigration
rates38

As is clear from Figure 2 that I and E are the maxi-
mum possible immigration and emigration rates, re-
spectively. s0 is the equilibrium number of species
and smax is the maximum species number.

The immigration and emigration rates are given as

λs = I[1− (s/smax)] (7)

µs = E(s/smax) (8)

Migration operator is used to modify existing is-
lands by mixing features within the population.

Algorithm 1 Migration
1: for i = 1 to NP do
2: Use λsi to probabilistically decide whether to

immigrate to Xi
3: if rand(0,1)< λsi then
4: for j = 1 to NP do
5: Select the emigrating island X j with

probability α µs j
6: if rand(0,1)< µs j then
7: Replace a randomly selected deci-

sion variable (SIV) of Xi with its
corresponding variable in X j

8: end if
9: end for

10: end if
11: end for
where NP denote population size, rand(0,1) is a
uniformly distributed random number in the interval
[0, 1] and Xi j is the jth SIV of the solution Xi.

Mutation operator is used to changinge SIV within a
habitat itself, and thus probably increase diversity of
the population. For each habitat, a species number
probability Ps = µs/∑n

i=1 µsi indicates the probabil-
ity that habitat Hb is expected a priori as a solution to
the problem. In this context, very high HSI habitats
and very low HSI habitats are both equally improb-
able, and medium HSI habitats are relatively proba-
ble. The mutation m(s) is inversely proportional to
the probability Ps of the solution:

m(s) = mmax(
1−Ps

Pmax
) (9)

where mmax is a user-defined parameter, and Pmax =
argmax

x
Ps, and s = 1, · · · ,smax.

Biogeography-based optimization algorithm
main steps are illustrated by the flowchart in Fig-
ure 3.
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Fig. 3. Algorithm flowchart of BBO

4. Problem formulation and proposed method

4.1. Problem formulation

The dynamic model of a robotic manipulator in the
standard form can be represented by 40:

M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = τ (10)

where θ , θ̇ , θ̈ ∈ IRn are the joint position, velocity
and acceleration, respectively. M(θ) = M0(θ) +
∆M(θ) ∈ IRn×n is a symmetric positive definite
inertia matrix. C(θ , θ̇) = C0(θ , θ̇) + ∆C(θ , θ̇) ∈
IRn×n comprises Coriolis and centrifugal forces.
G(θ) = G0(θ)+∆G(θ) ∈ IRn is the vector of grav-
itational forces. τ is the control torque vector,
in which M0(θ),C0(θ , θ̈) and G0(θ) are nominal
terms, whereas ∆M(θ),∆C(θ , θ̈) and ∆G(θ) are the
parameters uncertainties.
The dynamic model of a robotic manipulator (10)
with uncertainties and disturbances can be rewritten
as following:

M0(θ)θ̈ +C0(θ , θ̇)θ̇ +G0(θ) = τ +d(θ , θ̇ , θ̈) (11)

where d(θ , θ̇ , θ̈) = −∆M(θ)θ̈ − ∆C(θ , θ̈)θ̇ −
∆G(θ)+ δ ∈ IRn represents the sum of parametric
uncertainties and external disturbances δ .

Our objective is to design a bounded control law
for the input τ such that all signals are bounded and

the actual state trajectories X = [θ1,θ2]
T , converge

to the desired trajectories Xd = [θ1dθ2d]
T as closely

as possible , for all time interval T = [0, t f ] when t
tends to infinity despite the presence of parametric
uncertainties and external disturbance. Two conven-
tional properties of the robot manipulators are con-
sidered.
Property 1 M(θ) is symmetric and positive defi-
nite, MT = M
Property 2 (Ṁ − 2C) is skew-symmetric, i.e. for
any vector X, we have MT (Ṁ−2C)M = 0
In respect of the dynamic system presented in (11),
the following assumptions will be made:
Assumption 1 The joint positions and the joint
speeds are unavailable.
Assumption 2 The disturbances d is unknown but
bounded, i.e. |d|6 D.
Assumption 3 The desired trajectory θd , θ̇d and θ̈d
are available and with known bounds.
Assumption 4 The allowable values of the control
input τ(t) are limited between an upper and lower
bounds τ and τ such that τ 6 τ(t)6 τ .

The robustness of closed loop system against
parametric uncertainties and external disturbances
needs a robust control law. To attain this objec-
tive, we apply the sliding mode control approach41,
this choice is motivated by its design simplicity and
its high robustness against uncertainties and external
disturbances.

4.2. Sliding mode control based on interval
type-2 fuzzy for 2-Links manipulators

In this section, the integration of interval type-2
fuzzy logic in the sliding mode control is discussed
to make an intelligent controller so-called interval
type-2 fuzzy Sliding mode control based on switch-
ing gain.

For designing the proposed control law, we let
the estimated tracking error:

ê = θ̂ −θd (12)

where θ̂ is the estimated position and θd is the de-
sired one.
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The first step of SMC is to design the sliding surface
S, which can be defined as42:

S(X̂ , t) = ˙̂e+λ ê (13)

where λ is diagonal positive definite matrix.
The time derivative of (14) is given as:

Ṡ(X̂ , t) = ¨̂e+λ ˙̂e (14)

The Second step of SMC is to design the control
law. In the traditional SMC, the discontinuous con-
trol law is selected as:

τdis =−Ksign(S) (15)

where K is diagonal positive definite matrix.
The equivalent control τeq is given by the following
condition41:

S = 0 and Ṡ = 0 =⇒ τ(t) = τeq(t) (16)

In order to govern the system states to follow the
desired reference trajectory just now to make S = 0
attractive. Therefore, ê → 0 as t → ∞.
A sufficient condition to achieve this behavior is to
select the control strategy so that the following slid-
ing condition41,43 is satisfied:

SṠ 6−η |S|, η > 0 (17)

Consider the control problem of nonlinear uncertain
system (11), the conventional sliding mode control
is given as:

τ = τeq + τdis

= M0(θ̈d −λ ˙̂e)+C0(θ̇d −λ ê)+

G0 −d −Ksign(S) (18)

The use of the discontinuous sign function will
excite an undesired phenomenon called chatter,
which is caused by the discontinuous switching
function. In this context, high switching gain K of
τdis in (15) will lead to an increase in oscillations
of the control torque signal, and therefore an ex-
citation of high frequency dynamics, consequently,

a chattering phenomenon will be created. More-
over, a low switching gain K can reduce the chat-
tering phenomenon and improve the tracking per-
formance despite uncertainties and external distur-
bances. However, increasing the gain causes an in-
crease of the oscillations in input control around
the sliding surface. To achieve more appropriate
performance, this gain must be adjusted. This ad-
justment is based on the distance between the sys-
tem states and the sliding surface. That is to say,
the gain should be high when the state trajectory
is far from the sliding surface, and when the dis-
tance decreases, it should be reduced. In the litter-
ateur, various solutions can be found to overcome
this problem43,12,13,14,6. In our work, interval type-2
fuzzy logic system44,45,46,47 has been used to realize
this idea by combining IT2FLS with discontinuous
control according to some appropriate fuzzy rules.
A type-2 fuzzy logic system (T2FLS)45,46, consists
of five parts: the fuzzifier, knowledge base, fuzzy
inference engine, type-reducer, and defuzzifier. The
knowledge base is composed of a collection of fuzzy
If-then rules whose rules can be stated in a linguistic
manner as follows:

Ri : If S is Ai, Then KIT 2FLS is Bi
where S and KIT 2FLS are an interval type-2 fuzzy
logic system input and output, respectively. Ai and
Bi are an interval type-2 membership functions of
input and output, respectively. i denoted ith rule of
an IT2-Mamdani fuzzy system. Process of input–
output mapping can be formulated as follows:

1. Calculate the weight interval of each rule:

ωi ∈ [min(µAi) max(µAi)] (19)

2. Compute the weighted output from all rules
(type reduction) based on center of sets type
reducer11

yl(S) = min
ωi

(
∑yl(S).ωi

∑ωi

)
,

yr(S) = max
ωi

(
∑yl(S).ωi

∑ωi

) (20)

3. Calculation of crisp output (defuzzification)
based on arithmetic mean

KIT 2FLS(S) =
yl + yr

2
(21)
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Therefore, control law (18) becomes:

τ = τeq +KIT 2FLS τdis

= M0(θ̈d −λ ˙̂e)+C0(θ̇d −λ ê)+G0−
d −KIT 2FLSK sign(S)

= M0(θ̈d −λ ˙̂e)+C0(θ̇d −λ ê)+

G0 −d − K̂sign(S) (22)

where K̂ = KIT 2FLS ×K.
Therefore, it can be easily verified that (22) is suffi-
cient to impose the sliding condition

SṠ 6−K̂|S|, with K̂ > 0 (23)

which, in fact, ensures the finite-time conver-
gence of the tracking error vector to the sliding sur-
face S and, consequently, its exponential stability.

In EKF, the determination of Q and R covariance
matrices is a difficult task, especially when the cor-
responding noises have unknown stochastic proper-
ties. In order to avoid this problem, we will consider
these matrices as free parameters to be adjusted. In
the literature, Vas33 was the first who adjusted these
matrices manually with trial-error method. Unfor-
tunately, this method is a tedious task. Therefore,
to overcome this difficulty and to avoid trial-error
method, the authors34,35,36 have used genetic algo-
rithms, downhill simplex, and particle swarm opti-
mization, respectively, to optimize these matrices.
In our work, we suggest using a novel optimization
method for the adjusting these matrices by using the
BBO algorithm37 (see Figure 4).

4.3. Proposed optimized extended Kalman filter
(BBO-EKF algorithm)

Estimation performance is the major problem asso-
ciated to EKF; it strongly influences the parameter
values of the system, state and measurement noise
covariance matrices Q and R, respectively. Accord-
ing to Vas33, Q and R must be acquired taking into
account the stochastic properties of the correspond-
ing noises, for this reason they are generally un-
known matrices. However, as these are not known,

in most cases are used as weighting parameters (ad-
justment of parameters). Moreover, these matrices
were first tuned manually by trial-error methods,
which are very tedious procedures due to a large
time consumption34. To avoid the computational
complexity of this method, and when the values of
these matrices are not known precisely, the improve-
ment of the EKF performance can be assimilated to
an optimization problem.

In this paper, we propose a novel alternative for
the tuning and the optimization of Q and R based
on BBO algorithm, which is described in section 3.
In our algorithm, each habitat is considered as an
individual and has its habitat suitability index (HSI)
instead of fitness value to show the degree of its
goodness. High- HSI habitat represents a good solu-
tion and low-HSI habitat represents a poor solution.
Solution features emigrate from high-HSI habitats
(emigrating habitat) to low-HSI habitats (immigrat-
ing habitat).

In our works, we suppose that we have a popula-
tion size of NP, that xk is the k− th individual in the
population, that the dimension of our optimization
problem is n, and that xk(s) is the s− th independent
variable in xk, where k ∈ [1, NP] and s ∈ [l, n] . At
each generation and for each solution feature in the
k− th individual, there is a probability of λsk (immi-
gration probability) that it will be replaced by (7). If
a solution feature is selected to be replaced, then we
select the emigrating solution with a probability that
is proportional to the emigration probabilities µsk in
(8). Mean square error (MSE) criterion defined in
(24) is used in this paper as fitness (objective func-
tion), between the actual output and the estimated
one according to a certain number of iterations T to
be performed for each step of estimation.

MSE =
1
T

T

∑
k=1

(zi(k)− ẑi(k))2, i = 1,2 (24)

where ẑ is an estimate of the output z; and T de-
notes the number of data samples.

This is carried out using the two steps. As a first
step, we present a BBO-EKF algorithm as in Figure
4, which is done in an offline, because BBO algo-
rithm requires several iterations to achieve optimal
solutions. For each iteration, BBO-EKF algorithm
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Fig. 4. Block diagram of the control system based on the
proposed BBO-EKF observer

must be executed once. Therefore, BBO-EKF algo-
rithm should be executed several times allowing the
optimization of Q and R, from each measurement.
The main steps of the biogeography-based optimiza-
tion algorithm are illustrated in the flowchart in Fig-
ure 3, in which seven steps can be distinguished:

1) Initialize a set of solutions to a problem ran-
domly

2) Calculate HSI (fitness) for each solution

3) For each habitat map the HSI to the number
of species s, calculate the immigration rate λs,
and emigration rate µs by using (7) and (8).

4) Modify habitats (Migration) based on λs and
µs, see Algorithm 1

5) Mutation according to (9)

6) Implement elitism to retain the best solution
in the population from one generation to the
next

7) Go to step 2 for the next iteration if needed.
This loop can be terminated after a predefined
number of generations or after an acceptable
problem solution has been found.

As a second step, after obtaining the optimized val-
ues Q and R in the first step, we inject them into the
EKF observer running online to estimate the state
variable of two-link manipulator.

The control torque input τ and the measured re-
sponse z will be considered as input signals to EKF
observer, where τ is applied to both robotic manip-
ulator and extended Kalman filter (see Figure 4).

4.4. Stability of closed-loop control system

The actual output z and the estimated output ẑ are
set to be the inputs of the performance evaluator of
the BBO module through a comparator. The MSE
is calculated by the performance evaluator. Then,
obtained values of MSE will be used in the BBO al-
gorithm. Based on these values, BBO optimizer will
calculate and optimize the unknown parameters of
covariance matrices Q and R.

The new solutions and updated matrices Q and R
are then used to adapt the EKF for next iteration until
a predefined number of iterations have been reached,
and then optimal matrices Q and R are obtained. Fi-
nally, optimized Q and R are injected into EKF ob-
server for a future online running.

In order to dominate the states of system to arrive
the sliding surface s = 0 in a limited time and to stay
there, the control law must be designed so that the
sliding condition described in (17) is satisfied. This
goal is assured by following lemma.

Lemma 1. Consider the uncertain nonlinear sys-
tem (11) and assumptions 1-4. Then, the controller
defined by (22), and (23) ensures the convergence
of tracking error vector to the sliding surface S.
Proof. Consider the Lyapunov function candidate:
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L = 1/2 ST MS (25)

Its time derivative is given as:

L̇ = 1/2 ST ṀS+ST MṠ (26)

Considering property 2, then

ST (1/2 Ṁ−C)S = 0 (27)

Combining (25)–(27), one can get

L̇ = 1/2 ST (Ṁ−2C)S+STCS+ST MṠ

= ST (CS+MṠ) = ST [CS+M( ¨̂e+λ ˙̂e)
]

= ST
[
CS+M(

¨̂θ − θ̈d)+Mλ ( ˙̂θ − θ̇d)
]

= ST
[
C(

˙̂θ − θ̇d)+Cλ (θ̂ −θd)−Mθ̈d−

C ˙̂θ −G+ τ +Mλ ( ˙̂θ − θ̇d)
]

= ST
[
M
(

λ ( ˙̂θ − θ̇d)− θ̈d

)
+

C
(

λ (θ̂ −θd)− θ̇d

)
−G+ τ

]
= ST

[
M0

(
λ ( ˙̂θ − θ̇d)− θ̈d

)
+

C0

(
λ (θ̂ −θd)− θ̇d

)
−G0 + τ +d

]
In order to obtain the stability in closed-loop, the
derivative of Lyapunov function must be negative
definite (L̇ 6 0), the control law τ can be chosen as:

τ = M0

(
θ̈d −λ ( ˙̂θ − θ̇d)

)
+C0

(
θ̇d−

λ (θ̂ −θd)
)
+G0 −d − K̂ sign(S) (28)

Therefore, the derivative L̇ becomes:

L̇ =−ST K̂ sign(S) =−K̂ |S|6 0 (29)

which implies that S(t) → 0 as t → ∞. Therefore,
ê(t) and all its derivatives up to converge to zero.

5. Simulation and discussions

In order to verify the robustness and effectiveness of
the proposed control framework, let us consider two
degrees of freedom planar manipulator with revolute
joints shown in Figure 5.

Fig. 5. Two-link robot manipulator

where li is the link length, mi is the link mass, Ii is
the link’s moment of inertia given in the center of
mass, lci is the distance between the center of mass
of link and the ith joint.
The dynamic of two-link manipulator can be de-
scribed in the following differential equations38:[

m11 m12
m21 m22

][
θ̈1
θ̈2

]
+

[
c11 c12
c21 c22

][
θ̇1
θ̇2

]
+

[
G1
G2

]
=

[
τ1
τ2

]
+

[
d1
d2

]
(30)

The matrix M0 = [mi j]2×2 is given by:

m11 = m1l2
c1 +m2

(
l2
1 + l2

c2+

2 m2 l1 lc2 cos(θ2))+ I1 + I2

m12 = m2
(
l2
c2 + l1l2

c2 cos(θ2)
)
+ I2

m22 = m2l2
2 + I2

The matrix C0 = [ci j]2×2 is given by: c11 =
aθ̇2, c12 = aθ̇1 + aθ̇2, c21 = −aθ̇1, c22 = 0, where
a =−m2l1lc2 sin(θ2).

The vector G0 = [G1,G2]
T is given by:

G1 = (m1lc1 +m2l1)g cos(θ1)+

m2lc2 g cos(θ1 +θ2)

G2 = m2lc2 g cos(θ1 +θ2)
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Since the Kalman filter is a discrete algorithm,
then discretization of the model is needed. This
discretization will be done using the forward Euler
method, which provides an acceptable approxima-
tion of the systems dynamics for a short sampling
period.

Let the state vector be given by X =
[θ1, θ̇1,θ2, θ̇2]

T = [x1,x2,x3,x4]
T , and then the re-

sulting global discrete form will be given by the
following discrete nonlinear representation:

x1(k+1) = x1(k)+∆t x2(k+1)+w1(k)
x2(k+1) = x2(k)+∆t [ f1(X ,k)+

g1(X ,k) τ(k)+d1(k)]+w2(k)
x3(k+1) = x3(k)+∆t x4(k+1)+w3(k)
x4(k+1) = x4(k)+∆t [ f2(X ,k)+

g2(X ,k) τ(k)+d2(k)]+w4(k)
z1(k) = x1(k)+ v1(k)
z2(k) = x3(k)+ v2(k)

(31)

where
[

f1
f2

]
=M−1

0 (−C0[x2,x4]−G0) ,

[
g1
g2

]
=M−1

0 ,

τ = [τ1, τ2]
T is the control torque input, and ∆t is

the sampling period and k is the discrete-time points.

The nominal parameters of the robot used are chosen
by m1 = m2 =1Kg, l1 = l2 =0.5m, lc1 = lc2 =0.25m,
I1 = I2 =0.1Kg.m2, g = 9.81m/s2.
In this section, our proposed algorithm is simulated
on a PC using Matlab software environment (version
8.6.0.267246). A total of T = 2000 measurement
data are simulated on a time interval from 0 to 2s.
Note that all codes are written in Matlab language in
M-files with step size ∆t = 0.001s.

The desired reference trajectories is chosen as
Xd = [70◦,90◦]T . The initial values of the robot
were selected as Xd = [0,0,0,0]T . Three types of
uncertainties will be injected in the structure to ver-
ify the robustness of controller. Firstly parame-
ters uncertainties (+10% over the values of nominal
model parameters). Secondly the external distur-
bances are assumed to be time-varying as follows:
δ1 = 0.3× rand, and δ2 = 0.3× rand× sin(t). Note
that both disturbances first and second sum to d and
they will be applied at t > 1s. Thirdly random Gaus-
sian noises for the states and for the measurements

both with zero mean values and with covariances
q = 10−2 and r = 10−4, respectively. D = 1

EKF is implemented as in (3) to (6). The Ja-
cobean matrices Fk, Wk, Hk, Vk are defined in ap-
pendix A; EKF will provide the state estimate vec-
tor X̂ = [θ̂1,

̂̇θ 1, θ̂2,
̂̇θ 2]

T .The initial state and ini-
tial covariance conditions of the EKF are chosen to
be X̂0/0 = [0,0,0,0]T and P0/0 = ones(4,4), respec-
tively. In our simulation case, error covariance ma-
trix P is set to a 4×4 matrix, and Q and R matrices
with dimensions 4× 4 and 2× 2, respectively, are
assumed as

Q= diag
(
qθ1 ,qθ̇1

,qθ2 ,qθ̇2

)
=


qθ1 0 0 0
0 qθ̇1

0 0
0 0 qθ2 0
0 0 0 qθ̇2


(32)

R = diag(r1,r2) =

[
r1 0
0 r2

]
(33)

For comparison purposes, the performance of
EKF with diverse compositions of Q and R is eval-
uated by using the mean-squared-error (24) of the
position-estimating response, which is defined as:
MSE = 1

T ∑T
k=1[θi(k)− θ̂i(k)]2, i = 1,2.

First, we simulate the system under control law
of traditional sliding mode action in order to show
the drawback of SMC taken alone. Applying the
control law (18), and after some trials, we chosen
K = 20I2×2 and λ = 5I2×2, where Ii×i is an i× i iden-
tity matrix.

Table 1 shows typical EKF performance with
their corresponding covariance matrices’ entries
(qθ1 ,qθ̇1

, qθ2 , qθ̇2
, r1 and r2) obtained by a trial-

error method. It is found that good estima-
tion performance results when Q and R are equal
(case 2 and 3 in Table 1), but a bad selection of
(qθ1 ,qθ̇1

,qθ2 ,qθ̇2
,r1 and r2) can produce a poor es-

timation performance results (case 1). Note that
the best estimation performance is obtained with Q
and R matrices (qθ1 = qθ̇1

= 0.01,qθ2 = 0.02,qθ̇2
=

0.01,r1 = 0.01, and r2 = 0.08) (case 4), which cor-
responds to the smallest MSE.
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Table 1. EKF performances for a two-link manipulator using
trial-error estimations.

Case
Q and R entries

MSE (rad)
Estimation

qθ1 qθ̇1
qθ2 qθ̇2

r1 r2 quality

1 1 1 1 1 1 1 1.0881 Poor

2 0.1 0.1 10−3 0.1 10−4 10−4 1.9894×10−5 Good

3 0.1 0.01 0.1 0.1 0.1 10−6 1.4567×10−5 Good

4 0.01 0.01 0.02 0.01 0.01 0.08 1.4287×10−5 Very good
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Fig. 6. Control torque inputs using traditional SMC (a)
Link-1, (b) Link-2

The control torque inputs relative to the best
case (case 4) are showed in Figure 6, where we see
clearly that the control torque performance is not
satisfactory due to chattering phenomenon caused
by the inappropriate selection of the switching gain.
In order to tackle this problem, the smoothing prop-
erty of interval type-2 fuzzy logic is exploited as
seen in subsection 4.2 to reduce the chattering ef-
fect.

5.1. Chattering phenomenon problem

In this section, to avoid chattering phenomenon,
one-input one-output IT2FLS is designed with an
input S, which reflects the distance of error trajec-
tory to the sliding surface. Output of IT2FLS is de-
noted by KIT 2FLS. The memberships functions of S
are chosen as illustrated in Figure 7(a), in which the
following linguistic variables have been used: neg-
ative (N), zero (Z), positive (P). The memberships
functions of KIT 2FLS are chosen as illustrated in Fig-
ure 7(b), in which the following linguistic variables
have been used: positive small (PS), positive big
(PB). The rule set of the adopted IT2FLS contains
3 rules defined as following:

Rule 1: If S is N, Then KIT 2FLS is PB
Rule 2: If S is Z, Then KIT 2FLS is PS
Rule 3: If S is P, Then KIT 2FLS is PB

These rules govern the input-output relationship be-
tween S and KIT 2FLS by adopting the Mamdani-
type inference engine, in which the center of grav-
ity method is used for defuzzification as in (21).
By considering the assumption 4, in which −30 6
τ(t) 6 30, the simulation results corresponding to
improvement of switching gain K are presented us-
ing IT2FSMC with standard EKF.

Figure 8(a) shows desired, actual and estimated
position of Link-1, and as we see the performance
under occurrence parameter variations and external
disturbance are satisfactory (see also Figure 8(b)),
which represents the position tracking error of Link-
1.
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dard EKF for (a) Link-1, (b) Link-2
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Figure 9(a) shows desired, actual and estimated
position of Link-2, and as we see the performance
under occurrence parameter variations and external
disturbance are satisfactory (see also Figure 9(b)),
which represents the position tracking error of Link-
2. From comparing the new obtained control torque
inputs in Figure 10 with the old one (Figure 6), we
can clearly see that the chattering phenomenon is
disappeared. The fuzzy gain KIT 2FLS is depicted in
Figure 11.
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Fig. 11. Fuzzy gain KIT 2FLS obtained by IT2FLS for (a)
Link-1, (b) Link-2

From simulation results, it is clear that IT2FSMC
controller provides desired response with smooth
control signal and minimum reaching time during
model uncertainties and disturbances. Note that the
prediction accuracy of EKF is not quite satisfac-
tory (see Figures 8(a) and 9(a)) due to the trial-error
choice for EKF covariance matrices. In what fol-
lows, the proposed method will be applied in order
to resolve the prediction problem.

5.2. Prediction problem

Note that in all above simulations, the EKF covari-
ance matrices were adjusted by using the trial-error
method, which is simple to achieve, but it takes
a very longtime. Therefore, a satisfactory perfor-
mance estimation can only be achieved with a larger
effort by the operator experienced (experts). In fact,
it is not possible to easily deduce a relationship be-
tween the covariance matrices and the best estima-
tion results. In what follows we propose to solve
this problem by a new evolutionary algorithm called
biogeography-based optimization, and is then com-
pared to PSO algorithm.

5.2.1. BBO-EKF method

In proposed method, BBO-EKF is an optimization
algorithm combining the BBO algorithm with the
EKF observer. We suggest searching the optimal
combination of six variances qθ1 ,qθ̇1

,qθ2 ,qθ̇2
,r1 and

r2 simultaneously shown in (32) and (33) to find the
optimal covariance matrices Q and R of the EKF,
which will allow us to obtain better estimates with
higher precision than the trial-error method. In our
case, to evaluate the optimal response performance
in a finite time T .

By running the BBO-EKF with BBO parameters
cited in Table B.1 (see Appendix B), the optimized
covariance matrices Q and R and their correspond-
ing performance MSEs for various numbers of iter-
ations are given in Table 2.

In Table 2, the best solution is a habitat having
a low MSE. We observe that the MSE is decreased
to 2.7394×10−6 after 100 iterations. Note that this
MSE is very small compared to the MSE obtained
by trial-error method (MSEtrial−error = 1.4287 ×
10−5), which confirm the effectiveness of proposed
method.
It should be noted that the convergence of BBO al-
gorithm to the optimal solution depends on the pa-
rameters values shown in Table B.1 (see appendix
B).

In order to compare the performance of BBO-
EKF process with other algorithms, we give in Table
3, performance using PSO-EKF method.
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Table 2. Optimized EKF performances using BBO algorithm.

Number of
Generation

Q and R entries MSE BBO

Species qθ1 qθ̇1
qθ2 qθ̇2

r1 r2 (rad)

20

5 0.0054 0.0484 0.0054 0.0035 0.0797 0.0666 5.7355 .10−6

10 0.0029 0.0696 0.0063 0.0015 0.0823 0.0960 4.1097 .10−6

50 0.0002 0.0312 0.0302 0.0295 0.0941 0.0643 3.7545 .10−6

100 0.0001 0.0121 0.0564 0.0188 0.0842 0.0791 2.7394 .10−6

Table 3. Optimized EKF performances using PSO algorithm.

Iterations Generation
Q and R entries MSE PSO

qθ1 qθ̂1
qθ2 qθ̂2

r1 r2 (rad)

20

5 10−3 0.0214 10−2 0.0632 0.0793 0.0638 9.8340 .10−6

10 10−4 0.0335 10−5 0.0326 0.0500 0.0832 9.7784 .10−6

50 10−6 0.0772 10−4 0.0313 0.0673 0.0800 6.9638 .10−6

100 10−5 0.0675 10−5 0.0157 0.0893 0.0923 5.1932 .10−6

5.2.2. PSO-EKF method

The optimized covariance matrices Q and R and
their corresponding performance MSEs that have
been obtained using PSO-EKF algorithm are given
in Table 4 where we see that the MSE is decreased
until 5.1932×10−6 after 100 iterations.

From the results shown in Tables 2 and 3, com-
parison of BBO-EKF and PSO-EKF approaches
shows that all are able to find the optimum design
covariance matrices Q and R. It can be easily seen
that BBO-EKF gives more precise results than PSO-
EKF when the number of iteration (generation) in-
creases. It can also be seen that these MSEs are very
small compared to the MSE obtained by trial-error
(MSEtrial−error = 1.4287× 10−5); therefore, it can
be confirmed that IT2FSMC combined with BBO-
EKF technique, outperform those of PSO-EKF ap-
proach.

It should be noted that the convergence of PSO
method to the optimal solution depends on the pa-
rameters c1, c2 and w, in which Self-recognition co-
efficient c1 = 1.49, Social coefficient c2 = 1.49, and
Inertia weight w = 0.73. The comparison was car-
ried out in the same conditions as in BBO method
(initial population, Swarm size, population size).
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Fig. 12. Mean-square-error comparison versus 100 itera-
tions between (a) BBO-EKF, (b) PSO-EKF

Figure 12 shows the comparison of objective
function (MSE) values for the best solutions ob-
tained through the BBO-EKF and PSO-EKF algo-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 770–789
___________________________________________________________________________________________________________

783



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

-0.5

0

0.5

1

1.5
Li

nk
-1

 po
sit

io
n [

de
g]

θ1 desired

θ1 actual

θ1 estimate EKF

θ1 estimate PSO− EKF

θ1 estimate BBO− EKF

(a)

zoom

0 0.5 1 1.5 2
Time [s]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

θ
1 es

tim
ati

on
 er

ro
r [

de
g]

(b)

0

EKF

PSO-EKF

BBO-EKF

zoom

Fig. 13. (a) Desired, actual and estimated position of Link-
1 (b) Position estimation errors of Link-1, using IT2FLS
SMC for different EKF optimization algorithms
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(b) Speed estimation errors of Link-1, using IT2FLS SMC
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(b) Speed estimation errors of Link-2, using IT2FLS SMC
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rithms versus the 100 iterations, respectively. The
simulation results of applying IT2FLS approach
with proposed optimized EKF are shown in Fig-
ures 13 to 17 were in Figure 13(a) we present the
desired, actual and estimated position responses of
Link-1 with optimal values of EKF covariance ma-
trices given in Tables 1, 2 and 3 for trial-error, BBO
and PSO methods, respectively. The corresponding
position estimation errors are presented in Figure
13(b). The corresponding desired, actual and esti-
mated speed and its estimation errors are presented
in Figures 14(a) and (b), respectively. In Figure
15(a) we present the desired, actual and estimated
position responses of Link-2 with optimal values of
EKF covariance matrices given in Tables 1, 2 and
3 for trial-error, BBO and PSO methods, respec-
tively. The corresponding position estimation errors
are presented in Figure 15(b). The corresponding
desired, actual and estimated speed and its estima-
tion errors are presented in Figures 16(a) and (b),
respectively. The external disturbances applied on
Link-1 and Link-2, are depicted in Figures 17(a) and
(b), respectively. In all these figures, we see that the
best results are obtained with proposed BBO-EKF
method where it can be seen that BBO-EKF fits the
true state variables with higher accuracy for a two-
link manipulator.

6. Conclusions

In this paper, considering parameter uncertainties
and external disturbances, we have proposed a novel
application of biogeography-based optimization ap-
proach for optimizing the extended Kalman filter.
The interval type-2 fuzzy system was combined with

sliding mode control to ensure a good robustness.
The stability of closed-loop system is guaranteed
by means of the Lyapunov stability criterion. The
performance of EKF has been improved by adjust-
ing parameters of the covariance matrices Q and R,
in which BBO algorithm is used, and it is com-
pared to PSO technique. The proposed optimiza-
tion methods enable the noise covariance matrices
Q and R, on which the performance of EKF crit-
ically depends, to be properly selected. A com-
parison between the IT2FSMC control combined
with BBO-EKF, and with PSO-EKF were done in
the presence of stochastic measurement noises, con-
firms that the performance of IT2FSMC combined
with BBO-EKF technique was better than it com-
bine with PSO-EKF technique. Simulation results
show a significant improvement of the performance
while using the proposed optimization methods to
improve state variables estimation performance of
the two-link manipulator and it was concluded that,
the control performance of the IT2FSMC combined
with BBO-EKF technique was better than it com-
bine with PSO-EKF technique. Finally, we can say
that the obtained results yield better performance
while using proposed approach than traditional one.
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Appendix A

Jacobian matrices Fk, Wk, Hk, Vk for a two-link ma-
nipulator

Fk =


1 ∆t 0 0
f21 f22 f23 f24
0 0 1 ∆t
f41 f42 f43 f44

, Wk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Hk =

[
1 0 0 0
0 0 1 0

]
, and Vk =

[
1 0
0 1

]
.

where
f21 = ∆t(((m2l2

c2 + I2)(g S1(l1m2 + lc1m1) +
g lc2m2S12))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 + I2 ×

l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) −
(g lc2m2S12(m2l2

c2 + l1m2C2lc2 + I2))/(I1I2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)).

f22 = ∆t((2 θ̇1l1lc2m2S2(m2l2
c2 + l1m2C2lc2 +

I2))/(I1I2+ l2
1 l2

c2 m2
2+ I2l2

1 m2+ I2l2
c1 m1+ I1l2

c2 m2+
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)+ (2 θ̇2l1lc2m2S2(m2l2
c2 +

I2))/(I1I2+ l2
1 l2

c2 m2
2+ I2l2

1 m2+ I2l2
c1 m1+ I1l2

c2 m2+
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2))+1.

f23 = (∆t l1lc2m2τ2S2)/(I1I2 + l2
1 l2

c2 m2
2 + I2l2

1 m2 +
I2l2

c1m1 + I1l2
c2 m2 + l2

c1l2
c2 m1m2 − l2

1 l2
c2 m2

2C2
2) −

∆t(((−l1lc2 × m2C2θ̇ 2
1 + g lc2m2S12)(m2l2

c2 +
l1m2C2lc2 + I2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 +

I2l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)−
((m2l2

c2 + I2)(θ̇2(θ̇1l1lc2m2C2 + θ̇2l1lc2m2C2) +
g lc2m2S12 + θ̇1θ̇2l1lc2m2C2))/(I1I2 + l2

1 l2
c2 m2

2 +
I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 −
l2
1 l2

c2 m2
2C2

2) + (l1lc2m2S2 × (l1lc2m2S2θ̇ 2
1 +

g lc2m2C12))/(I1I2 + l2
1 l2

c2 m2
2 + I2l2

1 m2 +
I2l2

c1 m1 + I1l2
c2 m2 + l2

c1l2
c2 m1m2 − l2

1 l2
c2 m2

2C2
2) +

(2l2
1 l2

c2 m2
2C2S2(l1lc2m2S2θ̇ 2

1 + g lc2m2C12)(m2l2
c2 +

l1m2 × C2lc2 + I2))/(−l2
1 l2

c2 m2
2C2

2 + l2
1 l2

c2 m2
2 +

I2l2
1 m2 + m1l2

c1l2
c2 × m2 + I2m1l2

c1 + I1l2
c2 m2 +

I1I2)
2+(2l2

1 l2
c2 m2

2C2S2(m2l2
c2+I2)(θ̇2(θ̇1l1lc2m2S2+

θ̇2l1lc2m2S2)− g C1(l1m2 + lc1m1)− g lc2m2C12 +
θ̇1θ̇2l1lc2m2S2))/(−l2

1 l2
c2 m2

2C2
2 + l2

1 l2
c2 m2

2 +
I2l2

1 m2+m1l2
c1l2

c2 m2+ I2m1l2
c1+ I1l2

c2 m2+ I1I2)
2)−

(2 ∆t l2
1 l2

c2 m2
2τ1C2S2(m2l2

c2 + I2))/(−l2
1 l2

c2 m2
2C2

2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + m1l2
c1l2

c2 m2 + I2m1l2
c1 +

I1l2
c2 m2 + I1I2)

2 + (2 ∆t l2
1 l2

c2 m2
2τ2C2S2(m2l2

c2 +
l1m2C2lc2 + I2))/(−l2

1 l2
c2 × m2

2C2
2 + l2

1 l2
c2 m2

2 +
I2l2

1 m2 +m1l2
c1l2

c2 m2 + I2m1l2
c1 + I1l2

c2 m2 + I1I2)
2.
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f24 = (∆t(m2l2
c2 + I2)(2 θ̇1l1lc2m2S2 +2 θ̇2l1lc2m2 ×

S2))/(I1I2+ l2
1 l2

c2 m2
2+I2l2

1 m2+I2l2
c1 m1+I1l2

c2 m2+
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2).
f41 =−∆t(((g S1(l1m2 + lc1m1)+g lc2m2S12)(m2 ×
l2
c2 + l1m2C2lc2 + I2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 +

I2l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)−
(g lc2m2S12(m2l2

1 + 2 m2C2l1lc2 + m1l2
c1 + m2l2

c2 +
I1 + I2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 + I2l2

c1 m1 +
I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)).
f42 = −∆t((2 θ̇2l1lc2m2S2(m2l2

c2 + l1m2C2lc2 +
I2))/(I1I2+ l2

1 l2
c2 m2

2+ I2l2
1 m2+ I2l2

c1 m1+ I1l2
c2 m2+

l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) + (2 θ̇1l1lc2m2S2(m2l2
1 +

2 m2C2l1lc2 + m1l2
c1 + m2l2

c2 + I1 + I2))/(I1I2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)).
f43 = ∆t(((g lc2m2S12 − l1lc2m2C2θ̇ 2

1 )(m2l2
1 +

2 m2C2l1lc2 + m1l2
c1 + m2l2

c2 + I1 + I2))/(I1I2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)− ((θ̇2(θ̇1l1 × lc2m2C2 +
θ̇2l1lc2m2C2)+g lc2m2S12+ θ̇1θ̇2l1lc2m2C2)(m2l2

c2+
l1m2C2lc2 + I2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 +

I2l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) +
(l1lc2m2S2(θ̇2(θ̇1l1lc2m2S2 + θ̇2l1lc2m2S2) −
g C1(l1m2 + lc1m1) − g lc2m2C12 + θ̇1θ̇2l1lc2m2 ×
S2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 + I2l2

c1 m1 +
I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) +
(2l1lc2m2S2(l1lc2m2S2θ̇ 2

1 + g lc2m2C12))/(I1I2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)+ (2l2
1 l2

c2 m2
2C2S2(m2l2

c2 +
l1m2C2lc2 + I2)(θ̇2(θ̇1l1lc2m2S2 + θ̇2l1lc2m2S2) −
g C1(l1m2 + lc1m1) − g lc2m2C12 + θ̇1θ̇2l1lc2m2 ×
S2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 + I2l2

c1 m1 +
I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2)
2 +

(2l2
1 l2

c2 m2
2C2S2(l1lc2m2S2θ̇ 2

1 + g lc2m2C12)(m2l2
1 +

2 m2C2l1lc2 + m1l2
c1 + m2l2

c2 + I1 + I2))/(I1I2 +
l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2− l2
1 l2

c2 m2
2C2

2)
2)+(∆t l1lc2m2τ1S2)/(I1×

I2 + l2
1 l2

c2 m2
2 + I2l2

1 m2 + I2l2
c1 m1 + I1l2

c2 m2 +
l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) − (2 ∆t l1lc2 ×
m2τ2S2)/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 + I2l2

c1 m1 +
I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2) −
(2 ∆t l2

1 l2
c2 m2

2τ2C2S2(m2l2
1 + 2 m2C2l1lc2 +

m1l2
c1 + m2l2

c2 + I1 + I2))/(I1I2 + l2
1 l2

c2 m2
2 +

I2l2
1 m2 + I2l2

c1 m1 + I1l2
c2 m2 + l2

c1l2
c2 m1m2 −

l2
1 l2

c2 m2
2C2

2)
2 + (2 ∆t l2

1 l2
c2 m2

2τ1C2S2(m2l2
c2 +

l1m2C2lc2 + I2))/(I1I2 + l2
1 l2

c2 m2
2 + I2l2

1 m2 +
I2l2

c1 m1 + I1l2
c2 m2 + l2

c1l2
c2 m1m2 − l2

1 l2
c2 m2

2C2
2)

2.
f44 = 1− (∆t(2 θ̇1l1lc2m2S2 + 2 θ̇2l1lc2m2S2)(m2 ×
l2
c2 + l1m2C2lc2 + I2))/(I1I2 + l2

1 l2
c2 m2

2 + I2l2
1 m2 +

I2l2
c1 m1 + I1l2

c2 m2 + l2
c1l2

c2 m1m2 − l2
1 l2

c2 m2
2C2

2).
such as: S1 = sin(θ1), S2 = sin(θ2), S12 = sin(θ1 +
θ2), C1 = cos(θ1), C2 = cos(θ2), C12 = cos(θ1+θ2).

Appendix B

Parameters values used in BBO algorithm

Table B.1. BBO parameters.

Parameter value

Number of habitats (Population size) NP 20
Maximal number of generation 100
Number of decision variables (SIVs) 6
Immigration and emigration rates E, I 1
Absorption coefficient α 0.9
Probability mutation mmax 0.1
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