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Abstract

Bilevel optimization are often addressed in an organizational hierarchy in which the upper level decision
maker is the leader and the lower level decision maker is the follower. The leader frequently cannot
obtain complete information from the follower. As a result, the leader most tends to be risk-averse, and
then would like to create a safety margin to bound the damage resulting from the undesirable selection of
the follower. Pessimistic bilevel optimization represents an attractive tool to model risk-averse hierarchy
problems, and would provide strong ability of analysis for the risk-averse leader. Since to the best of our
knowledge, there is not a comprehensive review on pessimistic bilevel optimization, the goal of this paper
is to provide a extensive review on pessimistic bilevel optimization from basic definitions and properties
to solution approaches. Some real applications are also proposed. This survey will directly support
researchers in understanding theoretical research results, designing solution algorithms and applications
in relation to pessimistic bilevel optimization.
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1. Introduction

Bilevel decision-making problems10,18,38,49, moti-
vated by Stackelberg game theory42, are hierarchical
optimization problems in which their constraints are
defined in part by another parametric optimization
problem. The decision makers at the upper level and
the lower level are respectively termed as the leader
and the follower, and make their individual decisions

in sequence with the aim of optimizing their respec-
tive objectives. As is well-known, bilevel optimiza-
tion plays an exceedingly important role in differ-
ent application fields, such as transportation, eco-
nomics, ecology, engineering and others19. How-
ever, solving such a problem is not an easy task.
Even if a linear bilevel programming problem is
generally difficult to solve, and was proved to be
strongly NP-hard22.
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In general, a bilevel programming problem can
be stated as:

“min
x,y

” F(x,y) (1)

s.t. G(x)6 0,y ∈ Ψ(x),

where Ψ(x) is the set of solutions to the lower level
problem

min
y

f (x,y) (2)

s.t. g(x,y)6 0,

Here x ∈ Rn and y ∈ Rm.
It is worthwhile noting that the lower level prob-

lem may have multiple solutions for every (or some)
fixed value of the upper level decision making vari-
able. If the solution of the lower level problem is not
unique, it is difficult for the leader to predict which
point in Ψ(x) the follower will choose. As a re-
sult, it is difficult to determine the leader’s solution.
That is the reason why we use the quotation marks
in problems (1)-(2). To overcome this situation, the
majority of authors used optimistic formulation and
pessimistic formulation, which represented the two
extreme situations between the leader and the fol-
lower. In the optimistic formulation (e.g., see Ref.
18 and the references therein), the follower always
selects a strategy in Ψ(x) that suits the leader best.
It is formulated as:

min
x,y

F(x,y) (3)

s.t. x ∈ X ,

y ∈ Ψ(x),

where X := {x : G(x)6 0}.
Alternatively, pessimistic formulation (e.g., see

Ref. 18 and the references therein) refers to the case
where the leader protects himself against the worst
possible situation, and can be written as:

min
x∈X

max
y∈Ψ(x)

F(x,y). (4)

Note that there are several survey papers on
bilevel/multilevel programming/ decision-making in
the past 20 years. However, these survey focus on an

optimistic bilevel optimization. For example, Ben-
Ayed11, Wen and Hsu45 presented the basic mod-
els, solution definitions, solution approaches and ap-
plications of the optimistic linear bilevel optimiza-
tion. Colson et al.15,16, Vicente and Calamai44 fo-
cused on traditional solution concepts and solution
approaches for the optimistic bilevel programming
problems. Dempe19 summarized the main research
directions and the main fields of applications of
bilevel programming, but mainly fixed attention on
the optimistic formulation. Sakawa and Nishizaki39

reviewed interactive fuzzy programming approaches
for the optimistic bilevel/multilevel programming
problems which focus on cooperative decision-
making in decentralised organizations. Kalashnikov
et al.23 presented a survey of bilevel programming
and application area. Zhang, Han and Lu50 reviewed
the fuzzy bilevel decision-making techniques which
includes models, approaches and systems. Lu, Shi
and Zhang32 identified nine different kinds of rela-
tionships amongst followers by establishing a gen-
eral framework for bilevel multifollower decision
problems. Furthermore, Lu et al.33 analyzed various
kinds of relationships between decision entities in
a multifollower trilevel (MFTL) decision problem,
and then proposed an MFTL decision making frame-
work, in which 64 standard MFTL decision situa-
tions and their possible combinations are identified.
Recently, Lu et al.34 developed the latest research
on multilevel decision-making involving theoretical
research results and applications. Sinha, Malo and
Deb40 presented an introduction to progress made by
evolutionary computation towards handing bilevel
optimization. Sinha, Malo and Deb41 developed a
comprehensive review on bilevel optimization from
classical to evolutionary approaches, and then dis-
cussed a number of potential application problems.
The above survey papers have provided good ref-
erences on optimistic bilevel optimization for re-
searchers. Unfortunately, little is reviewed regarding
the pessimistic bilevel optimization. Therefore, the
authors in this paper will systematically review up-
to-date pessimistic bilevel optimization which fo-
cuses on properties, solution approaches and appli-
cations.

To conduct this literature review, there are two

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 725–736
___________________________________________________________________________________________________________

726



main types of article being reviewed in this survey:
Type I - articles on solution definitions and prop-
erties (including optimality conditions, existence of
solutions and complexity) and Type II - articles on
solution approaches. The search and selection of
these articles were performed according the four
steps as follows:

Step 1. Publication database identification and
determination. Publication databases, such as Sci-
ence Direct, SpringerLink, IEEE Xplore, Taylor &
Francis and Google scholar, were selected to pro-
vide a comprehensive bibliography of papers on pes-
simistic bilevel optimization.

Step 2. Preliminary screening of articles. The
search was first performed based on related key-
words of pessimistic bilevel optimization. The ar-
ticles were then selected as references if they satis-
fied one of the following criteria that they 1) present
pessimistic bilevel optimization model; 2) propose
solution concepts and approaches for pessimistic
bilevel optimization; 3) provide a real-world pes-
simistic bilevel application.

Step 3. Result filtering for Type 1 articles. Based
on the keywords of the preliminary references re-
lated to pessimistic bilevel optimization, these pa-
pers were divided into four groups: solution defini-
tions, optimality conditions, existence of solutions
and complexity, which are mainly used in Sections
2 and 3.

Step 4. Type 2 article selection. Based
on the keywords of solution approaches to pes-
simistic bilevel optimization, these papers were di-
vided into four groups: penalty methods, Kth-Best
algorithm, approximation approach and reduction
method, which are mainly used in Section 4.

In this paper, we focus on pessimistic bilevel
optimization, and aim at answering some research
questions as follows:

RQ1 What are the definitions and properties of
pessimistic bilevel optimization?

RQ2 What are the state-of-the-art solution ap-
proaches to solve pessimistic bilevel optimization?

RQ3 What are the main applications of pes-
simistic bilevel optimization?

The main contributions of this paper are:
1) Review of definitions of pessimistic bilevel

optimization and related properties, such as optimal-
ity conditions, existence of solutions and complex-
ity.

2) Review and classification of solution ap-
proaches to pessimistic bilevel optimization.

3) Future directions are suggested in the area of
pessimistic bilevel optimization.

The remainder of this paper is organized as fol-
lows. In Sections 2 and 3, we review definitions
and properties of pessimistic bilevel optimization
and answer RQ1. Section 4 describes solution ap-
proaches to pessimistic bilevel optimization and an-
swer RQ2. We answer RQ3 in Section 5 which is
dedicated to the applications. Finally, we conclude
this paper and provide some future directions in Sec-
tion 6.

2. Definitions of pessimistic bilevel
optimization

To understand and analyze solution approaches and
application developments of pessimistic bilevel opti-
mization, this section reviews the notations and def-
initions.

2.1. Definitions

In this subsection, some important definitions of
pessimistic bilevel optimization are itemized below.
Definition 2.1
(a) Constraint region of problem (4):

S := {(x,y) : G(x)6 0,g(x,y)6 0}.

(b) Projection of S onto the leader’s decision space:

S(X) := {x ∈ X : ∃y,such that (x,y) ∈ S}.

(c) Feasible set for the follower ∀x ∈ S(X):

Y (x) := {y : g(x,y)6 0}.

(d) The follower’s rational reaction set for x ∈ S(X):

Ψ(x) := {y : y ∈ argmin[ f (x,y) : y ∈ Y (x)]}.

(e) Inducible region or feasible region of the leader:

IR := {(x,y) : (x,y) ∈ S,y ∈ Ψ(x)}.
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To introduce the concept of a solution to prob-
lem (4) (also called pessimistic solution), one usu-
ally employs the following value function φ(x):

φ(x) := sup
y∈Ψ(x)

F(x,y).

Definition 2.2 A pair (x∗,y∗) ∈ IR is called a solu-
tion to problem (4), if

φ(x∗) = F(x∗,y∗),
φ(x∗)6 φ(x), ∀ (x,y) ∈ IR.

When the feasible set of the follower does not
depend on the upper level decision variables, i.e.,
g(x,y) in problem (2) is reduced to g(y), problem
(4) is referred as an independent pessimistic bilevel
problem46. Note that it is also called weak Stackel-
gerg problem in Ref. 30. Mention that many studies,
in particular, the existence of solutions have been
devoted to the weak Stackelgerg problem. In the
following, some definitions concerning, in particu-
lar, approximate solutions (ε-Stackelberg solution,
ε-Stackelberg equilibrium pair) to the weak Stack-
elgerg problem will be described.
Definition 2.3 (Loridan and Morgan27) Any point
x∗ verifying v1 = φ(x∗) is called a Stackelberg solu-
tion to the weak Stackelberg problem. Here, v1 :=
inf
x∈X

φ(x).

Definition 2.4 (Loridan and Morgan27) A pair
(x∗,y∗) verifying v1 =φ(x∗) and y∗ ∈Ψ(x∗) is called
a Stackelberg equilibrium pair.
Definition 2.5 (Loridan and Morgan27) Let ε > 0 be
a given number. A point x∗ is an ε-Stackelberg so-
lution if and only if x∗ ∈ X and φ(x∗)6 v1 + ε .
Definition 2.6 (Loridan and Morgan27) A pair
(x∗,y∗) is an ε-Stackelberg equilibrium pair if and
only if x∗ is an ε-Stackelberg solution and y∗ ∈
Ψ(x∗).

In addition to the above definitions of pessimistic
bilevel optimization, Alves and Antunes8 presented
and illustrated a definition of pessimistic solution of
semivectorial bilevel problem, and made compari-
son of optimistic solution, pessimistic solution, de-
ceiving solution and rewarding solution.

3. Properties of pessimistic bilevel optimization

According to the definitions in Section 2, we cate-
gorize the various properties of pessimistic bilevel
optimization, and then list some of the well-known
properties.

3.1. Existence of solutions

As is well-known, the study of existence of solu-
tions for pessimistic bilevel optimization is a diffi-
cult task. An initial step in this direction was de-
veloped by Lucchetti, Mignanego and Pieri35 who
proposed some examples that fail to have a solution.
Mention that the most studies have been devoted
to the weak Stackelgerg problem. Aboussoror and
Loridan2, Aboussoror3 have given sufficient condi-
tions to obtain the existence of solutions to the weak
Stackelgerg problem via a regularized scheme. Any
accumulation point of a sequence of regularized so-
lutions is a solution to the weak Stackelgerg prob-
lem. Aboussoror and Mansouri5 have deduced the
existence of solutions to the weak Stackelgerg prob-
lem via d.c. problems. Similar results using re-
verse convex and convex maximization problems are
given in Aboussoror, Adly and Jalby6. Loridan and
Morgan27 have obtained some results for approxi-
mate solutions of the weak Stackelgerg problem by
using a theoretical approximation scheme. Any ac-
cumulation point of a sequence of ε-approximate
solutions of the approximation problems is an ε-
approximate solution to the weak Stackelgerg prob-
lem. The interested reader can refer to the refer-
ences about the approximate solutions of the weak
Stackelgerg problem. Furthermore, Loridan and
Morgan28 improved and extended some properties
proposed in Ref. 27. Similar results using approxi-
mation scheme were given in Ref. 29. Lignola and
Morgan24 discussed a more general weak Stackel-
berg formulation in which the follower’s rational re-
action set Ψ(x) is replaced by a parameterized con-
straint Ψ(t,x) (t is a parameter). Marhfour37 have es-
tablished existence and stability results for ε-mixed
solutions of weak Stackelberg problems. In particu-
lar, the results are given under general assumptions
of minimal character without any convexity assump-
tion.
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For the linear pessimistic bilevel problems, using
the strong dual theorem of linear programming and
penalty method, Aboussoror and Mansouri4 have es-
tablished the existence results of solutions. Note
that, the strong-weak Stackelberg problems have
been reduced the weak Stackelgerg problem under
some conditions. Aboussoror and Loridan1 have
studied the existence of solutions of strong-weak
Stackelberg problems. In particular, using the regu-
larization and the notion of variational convergence,
Aboussoror7 have given sufficient conditions to en-
sure the existence of solutions to such problems.
The obtained results in Refs. 1 and 7 can be applied
to the weak Stackelgerg problem by deleting some
variables.

When the pessimistic bilevel optimization prob-
lem (4) does not have a solution, which may arise
even under strong assumptions, the leader can make
do with alternative solution concepts. Based on this,
Lignola and Morgan25 recently have considered a
concept of viscosity solution which can obviate the
lack of optimal solutions. In particular, they have
given sufficient conditions using regularization fam-
ilies of the solutions map to the lower level problem,
ensuring the existence of the corresponding viscos-
ity solutions.

3.2. Optimality conditions

The optimality conditions for pessimistic bilevel
optimization and pessimistic semivectorial bilevel
optimization have been proposed in the literature.
A first attempt was made by Dassanayaka17 using
implicit programming approach, minmax program-
ming approach and duality programming approach
respectively. Using the advanced tools of variational
analysis and generalized differentiation, Dempe20

derived several types of necessary optimality con-
ditions via the lower-level value function approach
and the Karush-Kuhn-Tucker (KKT) representation
of lower-level optimal solution maps. Furthermore,
the upper subdifferential necessary optimality con-
ditions are obtained, and the links are also estab-
lished between the necessary optimality conditions
of the pessimistic and optimistic versions in bilevel
programming. Liu et al.26 discussed a class of pes-
simistic semivectorial bilevel optimization in which

the lower level problem was a multiobjective op-
timization problem, and presented the first order
necessary optimality conditions of such a problem.
These various necessary optimality conditions could
be helpful to develop fast algorithms to obtain solu-
tions of pessimistic bilevel optimization.

3.3. Complexity

The complexity of pessimistic bilevel optimization
is easily confirmed at its simplest version, i.e. linear
pessimistic bilevel problem. Wiesemann et al.46 dis-
cussed a class of linear dependent pessimistic bilevel
problem in which the follower’s feasible set depends
on the upper level decision variables as follows:

min
x

c⊤x (5)

s.t. Ax+By > b,∀y ∈ Ψ(x),
Ψ(x) = arg min

z∈Rm
+

{ f⊤z : Cx+Dz > w},

x ∈ Rn
+,

where c ∈ Rn, A ∈ Rp×n, B ∈ Rp×m, b ∈ Rp, f ∈ Rm,
C ∈ Rq×n, D ∈ Rq×m and w ∈ Rq. When the lower
level problem satisfies C = 0, i.e. the follower’s fea-
sible set does not depend on the upper level decision
variables, problem (5) can be called a linear inde-
pendent pessimistic bilevel problem.

Under the certain assumptions, Wiesemann et
al.46 illustrated that: 1) The independent linear pes-
simistic formulation of problem (5) can be solved in
polynomial time; 2) If the number of the lower level
decision variables is constant, the dependent linear
pessimistic bilevel problem can be solved in poly-
nomial time. Otherwise, it is strongly NP-hard.

4. Solution approaches of pessimistic bilevel
optimization

4.1. Penalty methods for the linear case

At present, the proposed penalty methods4,51 were
only used to solve the linear pessimistic bilevel op-
timization problem. An initial step in this direction
was developed by Aboussoror and Mansouri4. Us-
ing the strong dual theory of linear programming
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and penalty method, they transformed the linear pes-
simistic bilevel optimization problem:

min
x∈X

max
y∈Ψ(x)

c⊤x+d⊤
1 y (6)

where Ψ(x) is the set of solutions to the lower level
problem

min
y>0

d⊤
2 y (7)

s.t. By 6 b−Ax

into a single-level optimization problem:

min
x,t,u

c⊤x+d⊤
2 t +(b−Ax)⊤u (8)

s.t. −B⊤u 6 kd2 −d1,

Bt 6 k(b−Ax),
x ∈ X , t,u > 0,

where t ∈ Rm, u ∈ Rp and k > 0 is a penalty param-
eter.

Under some assumptions, Aboussoror and Man-
souri 4 proved that there exists a k∗ > 0 such that for
all k > k∗, if (xk, tk,uk) is a sequence of solutions of
the problem (8), xk solves problems (6)-(7). Unfor-
tunately, no numerical results were reported.

A more recent contribution by Zheng et al.51, fol-
lows the ideas of Aboussoror and Mansouri4, who
presented a new variant of the penalty method to
solve problems (6)-(7). Their method transformed
it into the following penalty problem:

min
x,t,u

c⊤x+ kd2y+(b−Ax)⊤u (9)

s.t. −B⊤u 6 kd2 −d1,

By 6 b−Ax,
x ∈ X ,y,u > 0,

where u ∈ Rp, and k > 0 is a penalty parameter. The
resulting algorithm involves the minimization of dis-
joint bilinear programming problem (9) for a fixed
value of k. Two simple examples illustrate the pro-
posed algorithm is feasible.

4.2. Modified Kth-Best algorithm for the linear
case

An important property of the solution to the linear
pessimistic bilevel optimization problems (6)-(7) is

that there exists a solution which occurs at a vertex
of the polyhedron W . Here W is the constraint re-
gion of problems (6)-(7), i.e.

W := {(x,y) : x ∈ X ,By 6 b−Ax,y > 0}.

This property induces the possibility of developing
algorithms which search amongst vertices of W in
order to solve the linear pessimistic bilevel optimiza-
tion problems.

Zheng, Fang and Wan52 first proposed a modi-
fied version of Kth-Best algorithm to the linear pes-
simistic bilevel optimization problem. After sorting
all vertices in ascending order with respect to the
value of the upper level objective function, this al-
gorithm selects the first vertex to check if it satisfies
the terminate condition, and the current vertex is a
solution of problems (6)-(7) if it is yes. Otherwise,
the next one will be selected and checked.

4.3. Approximation approach

To solve independent pessimistic bilevel problem,
several authors (Loridan and Morgan30; Tsoukalas,
Wiesemann and Rustem43; Wiesemann et al.46) pre-
sented the approximation approaches. Loridan and
Morgan30 presented the following regularized prob-
lem:

min
x∈X

sup
y∈Ψ(x,ε)

F(x,y) (10)

where ε > 0 and Ψ(x,ε) is the set of ε-solutions of
the lower level problem

min
y

f (x,y) (11)

s.t. y ∈ Y,

and the strong Stackelberg problem:

min
x∈X

inf
y∈Ψ(x,β ,γ)

F(x,y) (12)

where β ,γ > 0 and Ψ(x,β ,γ) is the set of γ-
solutions of the parametrized problem

min
y

g(x,y,β ) (13)

s.t. y ∈ Y,
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where g(x,y,β ) = f (x,y)− βF(x,y) for any x ∈ X
and y ∈ Y .

Based on the Molodtsov method, Loridan and
Morgan30 computed a sequence of solutions of
strong Stackelberg problems (12)-(13) and investi-
gated the relations with solutions to the independent
pessimistic bilevel problem. Under some assump-
tions, they have been proved that a sequence of so-
lutions of strong Stackelberg problem convergence
to a lower Stackelberg equilibrium for the indepen-
dent pessimistic bilevel problem.

On the other hand, Tsoukalas, Wiesemann and
Rustem43, Wiesemann et al.46 considered the fol-
lowing independent pesssimistic bilevel optimiza-
tion problem:

min
x∈X

f (x) (14)

s.t. g(x,y)6 0,∀y ∈ argmax
y′∈Y

h(x,y
′
).

To solve the independent pessimistic bilevel
optimization problem (14), they presented an ε-
approximation problem:

min
x∈X

f (x)

s.t. g(x,y)6 0,∀y ∈ Yε(x),

Yε(x) = {z ∈ Y : h(x,z)< h(x,z
′
)+ ε,∀z

′ ∈ Y},
x ∈ X .

For a fixed value of ε , the above problem was refor-
mulated as a single-level optimization problem:

min
x,z,λ

f (x)

s.t. λ (y)[h(x,z)−h(x,y)+ ε ]
+(1−λ (y))g(x,y)6 0,∀y ∈ Y,
x ∈ X ,z ∈ Y,λ : Y −→ [0,1],

where the function λ : Y −→ [0,1] is a decision vari-
able. Furthermore, they developed an iterative so-
lution procedure for the ε-approximation problems.
Numerical results illustrate the feasibility of the pro-
posed ε-approximation method.

In particular, when the lower level corresponds
to an equilibrium problem that is represented as a
(parametric) variational inequality or, equivalently,

a generalized equation, bilevel optimization problem
can be called an MPEC (Mathematical Program with
Equilibrium Constraints). C̆ervinka, Matonoha and
Outrata14 proposed a new numerical method, which
combines two types of existing codes, a code for
derivative-free optimization under box constraints,
and a method for solving special parametric MPECs
from the interactive system, to compute approximate
pessimistic solutions to MPECs.

4.4. Reduction method

Again, to solve problem (4), Zeng48 presented its re-
laxation problem as follows:

min
x,y

max
y∈Ỹ (x,y)

F(x,y)

s.t. x ∈ X ,

g(x,y)6 0, (15)

Ỹ (x,y) := {y : g(x,y)6 0, f (x,y)6 f (x,y)}.

Proposition 3 in Ref. 48 means that if (x∗,y
′
,y

′
)

is a solution to problem (15), then there exists a
point y∗ ∈ Ψ(x∗) such that (x∗,y∗) solves problem
(4). In other words, this result provides the reader
with an important idea to compute the pessimistic
bilevel optimization via investigating a regular opti-
mistic bilevel programming problem.

For a pessimistic quadratic-linear bilevel opti-
mization problem, Malyshev and Strekalovsky36 re-
duced it to a series of optimistic bilevel optimization
problems and then to the nonconvex optimization
problems. Furthermore, they developed the global
and local search algorithms.

In addition to the above several methods, Dempe,
Luo and Franke21 proposed the global and lo-
cal search algorithms for solving linear pessimistic
bilevel optimization via the value method and the
strong dual theory of linear programming. For
the pessimistic bilevel mixed-integer programming
problems, Lozano and Smith31 developed two meth-
ods (i.e. two-phase approach and cutting-plane al-
gorithm) based on an optimal-value-function refor-
mulation. Zheng, Zhuo and Chen55 presented a
maximum entropy approach to solve the pessimistic
bilevel programming problems in which the set of
solutions of the lower level problem is discrete. It
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Table 1. Advantages and disadvantages of the most relevant al-
gorithms to solve pessimistic bilevel optimization.

Algorithm name Advantages Disadvantages

Penalty method4 Can find a solution via a Limited in pessimistic linear bilevel;
sequence of bilinear programming. Time-consuming for the large-scale problems.

Penalty method51 Can find a solution via a Limited in pessimistic linear bilevel;
sequence of disjoint bilinear problems. Time-consuming for the large-scale problems.

Kth-Best algorithm52 Can find a global solution. Limited in pessimistic linear bilevel;
Time-consuming for the large-scale problems.

Global search algorithm21 Can find a global solution. Limited in pessimistic linear bilevel;
Algorithm works after enumeration
of all different basic matrices;

Descent algorithm21 Can find a local optimal solution; Limited in pessimistic linear bilevel;
Time-consuming for the large-scale problems.

Approximation approach30 Can find a solution via a Limited in independent pessimistic bilevel;
sequence of optimistic bilevel. Require a global solution at every update.

Approximation approach46 Can find an ε-approximation solution. Limited in independent pessimistic bilevel;
Require a global solution at every update.

Reduction method36 Can find a solution via a Limited in pessimistic quadratic-linear bilevel;
sequence of optimistic bilevel. Require a global solution at every update.

Reduction method48 Can find a solution via an Indirect method;
optimistic bilevel; Not require The lack of a large number of numerical
a global solution at every update. results to support.

Maximum entropy approach55 Can find an ε-approximation solution. Works after obtaining the solution set of
the lower level problem;
May be infeasible for the large-scale problems.
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should be noted that their approach need to obtain
the set of solutions of the lower level problem in ad-
vance. This is not an easy work, but it may provide
the reader with a new way to discuss the pessimistic
bilevel optimization. Table 1 gives a comparison
of the advantages and disadvantages of these algo-
rithms.

5. Applications

Pessimistic bilevel optimization models have been
applied to handle decentralized decision problems in
the real world. In the following, we provide a small
selection of actual or potential applications of pes-
simistic bilevel optimization in the literature.

Second best toll pricing
Second best toll pricing (SBTP) models deter-

mine optimal tolls of a subset of links in a trans-
portation network by minimizing certain system ob-
jective, while the traffic flow pattern is assumed to
follow user equilibrium (UE). As the UE problem
may have multiple solutions under a given toll, the
design objective will always worse off. To achieve
more robust tolling, Ban et. al9 proposed a risk
averse second best toll pricing approach aiming to
optimize for the worst-case scenario which can be
modeled as weak Stackelberg problem. In fact, it
is an independent pessimistic bilevel optimization
problem.

Production planing
Production-distribution (PD) planning problems

are often addressed in an organizational hierarchy
in which a distribution company that utilizes several
depots is the leader and the manufacturing compa-
nies are the followers. The classical objective func-
tion of the leader is to minimize the total operating
cost of the distribution company, and the followers
optimize their respective production cost. However,
the distribution company frequently cannot obtain
complete production information from the manufac-
turing companies, and may thus become risk-averse.
As a result, Zheng et al.53 presented a risk-averse
PD planning problem which is formulated as a pes-
simistic mixed-integer bilevel optimization model
from the worst-case point of view. Other applica-
tions of pessimistic bilevel optimization to produc-

tion planning can be found in Refs. 43 and 46.
Principal-agent problem
As is well-known, principal-agent problem is a

classical problem in economics, in which a prin-
cipal (the leader) sub-contracts a job to an agent
(the follower). In real life, principal-agent rela-
tionships are commonly found in doctor-patient,
employer-employee, corporate board-shareholders
and politician-voters scenarios. Suppose that the
agent prefers to act this job in his own interests
rather than those of the principal. The principal is
difficult to design a contract under incomplete and
asymmetric information. As a result, design of such
a contract appears as a pessimistic bilevel optimiza-
tion problem. Studies that the readers can refer to
are Ref. 43.

Interdiction game
Interdiction game covers important and diverse

applications, such as critical infrastructure defense,
stopping nuclear weapons projects, drug smug-
gling, marketing and attacker-defender problems.
Its framework is a class of sequential decision-
making problems in the context of max-min bilevel
programming which in fact is a special case of
pessimistic bilevel optimization. Some of the
approaches that have acknowledged the max-min
bilevel nature of this problem are Refs.12, 13 and
47.

Venture investment
In a company making venture investments, all

decision entities have individual objectives, con-
straints, and variables and do not cooperate with one
another. The departments within the company are
also in an uncooperative situation, but they need to
use the same warehouse in this company. The CEO’s
decision takes the responses of the selected depart-
ments into consideration and aims to maximize the
company’s profit. Under incomplete and asymmet-
ric information, the CEO cannot directly observe
both departments’ effort and the inventory expense.
As a result, the CEO would like to create a safety
margin to bound the damage resulting from undesir-
able selections of the departments. Based on these,
Zheng, Zhu and Yuan54 developed a partially-shared
linear pessimistic bilevel multi-follower program-
ming problem, in which there is a partially-shared
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variable among the followers, to model the company
making venture investments.

6. Conclusions and prospective research topics

Bilevel optimization problem plays an exceedingly
important role in different application fields. Pes-
simistic formulation in bilevel optimization has be-
come one of the major strategies for solving such
problems in which the set of solutions of the lower
level problem is not singleton. In this paper, we have
addressed a survey of pessimistic bilevel optimiza-
tion and answered our research questions.

RQ1 What are the definitions and properties of
pessimistic bilevel optimization?

In Sections 2 and 3, we review of definitions of
pessimistic bilevel optimization and related proper-
ties, such as optimality conditions, existence of so-
lutions and complexity.

RQ2 What are the state-of-the-art solution ap-
proaches to solve pessimistic bilevel optimization?

In Section 4, we overviewed pessimistic bilevel
solution approaches and provided four classifica-
tions of them. The first classification is based
on penalty methods, while the second classifica-
tion is Kth-Best Algorithm for the linear pessimistic
bilevel optimization. The third classification is
approximation approach to solve independent pes-
simistic bilevel optimization. The fourth classifies
approaches depends on the reduction formulation of
pessimistic bilevel optimization.

RQ3 What are the main applications of pes-
simistic bilevel optimization?

In Section 5, we indicated the applications of
pessimistic bilevel optimization, such as second
best toll pricing, production planing, principal-agent
problem, interdiction game and venture investments.

This survey gives an overview on the state-of-
the-art of pessimistic bilevel optimization. Based on
the review, we can find that there are some directions
that should be discussed for further research.

1) The first order optimality conditions for pes-
simistic bilevel optimization is proposed, but it has
not been organically combined with the algorithm.
Furthermore, the higher order optimality conditions
also should be studied. In addition, no systematic

studies have been conducted on sensitivity analysis.
2) Several existing methods can be used to solve

linear pessimistic bilevel optimization and indepen-
dent pessimistic bilevel optimization problems. It
would be interesting to study a general pessimistic
bilevel optimization which do not possess the in-
dependence property. In particular, it would be in-
structive to investigate how pessimistic bilevel opti-
mization can be reduced to a single-level optimiza-
tion problem and to discuss the relationship between
them.

3) The ultimate goal of pessimistic bilevel opti-
mization is to provide strong ability of analysis and
decision for the practical problems from the worst-
case point of view. In particular, those problems
often appear in highly complex and uncertainty en-
vironments. This requires further research on how
intelligent algorithms can be applied to large-scale
pessimistic bilevel optimization in the current age of
big data.
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