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Abstract 

This paper investigates the consensus decision making problem of the interval-valued fuzzy preference relation 
with distribution characteristics. The proposed group consensus decision making model is constructed by 
considering the scenarios in which the DMs are respectively equally and non-equally weighted and the DM’s 
preferences are randomly distributed. The goal is to find the minimum deviation between an ideal DM and all 
individual DMs. Accordingly, the objective function is the maximum consensus with a certain probability. The 
interactive process simulates the DM’s uncertainty judgment information more effectively. The Pareto optimization 
solution derived using a genetic algorithm and Monte Carlo approach is closer to reality. In the process of solving 
the model in this study, the essence of the Monte Carlo simulation method is an interactive process involving 
decision information. Therefore, this study provides a reference for the framework and optimization algorithm of 
the interactive decision support system. 

Keywords: Group decision making (GDM), interval-valued fuzzy preference relation, normal distribution, genetic 
algorithm (GA), group consensus 
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1. Introduction 

In many studies on preference relations (PRs)1,2,3,4, the 
decision makers (DMs) or experts must evaluate the 
options and provide their preferences through pairwise 
comparisons to construct their judgment matrices. The 
earliest work on PRs mostly involved use of the 
reciprocal PR2 and the complementary fuzzy PR (FPR)1, 
both of which are represented by crisp numbers. Owing 
to the complexity of group decision making (GDM), 
DMs are more likely to express their preferences using 
uncertainty judgments, such as the interval-valued fuzzy 
preference relation (IVFPR)5,6 for each pair of 
alternatives to formulate a more effective expression. 

The advantage of the IVFPR is its intuitiveness. 
Specifically, the IVFPR elements are represented by 
real interval-valued numbers, where the interval’s lower 
limit is interpreted as the most conservative preference 
and the upper limit indicates the most optimistic 
preference. The IVFPR has become a useful structure in 
obtaining the priorities of alternatives and evaluating the 
consistency and consensus degrees of individuals to 
enable a more reasonable decision making process. The 
core achievements of IVFPR are primarily consistency 
and group consensus. 

A brief summary of the research into consistency is 
as follows: Consistency is an important property of PR 
that is used to estimate whether the DM employs a 
mathematical logic when they give their judgment 
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information. It also serves as the foundation for ranking 

alternatives and integrating group preference 

information, and is a precondition of GDM. A lack of 

consistency may lead to inconsistent decisions7. Since 

Saaty2 and Tanino3 established the definitions of 

multiplicative consistency and additive consistency, 

respectively, research on consistency has served as the 

theoretical foundation for all types of uncertainty PRs. 

Khalid and Beg introduced an upper bound condition to 

address incomplete IVFPR8. Moreover, Alonso et al. 

presented a procedure that can maintain experts’ 

consistency levels in estimating missing preference 

values when handling pairwise comparisons and 

heterogeneous information9. The procedure to estimate 

missing values can be applied to incomplete fuzzy, 

multiplicative, interval-valued, and linguistic PRs. In 

addition, Meng et al.10 focused on multiplicative 

consistency research with IVFPRs, and they have 

achieved significant results. 

A brief summary of group consensus research is as 

follows: The consensus-reaching process is necessary to 

obtain a final solution with a certain level of agreement 

among the DMs. Group consensus is a consistent 

measurement of all DMs’ PRs that handle various issues, 

such as how to solve the contradiction of DMs’ PRs, 

how to assimilate multivariate PRs, and how to 

aggregate multi-granular linguistic preference 

information into reliable collective PRs. For example, 

Gong et al. proposed two consensus models with 

interval preference opinions and gave their economic 

interpretation11. Pérez-Fernández et al. presented a two-

fold GDM problem based on finitely generated sets and 

finite interval-valued hesitant fuzzy preference relations 

(IVHFPRs)12. This twofold GDM problem engenders a 

novel perspective on the decision making problem in 

that several experts and criteria can be simultaneously 

considered. Meanwhile, Liu et al. proposed a method 

based on a sentiment analysis technique and 

intuitionistic fuzzy set theory to rank products based on 

online reviews13. Tooranloo and sadat Ayatollah 

proposed a model for a failure mode and effects analysis 

based on an intuitionistic fuzzy approach14. Furthermore, 

Büyüközkan and Güleryüz proposed a combined 

intuitionistic fuzzy GDM model15 comprising an 

intuitionistic fuzzy analytic hierarchy process16 and an 

intuitionistic fuzzy “technique for order preference by 

similarity to ideal solution” (TOPSIS) approach for 

effectively evaluating product development partners. 

Wang et al. developed a fractional programming model 

based on a TOPSIS method to determine a relative 

closeness interval, whereby attribute weights are 

independently determined for each alternative17. Zhao et 

al. developed three interactive intuitionistic fuzzy 

methods to address multilevel programming problems in 

hierarchy expert and intelligent systems18. 

Despite the above efforts, disadvantages exist in the 

mathematical operations of both priority modelling and 

group consensus modelling with IVFPRs. This is 

especially the case for multiplication and division of 

interval numbers, which can cause excessive 

amplification or reduction of decision information, 

leading to the distortion of decision results. 

Nevertheless, high-level relationships exist between 

interval numbers and random distributions, such as the 

normal distribution and uniform distribution. Thus, we 

can approximately represent the interval number with a 

random variable that obeys normal distribution using 

mapping relations. Moreover, using the random 

distribution can more effectively express the range of 

DM judgments during a pairwise comparison of any 

alternatives. For example, the average value and 

variance can be easily obtained in this process. 

Considering the random distribution characteristic of 

DM judgments in GDM, the group consensus degree 

can also be measured based on probability 

programming19. In GDM, a unanimous consensus 

cannot always be achieved; nonetheless, a widespread 

consensus is easy to realize. At the same time, the 

condition cannot be achieved with a full percentage of 

the group; however, it is acceptable for the condition to 

be realized with a certain probability (e.g. 95% 

probability). This scenario is closer to practical 

situations in which a group consensus is achieved with a 

certain probability. 

In GDM, decision making must be completed before 

the realization of random variables (the individual’s 

preference). However, if the probability that these 

conditions can be satisfied is no less than a certain index, 

these problems can be solved with probabilistic 

constraint programming. This stochastic programming 

method was proposed in 1959 by Charnes and Cooper20 

and is renowned for realizing optimization under a 

certain probability. For some special situations, chance-

restricted programming can be equally transformed into 

determined mathematical programming. However, for 

some complex chance constrained problems, a random 

simulation based genetic algorithm (GA)21 is a useful 

approach in solving chance constrained, general chance 

constrained, and chance constrained multi-objective 

programming problems. Hong et al. proposed the use of 

a gradient-based Monte Carlo method to solve the 

sequence of convex approximations22. Olson and Wu 

used chance constrained models in financial planning23. 

Charnes and Cooper presented a method that splits the 

problem into two non-linear (or linear) programming 

parts20. The first problem is determining the optimal 

probability distributions; the second is approximating 

the optimal distributions as closely as possible by 

decision rules of a certain form. 
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Many theoretical results have been achieved in 

probability-restricted programming methods that 

address problems with random distribution variables. 

We use this method to deal with group consensus 

optimization problems with randomly distributed 

preferences. In addition, by employing a GA, we derive 

the optimum values of the objective function of the 

consensus optimization problem and obtain a 

satisfactory solution of variables. 

The remainder of this paper is organized as follows. 

In Section 2, we define FPR, IVFPR, and consistent 

FPR. We then construct an IVFPR consensus 

optimization model based on the minimum deviation of 

preference between the ideal DM and all DMs. In 

Section 3, we construct four consensus models of 

IVFPR with random distributions of individual 

judgment. In Section 4, a numerical example is 

presented, and the Pareto optimization solution is 

simulated using the Monte Carlo and GA. The paper is 

concluded in Section 5. 

2. Preliminaries 

For a GDM problem, let  1 2, , , nX x x x be a finite 

set of alternatives and let  1 2, , , mD d d d  be the set 

of DMs. We denote  1,2, ,N n  and 

 1,2, ,M m . 

Definition of FPR3. According to their respective 

experiences and knowledge, the DMs make pairwise 

judgments on any two alternatives, 
ix  and  ,jx i j N , 

over the set of X  regarding a decision criterion. An 

FPR R  on a set of alternatives X  is represented by a 

complementary matrix:  

11 12 1

21 22 2

1 2

n

n

n n nn

r r r

r r r
R

r r r

 
 
 
 
  
 

 

where 1ij jir r  , 0.5iir  , 0 1ijr  , and 
ijr  

represents a crisp preference  degree of the alternative 

ix  over jx , ,i j N . Specifically, 0ijr   indicates that 

ix  is absolutely preferred to jx , 0.5ijr   indicates no 

difference between 
ix  and jx , 0.5ijr   indicates that 

ix  is preferred over jx , and 1ijr   indicates that 
ix  is 

absolutely not preferred over jx . 

Considering the complexity of the decision making 

environment, the DMs tend to provide an interval value 

to ensure a more effective judgment expression of any 

two alternatives, 
ix  and  ,jx i j N , over the set X  

with respect to a decision criterion. The lower limit of 

the interval-value indicates the expert’s most 

conservative judgment, while the upper limit indicates 

the expert’s most optimistic judgment. 

Definition of IVFPR24. An IVFPR is represented by an 

interval-valued fuzzy preference matrix: 

 

     

     

     

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2
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where 1ijl jiur r  , 1iju jilr r  , 0 1ijl ijur r   , 

0.5iil iiur r  , and 
ijr  is a continuous interval value, 

which indicates that the preference degree or intensity 

of alternative 
ix over that of  ,jx i j N  is between 

ijlr  and 
ijur . 

Definition of consistent FPR25. Let  ij n n
R r


  be an 

FPR where the following equation is satisfied: 

0.5ij jk ikr r r   , , ,i j k N , i j k  . Then, we call 

R  a consistent FPR. 

Relationship between the Interval Number and the 

Normally Distributed Variables26. In real decision 

making, although the experts can give their interval 

judgment value for any pairwise comparison of 

alternatives, they cannot give a more accurate value. 

They can only determine the approximate probability 

distribution of their judgment, such as a normal 

distribution. Considering that the interval itself 

originates from numerical results of fuzzy judgment or 

random sampling, only the range of interval numbers 

(the upper and lower bounds) is known. However, it is 

difficult to determine the real value of the interval 

number; i.e. the interval number can be handled as a 

fuzzy number and also regarded as a random variable. 

Therefore, it is reasonable to use a random variable 

instead of a particular interval number. In the absence of 

a priori knowledge, these random variables may be 

normally distributed, uniformly distributed, chi-squared 

distributed, etc. We consider the advantageous property 

of normal distribution. For a random variable   of 

normal distribution  2
,N   , according to the 3  

principle, the probability of falling in the interval 

 3 , 3      is 99.73%. According to the 3  law, 

 , 3 , 3a a           , 
2

a a


 
 , and 
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6

a a


 
 , so we can assign the normally distributed 

random variables to all intervals14. For example, by the 

use of the 3  law, the interval number  0.6,0.9I   

can be approximately transformed into a random 

variable   which satisfies  2~ 0.7500,0.0500N . 

3. Consensus Model with IVFPR 

In GDM, let  k k

ij n n
R r


  be the IVFPR of the k-th DM, 

where ,k k k

ij ijl ijur r r     is interpreted as the membership 

of the k-th DM’s preference degree of the alternative 
ix  

over 
jx  that satisfies 1k k

ijl jiur r  , 1k k

iju jilr r  , 

0 1k k

ijl ijur r   , 0.5k k

iil iiur r   for all ,i j N . Here 
k

ijlr  

indicates the most conservative degree of the k-th DM’s 

preference of the alternative 
ix  over 

jx , and 
k

ijur  

indicates the most optimistic degree of the alternative 

ix  over 
jx . 

Suppose there is an ideal DM (moderator), of whom 

the FPR is  * *

ij n n
R r


  (we suppose that the 

moderator’s ideal judgment is FPR instead of IVFPR), 

which satisfies 
* * 1ij jir r  , 

*0 1ijr  , * 0.5iir  , 

,i j N . Moreover, assume that the FPR of the ideal 

DM is unknown. The minimum deviation optimization 

model between the moderator’s IVFPR and the IVFPR 

of all individual DMs is introduced as27 

1

*

1 1 1

1 1

* *

1 1 1 1 1 1

m n n pp
k

ij ij

k i j

m n n m n np pp p
k k

ijl ij iju ij

k i j k i j

U r r

r r r r

  

     

 
  
 

   
      
   



 

 

where 1 p   . In this model, the smaller the 

deviation is, the better it is; i.e. the smaller the value of 

U is, the greater the consensus is. Further, assume that 

k  is the weight of the k-th individual DM which 

satisfies both 0 1k   and 
1

1
m

k

k




 . Then, a 

minimum deviation optimization model between the 

moderator’s IVFPR and the IVFPR of all individual 

DMs with weights is introduced as27 

 

1

*

1 1 1

*

1

. . 0 1 ,

m n n pp
k

k ij ij

k i j

ij

U r r

s t r i j N


  

 
  
 

  



,

 

where 
1 1

* *

1 1 1 1 1 1

,
m n n m n np pp p

k k

k ijl ij k iju ij

k i j k i j

U r r r r 
     

   
      
   
 

 and 1 p   . 

This indicates the weighted average of the deviation 

between the ideal judgment value *

ijr  and the judgments 

of m DMs k

ijr , p  represents different consensus choice 

rules28. The smaller the value of U , the greater the 

consensus between the moderator and the individual 

DMs. 

In group consensus model (1) the upper and lower 

limits of the interval-valued judgement are 

simultaneously considered; however, considering whole 

intervals is not possible. Considering the disadvantages 

of interval operations, it is difficult to show the actual 

situation of GDM by the ideal FPR derived from model 

(1). In this paper, the interval-valued judgment is 

approximately replaced by a normally distributed 

variable. Consequently, the uncertainty of the decision 

result is reduced and the authenticity of the decision is 

improved. 

4. Consensus Modelling of IVFPR with 

Distribution Characteristics 

In actual decision making, DMs provide their judgments 

by pairwise comparisons of alternatives. Nevertheless, 

the crisp numbers of their preferences are difficult to 

determine. We can only determine the approximate 

probability distribution of a DM’s judgment, such as by 

a normal distribution. In this section, we assume that the 

interval-valued judgment k

ijr  of the k-th DM of the 

comparison between alternatives 
ix  and 

jx  is normally 

distributed, that is,   2

~ ,k k k

ij ij ijr N u  . Meanwhile, we 

suppose there is an ideal DM in GDM, and the DM’s 

FPR is  * *

ij n n
R r


 , where *0 1ijr  . 

In reality, although uniform (100%) consensus of 

GDM is difficult to achieve, the moderator also desires 

to realise a cardinal agreement of the DMs to a certain 

degree. In this paper, consensus is interpreted in terms 

of a certain probability. For example, to achieve a 90% 

probability of group consensus or an assurance of 0.9, 
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four consensus models of IVFPR with distribution 

characteristics will be constructed: 

(1) Suppose that all DMs are equally weighted and 

the judgment values of their preferences are 

approximately normally distributed. Then, the deviation 

between the moderator’s judgment and the judgments of 

all DMs can be obtained. The probability of an event 

occurring in which the deviation is no more than 

threshold   is no less than the probability level  , and 

the objective function is the minimum value of this 

deviation. Then, group consensus model (2) of IVFPR 

with entries satisfying a normal distribution can be built 

as follows: 

    

1

*

1 1 1

2

*

min

. . 2
~ ,

0 1

, ,

m n n pp
k

r ij ij

k i j

k k k

ij ij ij

ij

P r r

s t
r N u

r

i j N k M



 



  

  
  

    
    






 


 



 

(2) Suppose that all DMs are non-equally weighted 

and the judgment values of their preferences are 

approximately normally distributed. Then, we can 

modify the above model to account for the different DM 

weights as follows: 

    

1

*

1 1 1

2

*

min

. . 3
~ ,

0 1

, ,

m n n pp
k

r k ij ij

k i j

k k k

ij ij ij

ij

P r r

s t
r N u

r

i j N k M



  



  

  
  

    
    






 


 



 

(3) Suppose that all DMs are equally weighted and 

the judgment values of their preferences are 

approximately normally distributed. Then, the deviation 

between the moderator’s judgment and the judgments of 

all DMs can be obtained. Considering the consistency 

property of the ideal DM’s judgment, the probability of 

an event occurring in which the deviation is no more 

than threshold   is no less than the probability level  , 

and the objective function is the minimum value of this 

deviation. Then, group consensus model (4) of IVFPR 

with entries satisfying a normal distribution can be built 

as follows: 

  
 

 

1

*

1 1 1

2

* * *

*

min

. . 4~ ,

0.5

0 1, , ,

m n n pp
k

r ij ij

k i j

k k k

ij ij ij

ij jk ik

ij

P r r

s t r N u

r r r

r i j N k M



 





  

  
  

    
    






   


   



 

In models (4) and (5), the constraint 
* * *| ( 0.5) |ij jk ikr r r     , ,i j N  indicates that the 

judgment of the ideal DM satisfies approximate 

consistency. Moreover, the smaller the value of   is, 

the better the consistency is. 

(4) Suppose that all DMs are non-equally weighted 

and the judgment values of their preferences are 

approximately normally distributed. Then, we can 

modify model (4) to account for the different DM 

weights as follows: 

  
 

 

1

*

1 1 1

2

* * *

*

min

. . 5~ ,

0.5

0 1, , ,

m n n pp
k

r k ij ij

k i j

k k k

ij ij ij

ij jk ik

ij

P r r

s t r N u

r r r

r i j N k M



  





  

  
  

    
    






   


   



 

Remarks: In models (2) to (5), the value of p  satisfies 

1 p   . The smaller the value of objective function 

 , the greater the consensus. In these four models, the 

distribution of the k-th DM’s judgment can also 

approximately be replaced by a uniform distribution, i.e. 

 ~ ,k k k

ij ijl ijur U r r , which can be solved by similar 

approaches. For ease of calculation, in the following 

numerical examples, we only consider 1p  . 

5. Numerical Examples 

For this GDM example, we assume there are three 

individual DMs 
1d , 2d , and 3d  and an ideal moderator 
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*d . Their IVFPRs on alternatives 
1A , 2A , 3A , and 4A  

are 1R , 2R , 3R , and *R , respectively. 

      

       

       

       

1

0.5, 0.5 0.2, 0.4 0.3, 0.4 0.6, 0.9

0.6, 0.8 0.5, 0.5 0.6, 0.7 0.6, 0.7

0.6, 0.7 0.3, 0.4 0.5, 0.5 0.7, 0.7

0.1, 0.4 0.3, 0.4 0.3, 0.3 0.5, 0.5

,R 

 
 
 
 
 
 

 

       

       

       

       

2

0.5, 0.5 0.2, 0.4 0.3, 0.6 0.5, 0.7

0.6, 0.8 0.5, 0.5 0.7, 0.9 0.6, 0.8

0.4, 0.7 0.1, 0.3 0.5, 0.5 0.7, 0.8

0.3, 0.5 0.2, 0.4 0.2, 0.3 0.5, 0.5

,R 

 
 
 
 
 
 

 

      

       

       

       

3

0.5, 0.5 0.6, 0.7 0.8, 0.9 0.7, 0.8

0.3, 0.4 0.5, 0.5 0.6, 0.7 0.6, 0.7

0.1,0.2 0.3, 0.4 0.5, 0.5 0.5, 0.6

0.2, 0.3 0.3, 0.4 0.4, 0.5 0.5, 0.5

.R 

 
 
 
 
 
 

 

Based on the relationship between the interval 

number and the normally distributed variables proposed 

in Section 2, 1R , 2R  and 3R  can be approximately 

transformed into the following respective PRs with a 

normally distributed judgment: 

       

       

       

 

2 2 2 2

2 2 2 2

2 2 2 2

2

1
~

0.5000, 0.0000 0.3000, 0.0333 0.3500, 0.0167 0.7500, 0.0500

0.7000, 0.0333 0.5000, 0.0000 0.6500, 0.0167 0.6500, 0.0167

0.6500, 0.0167 0.3500, 0.0167 0.5000, 0.0000 0.7000, 0.0000

0.2500, 0.0500 0

N

N N N N

N N N N

N N N N

N N      2 2 2

.3500, 0.0167 0.3000, 0.0000 0.5000, 0.0000

,

N N

 
 
 
 
 
 
 

       

       

       

 

2 2 2 2

2 2 2 2

2 2 2 2

2

2
~

0.5000, 0.0000 0.3000, 0.0333 0.4500, 0.0500 0.6000, 0.0333

0.7000, 0.0333 0.5000, 0.0000 0.8000, 0.0333 0.7000, 0.0333

0.5500, 0.0500 0.2000, 0.0333 0.5000, 0.0000 0.7500, 0.0167

0.4000, 0.0333 0

N

N N N N

N N N N

N N N N

N N      2 2 2

.3000, 0.0333 0.2500, 0.0167 0.5000, 0.0000

,

N N

 
 
 
 
 
 
 

       

       

       

 

2 2 2 2

2 2 2 2

2 2 2 2

2

3
~

0.5000, 0.0000 0.6500, 0.0167 0.8500, 0.0167 0.7500, 0.0167

0.3500, 0.0167 0.5000, 0.0000 0.6500, 0.0167 0.6500, 0.0167

0.1500, 0.0167 0.3500, 0.0167 0.5000, 0.0000 0.5500, 0.0167

0.2500, 0.0167 0

N

N N N N

N N N N

N N N N

N N      2 2 2

.3500, 0.0167 0.4500, 0.0167 0.5000, 0.0000

.

N N

 
 
 
 
 
 
 

    The moderator’s FPR *R  will be derived by the 

following numerical models. 

Case 1: Assume the three DMs are equally weighted. 

Based on model (2), we construct group consensus 

model (6) with normally distributed PRs: 

1 * 2 * 3 *

12 12 12 12 12 12

1 * 2 * 3 *

13 13 13 13 13 13

1 * 2 * 3 *

14 14 14 14 14 14

1 * 2 * 3 *

23 23 23 23 23 23

1 * 2 * 3 *

24 24 24 24 24 24

1 * 2 * 3 *

34 34 34 34 34 34

Min

. .

r

r r r r r r

r r r r r r

r r r r r r

P

r r r r r r

r r r r r r

r r r r r r

s t



    

     

     

     

     

     

 










   

   

   

 

1 2 1 2

12 13

1 2 1 2

14 23

1 2 1 2

24 34

2 2 2

12 13

~ 0.3000, 0.0333 , ~ 0.3500, 0.0167 ,

~ 0.7500, 0.0500 , ~ 0.6500, 0.0167 ,

~ 0.6500, 0.0167 , ~ 0.7000, 0.0000 ,

~ 0.3000, 0.0333 , ~ 0.4500, 0.050

r N r N

r N r N

r N r N

r N r N

  

 
  
  
  
  

 
 
 
   

 

   

   

   

   

 

2

2 2 2 2

14 23

2 2 2 2

24 34

3 2 3 2

12 13

3 2 3 2

14 23

3 2 3

24 34

0 ,

~ 0.6000, 0.0333 , ~ 0.8000, 0.0333 ,

~ 0.7000, 0.0333 , ~ 0.7500, 0.0167 ,

~ 0.6500, 0.0167 , ~ 0.8500, 0.0167 ,

~ 0.7500, 0.0167 , ~ 0.6500, 0.0167 ,

~ 0.6500, 0.0167 , ~ 0.

r N r N

r N r N

r N r N

r N r N

r N r N  

 

2

*

5500, 0.0167

0 1, 1 4

6

ij

r i j    































 

Case 2: Assume the three DMs are non-equally 

weighted. The corresponding weights are 0.2, 0.3, and 

0.5, respectively. Based on model (3), we construct 

group consensus model (7) with normally distributed 

PRs: 
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1 * 2 * 3 *

12 12 12 12 12 12

1 * 2 * 3 *

13 13 13 13 13 13

1 * 2 * 3 *

14 14 14 14 14 14

1 * 2 * 3 *

23 23 23 23 23 23

1 * 2 * 3

24 24 24 24 24

Min

0.2 0.3 0.5

0.2 0.3 0.5

0.2 0.3 0.5

0.2 0.3 0.5

0.2 0.3 0.5

. .

r

r r r r r r

r r r r r r

r r r r r r

P

r r r r r r

r r r r r

s t



    

     

     

     

     

   

   

 

*

24

1 * 2 * 3 *
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Case 3: Assume the three DMs are equally weighted. 

Considering the consistency property of the ideal DM’s 

judgment information, based on model (4), we construct 

group consensus model (8) with normally distributed 

PRs: 

1 * 2 * 3 *
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It should be noted that, because complete consistency 

of the DM’s judgment is difficult to achieve, in models 

(7) and (8), the smaller the value of  , the better the 

consistency. In these models we suppose that 0.05  . 

Case 4: Assume the three DMs are non-equally 

weighted, and the corresponding weights are 0.2, 0.3, 

and 0.5 respectively. Based on model (5), we construct 

group consensus model (9) with normally distributed 

PRs: 
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In the above numerical examples, we assume that the 

probability levels are 0.90  , 0.95 , 0.98 , 0.99 , and 

1.00  respectively. Using the GA, the Pareto 

optimization solutions of models (6) to (9) are shown in 

Table 1. 

 
Table 1  Pareto optimization solutions of models (6) to (9) 

Numerical 

examples 

Probability 

level 

  

Elements of the ideal DM’s preference relation 

Min   
*

12r  
*

13r  
*

14r  
*

23r  
*

24r  
*

34r  

（6） 0.90 0.6523 0.8515 0.0640 0.9142 0.6647 0.4291 2.2872 

 
0.95 0.6560 0.5572 0.3177 0.6678 0.8737 0.9543 2.3220 

 
0.98 0.6573 0.8244 0.4075 0.9976 0.2116 0.5218 2.3613 

 0.99 0.6583 0.0013 0.3477 0.9198 0.6640 0.9147 2.3805 

 1.00 0.6560 0.0952 0.7496 0.2573 0.9882 0.5567 2.4326 

（7） 0.90 0.6534 0.3840 0.3209 0.1905 0.1586 0.9942 0.6904 

 0.95 0.6563 0.0970 0.7184 0.6011 0.2913 0.1461 0.7011 

 0.98 0.6549 0.1816 0.2954 0.1166 0.9723 0.3575 0.7124 

 0.99 0.6498 0.9762 0.2494 0.9408 0.7395 0.2707 0.7201 

 1.00 0.6515 0.9807 0.3772 0.1706 0.8133 0.4794 0.7312 

（8） 0.90 0.6542   0.7582 0.9932 0.5711 0.7968 0.7045 2.3074 

 0.95 0.6581 0.7611 0.8931 0.6180 0.7719 0.6425 2.3537 

 0.98 0.6547 0.1267 0.4511 0.0049 0.3197 0.8431 2.3833 

 

Table 1 (Continued) 

Numerical 

examples 

Probability 

level 

  

Elements of the ideal DM’s preference relation 

Min   
*

12r  
*

13r  
*

14r  
*

23r  
*

24r  
*

34r  

 
0.99 0.6631 0.6348 0.8621 0.4529 0.7347 0.7729 2.4295 

 1.00 0.6407 0.5232 0.4388 0.3751 0.3339 0.4586 2.5395 

（9） 0.90 0.6504 0.7888 0.9250 0.6664 0.7851 0.5963 0.6964 

 
0.95 0.6505 0.4660 0.5820 0.3284 0.4601 0.6291 0.7099 

 
0.98 0.6557 0.2951 0.3097 0.1882 0.1487 0.4688 0.7206 

 
0.99 0.6617 0.5350 0.7909 0.3952 0.6463 0.7494 0.7319 

 1.00 0.6579 0.8270 0.4665 0.6399 0.3088 0.1280 0.7612 

 

Based on the data in Table 1, we can obtain the FPR 

of the ideal DM in four cases. In particular, the ideal 

judgment values obtained by models (8) and (9) 

approximately satisfy the consistency constraint. In the 

solving process of models (6) to (9), the interval values 

were transformed into approximately equivalent random 

variables with normal distributions. Moreover, the 

Pareto optimization solutions from the stochastic 

simulation and GA were obtained, which avoids the 

limitations of operations over intervals. It should also be 

noted that the priorities of the ideal FPRs can be 

obtained by conventional ranking models; see 

References 29 and 30. 

6. Conclusions 

In GDM, IVFPR has been widely used. The typical 

method is to construct the optimization model based on 

the FPR consistency and then derive the optimization 

solution of GDM with the IVFPR. However, this 

method has many disadvantages, especially in applying 

operations to intervals, where the upper and lower limits 

must be simultaneously considered. To some extent, the 

multiplication and division of intervals can cause 

excessive amplification or reduction of decision 

information, which leads to the distortion of decision 

results. In this paper, we strived to transform the 

interval-valued preference of DMs into random 

variables which obey normal distributions, and to 

construct four consensus models of IVFPR with 

distribution characteristics. 

Two constraints were proposed for the above models. 

The first constraint is the deviation,  , between the 

ideal DM’s FPR and the IVFPR of all individual DMs 

with normal variations that are no more than a certain 

limit under probability level  . In other words, the 

probability of the event occurring in which the deviation 

is no more than threshold   exceeds the probability 

level of  . The second constraint is the judgment of 

the ideal DM satisfying the consistency property. Per 
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the objective function, the smaller the value of  , the 

better the consensus of GDM. We can then obtain the 

Pareto optimization solution, which is more suitable for 

practice by the usage of the Monte Carlo technique and 

GA. 

The innovative elements of this study are summarized 

as follows. Firstly, based on the relationship between 

the interval number and the random variable with 

normal distribution, the random variable preference 

with normal distribution is used to approximately 

replace the interval-valued preference. Secondly, the 

upper and lower bounds of the interval preference do 

not need to be considered in the decision making of 

group consensus modelling. Rather, the distribution 

characteristics of the DM’s preference are directly 

considered. This approach can efficiently avoid the 

distortion of decision information during operations on 

intervals. Lastly, a GA is used to simulate the interval-

valued GDM process with a normal distribution to 

obtain a more practical optimization solution. In the 

process of solving the model in this study, the essence 

of the Monte Carlo simulation method is an interactive 

process of decision information. Therefore, this study 

provides a reference for the framework and optimization 

algorithm of the interactive decision support system. 
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Appendix 

The details of the proposed probabilistic programming 

method based on GA are as follows:  

Step 1: randomly generate initial population between all 

variables’ stated ranges based on GA; 

Step 2: randomly generate some variables obeying a 

certain distribution;  

Step 3: combine initial population with random 

variables and evaluate whether all generated 

variables satisfy the constraints. If yes, then 

go Step 5; if no, then go Step 4;  

Step 4: through selective reproduction, crossing over, 

and mutation, go into generation cycle and go 

to Step 2;  

Step 5: collect all feasible populations and obtain the 

optimal solution. 
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