
Machine Learning for Stellar Magnetic Field Determination
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Abstract

In this work we present the results for the automatic determination of the mean longitudinal magnetic field
in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine
this important parameter, we first developed a synthetic database encompassing a set of different stellar
spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial
neural networks, a machine learning approach, to achieve our goal.
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1. Introduction

Nowadays there are plenty of astronomical
databases available,1,2,3,4 containing enormous
quantities of data, both real and synthetic. Hence,
analysis and automatic extraction of relevant in-
formation from these collections have become an
important task. Although there have been some
successful efforts to retrieve some parameters from
these databases,5,6,7 magnetic fields are a particu-
larly complex phenomena and since they cannot be
directly measured, their accurate determination is

remarkably difficult.8 As a rule of thumb, magnetic
fields are measured via the effects of their presence
on other observable properties. The most success-
ful method used to detect magnetic fields relies on
the Zeeman effect.9 This effect is, essentially, the
splitting of a spectral line due to the distortion of
electron orbitals as a result of the presence of a
magnetic field. This distortion depends on the quan-
tum numbers of the energy level and the magnetic
field intensity.10 On a spectrum formed in a region
permeated by a magnetic field, the orbital energies
between transitions are disturbed and, therefore, the
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absorption or emission lines might be affected.
The energy for each level is affected by the pres-

ence of a magnetic field, and each energy level
with quantum number J splits into (2J + 1) states
of energy with different magnetic quantum numbers
M. The difference between successive energy states
(∆E) is proportional to the magnetic field and to the
Landé factor (g), which is a function of the orbital
angular momentum (L) and the electron spin (S) as
described in Eq. (1).

gi =
3
2
+

Si(Si +1)−Li(Li +1)
2Ji(Ji +1)

. (1)

Energy shifts are given by:

∆E = µBBMg , (2)

Where µB is the Bohr magneton, B is the mag-
netic field strength, and M ranges from -J to J, hence
the previously mentioned (2J + 1) different states.
In the absence of a magnetic field, a transition be-
tween two levels, E1 and E2, with Landé factors
g1 and g2 is characterized by a single energy level:
E2 −E1, but when a magnetic field is applied, the
spectral line splits into closely dispersed segments
with energies shifted from the original energy by:

∆EB = µBBM2g2 −µBBM1g1

= µBB · (M2g2 −M1g1) .
(3)

Considering ∆g= g2−g1 and ∆M =M2−M1 we
can transform Eq. (3) as:

∆EB = µBB · (∆gM2 +∆Mg1) . (4)

A dipole transition between levels adheres to the
selection rule ∆M = −1,0,1 and therefore, the re-
sulting spectral lines assemble into three groups;
lines due to transitions with ∆M = 0, known as π
components and the groups of lines formed by tran-
sitions where ∆M =±1. The latter are known as σ+

when lines are shifted to the right side in wavelength
(red shifted) and σ−, when they are blue shifted.
Normally, both π and σ groups have several com-
ponents, and when these components overlap, e.g.
when g2 = g1, the transition is called a Zeeman
triplet. There are also some cases where lines show
no splitting, e.g. when g1 = 0 and J2 = 0, known

as magnetic null lines. Each group is characterized
by different polarization states11 and their observed
intensity depends on the angle between the line of
sight and the magnetic field, among other param-
eters. Therefore, the measurement of the intensity
at different polarized states is crucial for the proper
characterization of a magnetic field.

The Stokes parameters12 is a widely used rep-
resentation of polarized states. These parameters
are a set of four values, named Stokes I,Q,U and
V, that describe the polarization state of electromag-
netic radiation11 as follows; Stokes I is the inte-
grated (non polarized) light, Stokes Q and U mea-
sure the two directions of linear polarization, and
Stokes V measures circular polarization. These pa-
rameters are useful in astronomy because both cir-
cular and linear polarization states can be measured
through appropriate instruments such as polarime-
ters and spectropolarimeters.
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Fig. 1. Fragment of the spectra of the Stokes I parameter for
a synthetic object simulated with different magnetic field.

Observations from Stokes I can be used to in-
fer the magnetic field strength if for any given line,
we can observe and measure the Zeeman splitting
between the π and σ components of the transi-
tion. However, other broadening effects -as those in-
duced by rotation, pressure, temperature, and others-
can mask the split of the Zeeman components.8 As
a result, this technique is useful to measure only
very strong magnetic fields, in the order of 103

Gauss (kG) and higher,13 and becomes impractical
for weaker fields. To illustrate this, the comparison
between two Stokes I spectra for an object simulated
with two different values of the effective magnetic
field (He f f ), 1G and 10G, is shown in Fig. 1. It
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is clear that the difference between both spectra is
practically indistinguishable, emphasizing the com-
plexity of the magnetic field measurements using
only the Stokes I parameter.

Observations from the rest of the Stokes param-
eters (Q,U and V) are important because they are
more sensitive to weaker fields due to the lower in-
fluence of other, non-magnetic effects. However,
linear polarization produced by magnetic fields is
generally weak, so its measurement in stars (associ-
ated with Stokes Q and U) is not common.8 There-
fore, magnetic field measurements are typically per-
formed using only Stokes I and Stokes V parame-
ters. The Stokes V spectra of the same object de-
picted in Fig. 1 is shown in Fig. 2. It is clear that
the difference between the two cases (1G and 10G)
becomes more evident using this parameter.
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Fig. 2. Fragment of the spectra of the Stokes V parameter
for a synthetic object simulated with different He f f .

Although the use of Stokes V allows to mea-
sure the magnetic field, it is known that, particu-
larly on solar-type stars, magnetic fields are com-
monly found in the order of 10G,14 at which level the
normalized intensity of this parameter is below the
noise level. Looking to overcome this problem, sev-
eral “multi-line” techniques have been developed.
These techniques receive their name from the fact
that they perform the addition of multiple individual
lines on velocity domain,15 resulting in a mean pro-
file or signature, known as multi-Zeeman Signatures
(MZS). They encompass all the information from
the polarized spectra, decreasing the noise level and
at the same time performing a dimensionality data
reduction. The most popular of these techniques is

the Least Square Deconvolution (LSD) proposed by
Donati et al. in Ref. 16, used to measure magnetic
fields in several research papers.17,18,19,20

Nonetheless, looking to overcome the restric-
tions on the LSD method (assumptions of similar-
ity between individual polarized circular lines and
Weak Field Approximation) a different technique
based on Principal Component Analysis (PCA) has
been developed. This technique has been numeri-
cally validated to increase the Signal to Noise Ratio
(SNR) of the MZS.21,22

2. Methods

In order to perform the automatic determination of
the mean longitudinal magnetic field (He f f ) from
polarized stellar spectra, the use of supervised Ar-
tificial Neural Networks (ANN) trained with a syn-
thetic database of Multi-Zeeman Signatures (MZS)
was proposed.

To create this database, it is necessary to model
the Stokes parameters. This implies solving a
set of four coupled first-order linear differential
equations,23 each one corresponding to a single
Stokes parameter. To address the problem that
represents the computing needed to solve this sys-
tem of equations, known as “Polarized Radiative
Transfer (PRT) problem”, several codes have been
developed.24,25,26

In this work, the use of the COSSAM code
was selected. COSSAM stands for ”COdice per
la Sintesi Spettrale nelle Atmosfere Magnetiche” or
Code for the spectral synthesis in magnetic atmo-
spheres. It was introduced in its latest form by Stift
in Ref. 25. This object-oriented parallel code al-
lows to accurately calculate the Stokes parameters
for stars in which their magnetic field is represented
by a tilted, eccentric dipole on assumed Local Ther-
modynamic Equilibrium (LTE).27

In order to calculate the Stokes parameters
through COSSAM, it is necessary to define the fol-
lowing physical characteristics of the simulated ob-
ject:

(i) Effective temperature (Te f f )
(ii) Surface gravity (expressed as logg)
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(iii) Macro-turbulent velocity (Vturb)
(iv) Metallicity [M/H]
(v) Atomic transitions (taken from VALD: Vienna

Atomic Line Database28)
(vi) Micro turbulent velocity (ξ )

(vii) Inclination angle (i), is the orientation of the
rotational axis with respect to the Line Of
Sight (LOS)

(viii) Orientation of the magnetic axis with respect
to the rotation axis (described by the Euler An-
gles)

(ix) Position of the magnetic dipole inside the star
(expressed by two coordinates: x1 and x2)

(x) Dipole moment (m)
(xi) Projected rotational velocity (v sin i )

(xii) Rotational phase
(xiii) Pulsational velocity and phase
(xiv) Spatial Grid

The first four characteristics (Te f f , logg, Vturb
and metallicity) define the commonly named ”atmo-
spheric model”. Although, all the previously listed
characteristics affect the behavior of the He f f to
some degree,25 as a first step in our research, it was
decided to limit the scope of this paper to only the
case where all of the parameters are kept constant
except for: Te f f , logg, Vturb and m.

In order to build the database, first the widely
employed Castelli & Kurucz atmospheric models29

were obtained, then the ATLAS12ada30 code was
used to transform them into the required format.
Each of these models matches a different combi-
nation of the previously mentioned characteristics:
Te f f , logg and Vturb. For spectra synthesis, only so-
lar metallicity was considered. Next, COSSAM was
used employing a dipole centered magnetic model31

and keeping the spatial grid reduced to its simplest
form: a single point at the center of the star.

To summarize, our database is integrated by
varying the previously mentioned characteristics as
shown in Table 1. It is significant to notice that
the actual number of atmospheric templates (43) dif-
fers from the number expected according to Table 1
(5 ∗ 5 ∗ 2 = 50), because some of the Kurucz tem-
plates were not available. It is also important to take

into account that He f f varies at two different rates:
first, from 1 to 20G at a 1G increment (20 steps), and
then from 25 to 200G at a 5G increment (36 steps)
resulting in 56 steps.

The total number of stellar spectra from the com-
bination of all the parameters is 2048 (43∗56).

Table 1. Database characteristic information

Characteristic First Value Step Final Value Total

Atmospheric Models
Te f f 5000 500 7000 5
log g 1 1 5 5
Vturb 0 - 2 2

He f f 1 1 20
25 5 200 56

It is important to note that all the parameters
that define the magnetic geometry were kept con-
stant, and therefore, the data generated with COS-
SAM consists of Stokes I and V parameters only.

In order to make the spectra in our database
closer to real spectra, which always contains noise,
different levels of additive white Gaussian noise
were incorporated to the Stokes V vectors (5%, 10%,
20% and 30%) of the simulated (clean) spectra. A
small fragment of the resulting noisy spectra for
each case is shown in Fig. 3. These Noise Percent-
ages (NP) were calculated as:

NP = 100∗ Noise Amplitude
Spectrum Amplitude

. (5)

Following this definition and considering that a
standard SNR is defined as:

SNR =

(
Signal Amplitude
Noise Amplitude

)2

, (6)

then we can go from NP to SNR, and viceversa,
using:

SNR =

(
100
NP

)2

. (7)
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Fig. 3. Fragment of the noisy spectra of the Stokes V pa-
rameter.

According to Eq. (7), our NP levels turn into
SNR as: 400, 100, 25 and 11.11 for the Stokes V
parameter. The set of 2048 clean spectra and its cor-
responding noisy spectra, all four NP/SNR levels,
were accumulated in a bigger database consisting
of 10,240 spectra. Next, PCA and Zeeman Doppler
Imaging (ZDI) multi-line technique was used to ob-
tain the MZS32 for each of the clean and noisy spec-
tra. PCA is a standard technique used to extract
relevant information from big, complex data sets
and, at the same time, to reduce its dimensional-
ity. It has been employed for several purposes, in-
cluding; phase reconstruction,33 image noise level
estimation,34 demodulation on interferometry,35 de-
tection of exo-planets36 and more. ZDI is a tool fre-
quently used to study stellar magnetic fields.20,37,38
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Fig. 4. MZS comparison for two synthetic objects with dif-
ferent He f f .

To create the polarized signatures (MZS) from
Stokes V, only the first component of PCA was used.
The length of the MZS was set to 279 points, rang-
ing from -139 to 139 km/s. Two examples of the
resulting MZS are shown in Fig. 4. From this figure,
it is evident that most of the information is contained
in a smaller range (in this case, between −20 and 20
km/s).

The final database, used to train an ANN to de-
termine He f f , includes 10,240 of these Stokes V sig-
natures, corresponding to both clean and noisy spec-
tra. Stokes I signatures might be useful to determine
other parameters (Te f f , logg, etc.) .

After the evaluation of different architectures,
the chosen ANN consists of a fully connected net-
work with just one hidden layer. The input layer has
279 neurons (each one corresponding to a point from
the MZS), the hidden layer has 10 neurons and the
output layer has one neuron. In order to train the
ANN, several training algorithms for the noise-free
case were tested. For the noisy case, the algorithm
with the best perfomance was chosen to train the fi-
nal ANN. To validate the performance of each ANN,
a k-fold cross validation process39 with k = 5 was
performed.

3. Results and Discussion

The mean measures of dispersion from the k-fold
cross validation of each ANN using only clean sig-
natures are shown in Table 2; each one of the
acronyms for the algorithms (listed on the header)
stands for:

• bfg: BFGS quasi-Newton BackPropagation (BP)
• br : Bayesian regularization
• cgb: Powell-Beale Conjugate Gradient (CJ) BP
• cgf: Fletcher-Powell CJ BP
• cgp: Polak-Ribiere CJ BP
• gda: Gradient Descent (GD) with adaptive lr BP
• gdx: GD with momentum & adaptive lr BP
• lm : Levenberg-Marquardt BP
• oss: One Step Secant
• rp : Resilient BP
• scg: Scaled Conjugate Gradient
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In the case of added noise to the stellar spectra
it was decided, based on the measurements from ta-
ble 2, to use Bayessian Regularization.40 This algo-
rithm has both the best correlation coefficient (R) as
well as the best Root Mean Square Error (RMSE).

From here on, all the results shown correspond
to the final database (including both noisy and clean
spectra). The regression performance for He f f ob-
tained with the ANN is shown in Fig. 5. The Per-
centage Errors41 (PE) from this regression have a
normal distribution with µ = −1.5135% and σ =
7.2836%. The histogram that corresponds to these
errors and their respective Probability Distribution
Function (PDF); calculated using the normfit func-
tion from Matlab R2015a, is shown in Fig. 6. It is
important to notice how the calculated PDF (shown
as a continuous red line) seems to highly underesti-
mate the real performance of the ANN. This effect
is produced by the high percentage errors found for
the lowest fields, around 1G. If the PDF is calculated
dismissing these errors, i.e. higher than 20%, then
a different PDF more faithful to the actual distribu-
tion of the histogram can be found. This PDF, with
µ =−0.5937% and σ = 3.9310%, is also shown in
Fig. 6 as a dashed yellow line. Further statistical
measures of the regression performance are shown
in Table 3.
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Fig. 5. He f f Regression plot.

As expected, the cases with the highest absolute
error41 are those where the noise is higher. Most of
them occur when NP = 30%, which also means the
lowest SNR, as shown in Fig. 5.
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Fig. 6. Percentage Errors Histogram and PDF.

The behavior of both absolute and percentage er-
rors related to He f f is shown in Figures Fig. 7(a) and
Fig. 7(b) respectively. From the upper panel, it is
clear that as the field intensity increases so does the
absolute error. However, from the bottom panel, cor-
responding to percentage errors, it is noteworthy that
they seem to be constant along the full range, except
for the cases where He f f is closer to zero. Nonethe-
less, this is expected because of the formula used to
calculate them.
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Fig. 7. He f f (a) Absolute Error and (b) Percentage Error.

Notice that the same symbols used in Fig. 5 to
denote NP levels are used in both Figures 7(a) and
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Table 2: Training Algorithms: Mean Measures of Dispersion

bfg br cgb cgf cgp gda gdx lm oss rp scg

R 0.9876 0.9983 0.9982 0.9975 0.9975 0.9818 0.9787 0.9982 0.9972 0.9954 0.9974

MSE 101.923 13.618 15.148 20.547 20.265 150.93 175.822 13.383 23.193 37.463 21.621

RMSE 9.9902 3.6651 3.8898 4.5279 4.4930 12.2596 13.1695 3.6743 4.8031 6.0966 4.6339

RRSE 0.1558 0.0571 0.0606 0.0706 0.0700 0.1912 0.2053 0.0578 0.0749 0.0952 0.0723

MAE 5.7469 1.8140 2.3632 2.7658 2.6847 7.5064 7.6297 1.7796 2.9001 3.6230 2.7722

RAE 0.1011 0.0319 0.0415 0.0486 0.0471 0.1319 0.1341 0.0312 0.0509 0.0638 0.0487

Table 3: He f f regression: Statistical results

Clean Noisy 5% Noisy 10% Noisy 20% Noisy 30% Combined

R 1 0.9997 0.9981 0.9957 0.9919 0.9983
MSE 0.37x10−3 2.2525 15.4002 35.7429 66.6803 13.6181

RMSE 0.0180 1.4991 3.9234 5.9735 8.1564 3.6651
RRSE 0.28x10−3 0.0234 0.0612 0.0932 0.1273 0.0572
MAE 0.0151 0.9294 2.2574 3.4641 4.6954 1.8141
RAE 0.26x10−3 0.0164 0.0397 0.0609 0.0826 0.0319

7(b). As expected, the spectra with the highest noise
produce the cases with the highest errors. Following
the calculated Normal distribution probability for
the percentage errors, as shown in Fig. 6, the proba-
bility of having a percentage error between 10% and
−10% is P(−10% < PE < 10%) = 82.11%, which
improves to P(−15% < PE < 15%) = 95.63% and
P(−20% < PE < 20%) = 99.29%.

Based on the results shown above, it can be con-
cluded that the use of Machine Learning, specifi-
cally Artificial Neural Networks, allows for the de-
termination of the mean longitudinal magnetic field
of stars. This can be achieved within an ±20% mar-
gin of error 99% of the times for He f f > 1G, even
when the Signal to Noise Ratio of the spectra is as
low as 11.

The results obtained in this work already repre-
sent an important development in the application of
ANN on real data. However, our next goal is to ex-
pand the database to include variations in all of the
parameters that remained fixed in this work, in order

to obtain the He f f from real objects. Nevertheless,
in this paper, the use of machine learning algorithms
has been proven to be a powerful tool in the study
of magnetic fields through the analysis of polarized
spectra.

Acknowledgments

Part of the results presented here were obtained
using the “UNAM Supercómputo - DGTIC” fa-
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