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Abstract

Multi-objective evolutionary algorithms have been criticized when they are applied to classification rule
mining, and, more specifically, in the optimization of more than two objectives due to their computational
complexity. It is known that a multi-objective space is much richer to be explored than a single-objective
space. In consequence, there are only few multi-objective algorithms for classification and their empirical
assessed is quite limited. On the other hand, gene expression programming has emerged as an alternative
to carry out the evolutionary process at genotypic level in a really efficient way. This paper introduces a
new multi-objective algorithm for discovering classification rules, AR-NSGEP (Adaptive Reference point
based Non-dominated Sorting with Gene Expression Programming). It is a multi-objective evolution of
a previous single-objective algorithm. In AR-NSGEP, the multi-objective search was based on the well-
known R-NSGA-II algorithm, replacing GA with GEP technology. Four objectives led the rules-discovery
process, three of them (sensitivity, specificity and precision) were focused on promoting accuracy and the
fourth (simpleness) on the interpretability of rules. AR-NSGEP was evaluated on several benchmark data
sets and compared against six rule-based classifiers widely used. The AR-NSGEP, with four-objectives,
achieved a significant improvement of the AUC metric with espect to most of the algorithms assessed,
while the predictive accuracy and number of rules in the obtained models reached to acceptable results.

Keywords: Gene expression programming (GEP), Reference Point Based Multi-objective Evolutionary
Algorithm (R-NSGA-II), Multi-objetive Evolutionary Algorithm (MOEA), Multi-objetive classification,
Classification

1. Introduction

Classification is one of the most common tasks in

machine learning and data mining. This task is re-

quired in many different application domains such

as in medical diagnosis, patterns recognition, de-

tection and prediction of failures in industrial ap-

plications, bank fraud prediction, text categoriza-

tion, among others. This wide application spectrum

is one of the reasons that has motivated for many

years the development of new classifiers. In this

sense, many and excellent algorithms have been pro-

posed over the past years, examples include SVM1,

ANNs2 and NB3. However, these proposals have

the problem that the resulting learning model is like

a black-box. On the other hand, there exists rule-
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based classifiers in the literature, e.g. CART4, ID35,

CN26 and C4.57, which are more interpretable.

On the other side, mining rules with evolutionary

algorithms allows interpretable classifiers to be de-

signed; traditionally, they address the classification

problem in a mono-objective manner, but the rule-

based classifier can be tackled by means of using a

multi-objective evolutionary algorithm (MOEA). It

is a known fact that the accuracy and interpretability

are conflicting objectives. Several works8,9 are as-

serting that it is unlikely to get good results in both

kind of objectives. Then, a MOEA for the discovery

of classification rules may find solutions with dif-

ferent trade-offs between these two kind of objec-

tives. Some examples and state of the art in MOEAs

are described in an extensive survey10. However,

there are only few multi-objective algorithms for

classification and their empirical assessment is quite

limited11,12,13,14,15.

Evolutionary algorithms based their strength

from two main sources: the exploration and the

exploitation. But, as number of objectives grows,

the classic Pareto dominance like NSGA-II16 and

SPEA217 becomes ineffective to sort the quality of

solutions since the population of non-dominated can

be completely saturated. In this case, the genetic

operators are innocuous to compensate that effect.

Some studies have warned about this problem for

several years18,19,20. On the other hand, in the real

world optimization problems not all the objectives

have the same importance and, therefore, the algo-

rithms need to prioritize some of them over oth-

ers and, additionally, during the evolutionary pro-

cess may be necessary to change the priority of one

or another objective18. To deal with these prob-

lems, in this work, we have taken into consider-

ation the following capabilities in the AR-NSGEP

and R-NSGEP (version with adaptability disabled)

algorithms implementation:

• To avoid saturation of the population with non-

dominated solutions.

• To find solutions with acceptable trade-offs be-

tween accuracy and interpretability.

• To change the level of importance among the ob-

jectives during evolutionary process (adaptive ver-

sion).

In this paper we show how the proposed algorithm,

AR-NSGEP, is capable of building multi-class clas-

sifiers by means of finding good rules in a four-

objectives space (sensitivity, specificity, precision

and simpleness). Then, we propose:

• A new multi-objective algorithm for discover-

ing classification rules by considering a GEP

Michigan10 approach. The classifier is con-

structed as a decision list sorted by the rule-

precision. The most numerous class in train-

ing was used as the default class. To avoid

over-fitting, a threshold method was employed.

Shortly, AR-NSGEP is a multi-objective evolu-

tion of the previous MCGEP21 algorithm.

• The mono-objective evaluation as well as the se-

lection process of MCGEP were replaced by those

considered in R-NSGA-II22 and NSGA-III23. A

Token Competition was used to help the diver-

sity control, maintaining a vector of the best non-

redundant rules during every step of the evolu-

tionary process. This strategy was used earlier in

MCGEP with positive results.

• An adaptive algorithm so the importance of each

objective is changed by considering the analysis

of the best-rule movement in a ROC space. This

procedure is carried out for each class and taking

into account the kind of error that the best-rule

movement causes.

• A GEP encoding following Ferreira24 definitions.

We used a small but powerful arithmetic function

set (+,*,-,/) to simplify the implementation of dis-

criminant functions that encode the individuals in

an expression tree form.

• An assessment carried out by scaling up to four

the number of objectives for adaptive and non-

adaptive versions of the multi-objective algo-

rithm. Then, a comparative analysis is performed

among the mono-objective MCGEP and the fol-

lowing versions: two objectives, three objectives

and four objectives of AR-NSGEP and R-NSGEP.

• An assessment to verify the algorithm com-

petitiveness versus other representative multi-

objective algorithms (NSGA-II, SPEA2 and R-

NSGA-II implemented as R-NSGEP). The exper-

imental results on the real-world data sets showed
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the improvements of AR-NSGEP with respect to

AUC and Accuracy metrics.

• An assessment to verify the algorithm com-

petitiveness with other six Genetic Rule Based

Systems (GRBS) algorithms referenced by the

specialized literature. The experimental results

achieved on different benchmark real-world data

sets are also detailed in Section 6. After that, it

is described how the proposed approach signifi-

cantly improves the AUC and accuracy results in

several cases. In this manner, the competitiveness

of the proposed AR-NSGEP approach for mining

classification rules is empirically demonstrated.

The remainder of the paper is organized as fol-

lows. In the next section 2, we review existing multi-

objective evolutionary algorithms and previous ap-

plications related to the classification task; then, in

Section 3, the components of the evolutionary al-

gorithm are explained, several features such as the

function set, the terminal set and the objectives cal-

culation are also described in that section. In Sec-

tion 4 the proposed multi-objective algorithm is pre-

sented, and the pseudo-code as well as the token

competition for selecting the final solution obtained

from the non-dominated front are described. The re-

sults are shown in Section 6; all experiments were

performed on twenty-seven data sets. Finally, Sec-

tion 7 offers some concluding remarks about the

strength and weakness of the proposed algorithm as

well as some future works.

2. Related work

This section focuses on the multi-objective evolu-

tionary algorithms (MOEAs) and the formal Pareto

definition. Then, different non-Pareto approaches

are presented. Finally some MOEAs for classifica-

tion problems are described.

2.1. Multi-objective evolutionary algorithms
(MOEAs)

Most real-world decision problems require multi-

objective optimization, which should be optimized

simultaneously. Additionally, not any of the objec-

tives have the same importance at any time18. Thus,

the multi-objective optimization tries to find a set of

solutions with an acceptable trade-off11,10, and there

is not a clear criterion to compare all these solutions

due to the relative importance among objectives is

unknown or variable. Without loss of generality, a

multi-objective optimization problem (MOP) can be

stated as the maximization of the vector function:

F(�x) = [F1(�x),F2(�x), ...,FN(�x)] (1)

subject to restrictions:

I j(�x)� 0 j = 1,2, ...,J (2)

Ek(�x) = 0 k = 1,2, ...,K (3)

where�x = [x1,x2, ...,xm]
T is the m-vector of decision

variables, Fi : ℜm → ℜ, i = 1,2, ...,n are the objec-

tive functions, I j : ℜJ → ℜ, j = 1,2, ...,J inequality

constraint and Ek : ℜK → ℜ, j = 1,2, ...,K equality

constraint.

Then, a concept of Pareto domination where a

solution �u dominates another�v (denoted as �u��v) if

the following two conditions are satisfied:

1. the solution �u is not worse than �v in all the

objectives;

2. the solution�u is strictly better than�v in at least

one objective.

mathematically

∀i ∈ {1, ...,k},�ui ��vi∧∃i ∈ {1, ...,k} : �ui >�vi (4)

The initial representative Pareto-based ap-

proaches of MOEAs (NPGA and NSGA) lack of

elitism so they cannot guarantee that the non-

dominated solutions obtained during the search pro-

cess are always preserved. Later some elitist multi-

objective algorithms were published, some of the

most important are: SPEA2, PAES, and NSGA-II.

With the grow of objectives number, the clas-

sic Pareto dominance used in NSGA-II and SPEA

becomes ineffective to sort the quality of solutions,

in this case, the population of non-dominated can

be completely saturated. Then, the genetic opera-

tors are unable to compensate that effect. To solve

this problem many approaches make modifications

of the classic Pareto dominance including some re-

laxed forms of Pareto such as ε-dominance and α-

domination. The ε-dominance acts as an archiving
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strategy and was proposed as a way for regulating

convergence. The α-domination permits a solution

�x to dominate a solution �y if �x is slightly inferior to

�y in an objective but largely superior to �y in some

other objectives. Others approaches assigned differ-

ent rankings levels to non-dominated solutions like

in the paper of Sato et al.25, where it was controlled

the dominance area in order to induce appropriate

ranking of solutions. This work showed that either

convergence and diversity can be emphasized by

contracting or expanding the dominance area. The

R2-IBEA26 algorithm eliminated dominance rank-

ing in the selection process, and it performed an

indicator-based selection with the R2 indicator. The

R2 indicator had a stronger bias to the center of the

Pareto front than to its edges.

2.2. Preference-based MOEA approaches

Another interesting way to address the multi-

objective problem is to include preference informa-

tion of an external decision maker. To the best of

our knowledge, one of the first attempts to incorpo-

rate preferences in MOEAs was the work of Fon-
seca and Fleming27. Their proposal was an exten-

sion of MOGA to accommodate goal information as

an additional criterion to non-dominance to assign

ranks to the population. However, Thiele et al.19

proposed a preference-based evolutionary approach

where at each iteration the decision maker is asked

to give preference information in terms of a refer-

ence point. Cetkovic and Parmee28 converted fuzzy

preferences into weights and a minimum thresh-

old for dominance. Jin and Sendhoff 29 proposed a

way to convert the fuzzy preferences in intervals of

weights and using the method of dynamic weighted

aggregation introduced in a previous work. This

approach converts the multi-objective problem in a

single-objective by aggregating the weights. In18

a new relationship of dominance called “superior

strength” to replace classic Pareto dominance was

proposed. It is based on information from the pref-

erence between objectives and it is constructed with

a fuzzy inference system to find solutions in the

preferable regions. González et al.9 work modi-

fied the crowding distance (CD) by Objective Scale

Crowding Distance (OSCD). The parents selection

technique was modified by a Crowding-Based Mat-

ing heuristic and the population size was dynam-

ically adjusted. The Preference-based Interactive

Evolutionary (PIE) algorithm20 used achievement

scalarizing functions to help the decision maker to

lead the search towards the desired Pareto optimal

solution. Starting with approximation of the Nadir

point. Guo and Wang30 proposed a new fuzzy multi-

objective lattice order decision method for prefer-

ence ranking in conflict analysis. In RP2-NSGA-

II31 addressed the problem of multi-criteria ranking

with a medium-sized set of alternatives as a multi-

objective combinatorial optimization problem.

To develop this work we are inspired in Deb et
al.22,23 and Yang et al.32 approaches. The R-NSGA-

II and NSGA-III algorithms included preferences

through reference points as well as a fast sorting

scheme of non-dominated solutions and a modified

crowding distance. The GrEA32 algorithm used the

property of a grid to reflect the convergence and

diversity information simultaneously. The perfor-

mance of a solution regarding convergence can be

estimated by the location of its grid compared to

other solutions. The performance of a solution in

connection to diversity can be estimated by the num-

ber of solutions with the same or similar grid loca-

tion. In this work, Pareto-dominance was replaced

by the Grid-dominance. This approach (x grid-

domination) also balanced the diversity and conver-

gence adaptively, varying the grid size.

2.3. MOEAs for classification

In a really interesting survey10, MOEAs for classi-

fication are categorized in three manners: evolving

a good set of classification rules; defining the class

boundaries (hyperplanes) in the training data; and

modeling the construction of well known classifiers

such as neural networks and decision trees. Our pro-

posal is based on the first category by using a Michi-

gan approach. Some major representative MOEAs

for classification are described below.

In CEMOGA11, binary chromosomes of variable

length are used to encode the parameters of a varied

set of hyperplanes. It simultaneously minimizes the

number of misclassified training points and the num-

ber of hyperplanes whereas the accuracy is maxi-
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mized. In this work, authors proposed two quantita-

tive scores: purity and minimal space for evaluating

multi-objective techniques. A comparison was done

with other classifiers in six UCI data sets: Vowel,

Iris, Cancer, Landsat, Mango and Crude Oil.

EMOGA13 is a nonfuzzy categorical classifica-

tion rule mining algorithm, proposed using an eli-

tist multi-objective genetic algorithm and a weighted

sum of three objectives. In this work the experimen-

tal section included Zoo, Nursery and Adult data sets

obtained from UCI repository.

In the work propsoed by Satchidananda et al.12,

an interesting multi-objective classification with

gene expression programming was proposed. Here,

two objectives were considered and the experimen-

tal section included two and three classes UCI data

sets: Australian, Cloud, Cleveland, German data,

Haberman, Heart, HouseVotes84, Iris, Pima and

Wine. No comparison with other rule-based clas-

sifiers were done.

PAES-RCS14 generated a fuzzy rule-based clas-

sifier exploiting a multi-objective evolutionary algo-

rithm. To learn the rule base they employed a rule

and a condition selection approach. Two trade-offs

objectives were used: accuracy and rule base com-

plexity. The MOEA was tested by considering fif-

teen UCI data sets.

Cárdenas et al.15 proposed a multi-objective ge-

netic process to generate fuzzy sets of rules. The al-

gorithm was divided into three stages. The first one

comprises the definition of an initial database with

the same number of fuzzy sets for all attributes. The

second and third stages were used for the rule gener-

ation and fuzzy sets optimization by means of multi-

objective genetic algorithms to handle the accuracy-

interpretability trade-off. The experimental section

included seven UCI data sets: Iris, Wine, Thyroid,

Heart, Sonar, Bupa and Breast.

3. Components of the evolutionary algorithm

Evolutionary algorithms (EAs) have been used over

years to solve dissimilar classification problems in

an accurate way. Two fundamental paradigms are

highlighted: genetic algorithms (GAs) and genetic

programming (GP). GP has been widely used in

classification, several examples can be found in

an extensive survey on the application of GP to

classification33. Another emergent paradigm is gene

expression programming (GEP)24 (GEP). In this pa-

per we used GEP to encode individuals. In GEP,

advantages of genetic algorithms (GA) and genetic

programming (GP) are combined. The fundamental

difference between these paradigms is located in the

nature of individuals: in GA, symbolic fixed-length

strings (chromosomes) were used; in GP, individ-

uals are entities (trees) of varying size and shape;

in GEP, individuals are also trees but they are en-

coded in a very simple way in the form of symbolic

strings with fixed length. GEP includes a way to

transform the string genes representation into trees

such that any valid string generates a syntactically

correct tree. In this paper the phenotype represents

a discriminant function that is used to build a piece

of the classifier. In GEP, genotype may be formed

by several genes, each one divided into two parts:

head and tail. The head of one gen will have a pri-

ori size chosen for each problem, and it contains

terminal and non-terminal elements. The tail size,

which may only contain non-terminal elements will

be determined by the equation t = h ∗ (n− 1) + 1,

where t is the tail size, h is the head size and n is

the maximum arity (number of arguments) in the

non-terminal set. This expression ensures that, in

the worst case, there will be sufficient terminals to

complete the expression tree. Valid tree generation

is a problem that may arise and should be treated in

GP. Moreover, performing the evolutionary process

at the genotypic level in a fixed-size string as in ge-

netic algorithms (GAs) is more efficient than do it

on a tree like in GP; these two are some of the fun-

damental advantages present in GEP.

3.1. Initial population

The generation of an initial population in GEP is a

simple process. Here, it is only necessary to ensure

that the head is generated with terminal and non-

terminal elements and the tail only with terminal el-

ements randomly taken from the element set (union

of terminal and function set). The population size is

defined in the popsize algorithm parameter.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 540–559
___________________________________________________________________________________________________________

544



3.2. Genetic operators

In GEP, there are several genetic operators available

to guide the evolutionary process, which can be cat-

egorized into: mutation, crossover and transposition

operators. Sometimes particular GEP transposition

operators are included within the mutation category,

and other specific GEP operators listed below are in-

cluded within crossover category. In this work we

used the following genetic operators: simple mu-

tator (GEPSimpleMutt), transposition of insertion

sequence (GEPISTranspositionMutator), root trans-

position of insertion sequence (GEPRISTransposi-

tionMutator), one-point recombination (GEPOne-

PointRecombinator) and two-point recombination

(GEPTwoPointsRecombinator). All of them were

implemented as recommended by Ferreira24. A

more detailed explanation of each one can be con-

sulted in24 or in the previous MCGEP21 work.

3.3. Function set and terminal set

In this paper, we used the basic arithmetic operations

to build the discriminant functions that form the fi-

nal classifier as a decision list; the function set was

formed by the following operations: * (multiplica-

tion), / (division), + (addition) and - (subtraction). In

all the cases, these functions were established with

arity = 2. By now, we implement an algorithm only

for numerical data sets. Terminals are attributes or

elements from constant list defined in the configura-

tion file.

3.4. Fitness function

Each individual encodes a rule in Michigan-style,

representing a discriminant function and having a

class as the consequent. It represents, in each run

of the algorithm, the current class, so the algorithm

runs as many times as classes exist in an one-vs-all

approach. In this multi-objective algorithm, we have

several objectives included in the fitness function,

the equations 5, 6, 7 and 8 were used for each one.

Sensibility =
t p

(t p+ f n)
(5)

Speci f icity =
tn

(tn+ f p)
(6)

Precision =
t p

(t p+ f p)
(7)

Simpleness =
maxSize−0.9∗ phenotSize−0.1

(maxSize−1)
(8)

The first two objectives have also been widely

used as performance metrics for rules. The third is

a good metric for finding rules with which a deci-

sion list can be built. The last objective guarantees

a good interpretability in the final model. The t p,

tn, f n and f p represent: true positives, true nega-

tives, false negatives and false positives respectively

from the confusion matrix obtained from evaluating

an individual in the training set, see the figure 1.

Fig. 1. Confusion matrix.

The term phenotSize in equation 8, is the length

(number of terminal and non-terminal elements) of

the expression tree coded in the phenotype of an in-

dividual, this factor reaches its maximum unitary

value when a phenotype is as simplest as possible

(length equal to one). This factor was designed as

a negative slope line decreasing to a minimum of

0.1 when the length reaches the maximum pheno-

type represented by the value maxSize.

3.5. Classification with discriminant functions

Discriminant functions are one of the schemes used

in data mining for rules classification. In a discrimi-

nant function, the output is computed as a value that

is the result of evaluating the function on input at-

tributes. Then, this value must be compared with a

threshold (normally 0) to associate it with the cor-

responding initial pattern classification. A classifier

will consist in a list of discriminant functions where

each function associates an output class. For the two

classes case, the classifier would be as in equation 9,

where X is the input feature vector. In this case the

function f (X) split the characteristic space only into

two regions.

i f ( f (X)> 0) then X ∈Class1 else X ∈Class2 (9)
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The multi-class problem can be solved by using

one-vs-all approach (OVA) where the n-class prob-

lem is transformed into n two-class problems. In

this approach the instances of each class is taken as

positive instances and the rest as negative ones. On

the other hand, a way to build the classifier would

be: finding a single discriminant function for each

class. However, it has the disadvantage that in real

world problems the space of feature is usually much

more complex. Thus we need to find more than

one function for each class so the proposed algo-

rithm searches for discriminant functions to achieve

a certain predefined level of coverage over all the in-

stances for each class. Thus, a decision list is gener-

ated where the best functions are placed first. When

a new instance is presented to this classifier, the first

function of the list is evaluated. If it returns a pos-

itive value, then the class associated with this dis-

criminant function is returned. On the contrary, if it

returns a non-positive value, then the next discrimi-

nant function is evaluated, and so on. If no one re-

turns a positive value, the most numerous class in

the training set is returned as default.

4. Proposed reference point based approach

This work is based on the innovative approaches R-

NSGA-II22 and NSGA-III23. In our case, we are

only interested in the search for nearby solutions to

the ideal point for all objectives. In addition to a ref-

erence point multi-objective strategy, a token com-

petition is carried out, where any objective of each

individual is recomputed multiplying it by the rate

between winning tokens and those that are possible

to winning. A token is an instance of the training

collection. Covered instances are removed from the

competition. Redundant individuals obtain a low fit-

ness (zero if they cover the same instances previ-

ously covered by others individuals in population),

thus an individual with a good initial fitness (a set

of all objectives) but with a low rate of new (not

covered by others) won-tokens can leave the com-

petition with low fitness and in the worst case with

zero fitness. Before each competition, individuals

are sorted according to their euclidean distance to

the ideal objective point.

4.1. R-NSGEP algorithm

R-NSGEP is a first step that allows to reach the

adaptive version named AR-NSGEP. As previously

said, the R-NSGEP implementation is based on the

MOEA (R-NSGA-II) approach of Deb et al.22 as

starting point. Initially, parent and offspring pop-

ulations are joined. Then a non-dominated sorting

is performed to classify the combined populations

into different levels of non-domination. Solutions

from the best non-domination levels are chosen and

a modified crowding distance operator is used to

choose a subset of solutions from the last front until

the population size is reached. The following steps

are then performed:

• The normalized Euclidean distance is calculated

from the ideal reference point to each front solu-

tion. With this, solutions are sorted in ascending

order. The closest reference solution would be the

first in crowding distance ranking. Solutions with

a small crowding distance are preferred.

• To control the quantity of solutions obtained, all

the solutions having a normalized euclidean dis-

tance between them and ε or less are grouped. A

randomly picked solution from each group is re-

tained and the rest of the members of the group are

assigned with a large crowding distance in order

to discourage them (see Figure 2). This ε strategy

is similar to that suggested in34.

Fig. 2. Epsilon reduction strategy.

As shown in the pseudo-code (see Algorithm 1,

line 4), the evolutionary process begins with the gen-

eration of the initial population bset with popsize.

Then, an iterative process in the population starts for

several generations until any of the following stop

conditions are reached: the maximum number of

generations gmax is perfromed, or an individual with

f itness≈ 1 is obtained. In each generation, individ-

uals are evaluated according to the objective func-
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tions defined in the subsection 3.4 (see equations 5,

6, 7, 8). The selection procedure is detailed in the

pseudo-code (see Algorithm 1, line 8).

Algorithm 1: R-NSGEP, pseudo-code.
Result: Classifier with sorted rules

1 classi f ierRules← /0;

2 actualclass← 0;

3 repeat
4 bset← GenerateInitPop(popsize);
5 Evaluator(bset);
6 gen← 1;

7 while (gen < genmax) AND ( f itness < 1) do
8 if gen == 1 then
9 pset← bset;

10 else
11 pset← Selector(bset);

12 rset← GEPSimpleMutt(pset,mutprob);
13 rset← GEPISTranspMutt(rset,mutprob);
14 rset← GEPRISTranspMutt(rset,mutprob);
15 rset← GEPOnePointRecomb(rset,recprob);
16 rset← GEPTwoPointRecomb(rset,recprob);
17 Evaluator(rset);
18 cset← rset;
19 if (Adaptivestrategy) then
20 WeightU pd(eset,gen);

21 bset← R-NSGA-II(cset,bset);
22 eset← TCompet(bset,eset);
23 gen← gen+1;

24 classi f ierRules← eset;
25 actualclass← actualclass +1;

26 eset← /0;

27 until actualclass � cantclass;

28 Sort(classi f ierRules);

For each generation, we used the selection op-

erator of the R-NSGA-II algorithm. This operator is

based on a binary tournament, considering the fronts

of non-dominance and the crowding distance. The

crowding distance is also affected by the ε reduction

strategy.

The GEP operators detailed in Section 3.2 are ap-

plied to the previously selected set of parents (pset),
see lines 12 to 16; then, the obtained offspring (rep-

resented as rset) are evaluated as shown in line 16.

Subsequently, on line 19, it is checked whether the

adaptive strategy (AS) is performed. This AS is

explained in the next section “AR-NSGEP. Adapta-

tion with ROC analysis”. Parents and offspring are

joined to be sorted in non-dominations fronts as R-

NSGA-II does (see line 21). Then, a TCompet()
(token competition) is performed on the union of the

sets bset and eset. It returns a new non-redundant

vector of individuals, eset as denoted line 21. The

pseudo-code of this function is illustrated in Algo-

rithm 2.

Algorithm 2: Function TCompet(bset).
input : List, bset, with the population

output: List, eset, non-redundant individuals

1 if eset.size()> 0 then
2 unitepoPulation← (eset ∪bset);
3 eset← /0;

4 else
5 unitepoPulation← bset;

6 sortedPop← Sort(unitepoPulation);
7 sortedPop← Ad justSize(sortedPop, popsize);
8 patternsCoveredArray← /0;

9 for i← 0 to sortedPop.size() do
10 coversCount← 0;

11 nPatternsCovered← 0;

12 for j← 0 to numInstances do
13 if instance[ j].getClass == actualC then
14 if sortedPop[i].evaluate(instance[ j])> 0 then
15 coversCount ++;

16 if ¬patternsCoveredArray[ j] then
17 patternsCoveredArray[ j]← true;

18 nPatternsCovered←
nPatternsCovered;

19 if coversCount > 0 then
20 tokRate = nPatternsCovered/coversCount;
21 if tokRate >= support then
22 eset.add(sortedPop[i])

23 for j← 0 to numOb jectives do
24 sortedPop[i].ob jective[ j]←

sortedPop[i].ob jective[ j]∗ tokRate;

25 else
26 for j← 0 to numOb jectives do
27 sortedPop[i].ob jective[ j]← 0.0;

28 return(eset);

After finishing a complete generation, the whole

process (starting at line 7) is repeated until the max-

imum number of generations is reached or until an

individual achieves a fitness very close to 1.0. Once

any of the previous stop conditions is reached, all

the elements within eset are added to the classifier

and the algorithm is initialized with the next class,

repeating the whole process (starting now from line

3 in the pseudocode). In each complete iteration of

the algorithm the class used to calculate the fitness

is assigned as consequent of the rule, assuming as

positive instances those belonging to that class and

as negative those belonging to the other classes. The

algorithm is repeated as many times as number of

classes exist in the training set, and each cycle adds

to the classifier all the rules coded in eset individu-
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als, which is reset to an empty list each time (see

line 26). At the end of the process, all the rules

in the classifier are sorted according to its value of

precision on the training subset not covered by the

previous precision-best rule (used initially the best

precision-rule over full training set). Precision is

computed as illustrated in equation 7.

5. AR-NSGEP. Adaptation with ROC analysis

Graphs of receiver operating characteristic (ROC)

are widely used in the data mining field recently.

ROC analysis has been used in the field of signal

detection to describe the trade-off between true pos-

itive rate (TPR) and false positive rate (FPR)35. The

work36 showed that only accuracy as a metric to

measure the performance of a classifier is not always

the best option. The ROC curves have the advantage

of being a clear graphical representation and they are

especially useful where exists in class distribution

the imbalance problem35. After the explanation of

the R-NSGEP algorithm in the previous section we

can say that it is an application of the preference-

based EMO approach (in particular R-NSGA-II) in

the classification task, to use it in this context we

made the following modifications:

• Token Competition to remove redundancy in the

rule base that is used to build the classifier.

• Single ideal reference point (1;1;1;1) to guide the

search process.

• GEP technology for coding the individuals and

genetic operators of this technology.

With these changes we build R-NSGEP classifiers in

as R-NSGA-II does. This powerful approach avoids

the saturation of population with non-dominated in-

dividuals, however, it was identified that there is

a necessity to take into account the possibility of

adaptively adjust the relative importance among ob-

jectives in order to achieve classifiers with better

balance between the accuracy and interpretability.

Then, we propose an adaptive variant, AR-NSGEP.

This algorithm replaces the euclidean distance (ED)

of previous R-NSGEP with the weighted euclidean

distance (WED) represented in equation 10, allow-

ing different levels of importance among the objec-

tives to be obtained, as it was recommended in the

work18.

WED =

√
n

∑
i=1

[Wi ∗ (1−Ob jectivei)2] (10)

Wi (with value between 0.0 and 1.0) modifies the

importance level of the Ob jectivei in the selection

and fronts construction process. Wi can take the fol-

lowing shapes: Wsen for sensibility, Wspe for speci-

ficity, Wpre for precision and Wsim for simpleness.

Another core issue of this new version was inspired

in some ideas described in18 where it was stated that

“during the evolutionary process may be necessary

to change the priority of one or another objective”.

To implement this idea, an adaptive strategy based

on representation of a rule O in the ROC space (see

Figure 3) is proposed.

Fig. 3. ROC analysis of the movement directions for the

point O.

It is important to highlight that this process is

performed for each class independently (we used

OVA approach). During each evolutionary iteration,

without loss of generality, we assume that an indi-

vidual can move only in one of the four directions

represented in Figure 3, where arrows would be the

destination points A, B, C and D. In Figure 3, the Y
axis as T PR = t p/(t p+ f n) = Sensitivity and the X
axis as FPR = f p/( f p+ tn) = 1−Speci f icity were

plotted. Here, tp, fp, tn and fn are the counts in the

confusion matrix shown in Figure 1.

We define ΔWi = Wi(g)−Wi(g− 1), where the

current generation was represented by g and the pre-
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vious generation with g−1. i is the objective in con-

sideration (sensibility, specificity, precision or sim-

pleness), whereas t p+ f n and f p+ tn are constants.

We can study four cases:

• When a rule moves from O to the point A in ROC

space, we have a t p increment (+) and a f p decre-

ment (-) at the same time. In this regard, we have

a tn increment (+) and a f n decrement (-). It

means that the rule evolved in a very good direc-

tion. Then, AR-NSGEP slows down the explo-

ration (lesser steps), to focus in that vicinity. This

is achieved by making ΔWspe, ΔWpre and ΔWsen
lower than zero and, then, substituting the new Wi
value for each objective in the equation 10.

• When a rule moves from O to the C point, we

have a t p decrement (-) and a f p increment (+)

at the same time. As a consequence, there is a

tn decrement (-) and a f n increment (+). In this

case, the rule evolution is very bad in both direc-

tions. Then, AR-NSGEP takes the decision of an

exploration increment to get away of that vicin-

ity. This is achieved by making ΔWspe, ΔWpre and

ΔWsen greater than zero.

• When a rule moves from O to the B point, then we

have a t p increment (+) and a f p increment (+) at

the same time. As a consequence, we have a tn
decrement (-) and a f n decrement (-). In this case,

the rule evolution is good in Sensibility = T PR
direction but bad in Speci f icity = 1−FPR direc-

tion. Then, AR-NSGEP slows down the searching

for objective sensibility and speeds up exploration

for specificity. This is achieved making ΔWspe
and ΔWpre greater than zero and ΔWsen lower than

zero.

• Finally, when a rule moves from O to the D point,

we have the opposite of the previous case. AR-

NSGEP speeds up exploration for sensibility ob-

jective and slows down the exploration for speci-

ficity objective. This is achieved by making ΔWspe
and ΔWpre lower than zero and the ΔWsen greater

than zero.

We can note that a good metric to automati-

cally adapt the parameters ΔWspe and ΔWsen can be

the following: ΔFPR = FPR(g)−FPR(g− 1) and

ΔFNR = FNR(g)−FNR(g− 1), respectively. For

ΔWpre we also used ΔFPR. This new WED (see

equation 10) guides the searching process during the

evolutionary process as the R-NSGEP algorithm ex-

plained in the previous Section 4. Finally, we in-

troduced a momentum factor in AR-NSGEP. The

gradient algorithm with momentum has been widely

used for neural networks training for many years2.

The momentum coefficient is selected as a positive

constant in the interval (0, 1). It is considered a tech-

nique that may help out from local minims. The mo-

mentum has the effect of damping oscillations in the

training of weights. Momentum simply adds a frac-

tion μ of the previous weight update to the current

one. When the weight update keeps pointing in the

same direction, this will increase the size of the steps

taken towards the minimum. Therefore, we have in-

troduced this factor in the weights updating process

as shown in equations 11, 12 and 13. These equa-

tions and this adaptive strategy were implemented

with the function WeightU pd() invoked in line 20

of Algorithm 1, see pseudo-code in Algorithm 3.

Algorithm 3: Function WeightU pd(eset,gen)
input : List, eset, with non-redundant individuals

input : gen, generations counter

output: Weights update for each objective (Wspe,Wsen,Wpre)
1 if (gen < 3) then
2 FPR.add(0.0);
3 FNR.add(0.0);
4 if gen == 2) then
5 Wspe.add(1.0);
6 Wsen.add(1.0);

7 else if eset.size()> 0 then
8 bestIndividual← eset[0];
9 FPR.add(1−bestIndividual.getSpeci f icity);

10 FNR.add(1−bestIndividual.getSensitivity);
11 Wspe[gen]←Wspe[gen−1]∗ (1+μ ∗ (FPR[gen−2]−

FPR[gen−3])+(1−μ)∗(FPR[gen−1]−FPR[gen−2]));
12 Wsen[gen]←

Wsen[gen−1]∗ (1+μ ∗ (FNR[gen−2]−FNR[gen−3])+
(1−μ)∗ (FNR[gen−1]−FNR[gen−2]));

13 Wpre[gen]←Wsen[gen];
14 FPR.remove(0);
15 FNR.remove(0);
16 return(Wspe[gen],Wsen[gen],Wpre[gen]); Wspe.remove(0);
17 Wsen.remove(0);

Wspe(g) =Wspe(g−1)∗ [1+μ ∗ (FPR(g−2)−FPR(g−3))+(1−μ)∗ (FPR(g−1)−FPR(g−2))] (11)
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Wsen(g) =Wsen(g−1)∗ [1+μ ∗ (FNR(g−2)−FNR(g−3))+(1−μ)∗ (FNR(g−1)−FNR(g−2))] (12)

Wpre(g) =Wpre(g−1)∗ [1+μ ∗ (FPR(g−2)−FPR(g−3))+(1−μ)∗ (FPR(g−1)−FPR(g−2))] (13)

Note that, during the first three generations,

weights are not updated. Tu sum up, in the AR-

NSGEP adaptive version we use the NSGA-III ref-

erence point approach, taking the ideal point for all

objectives. However, to follow the best individual of

the population in its movement for the ROC space,

we modify the Wi importance level for each objec-

tive. At the same time, the searching process is

adjusted to make it more intense when there exist

movement in a good direction and more extensive in

the opposite case.

6. Empirical evaluation

This section presents the experimental methodology

followed to assess the proposed AR-NSGEP algo-

rithm. Three different experiments were performed.

In the first experiment, we compared seven GEP-

based algorithms. A single-objective (MCGEP) al-

gorithm and another six versions with two, three and

four objectives of the R-NSGEP and AR-NSGEP

approaches. Each one was named as follows: two-

objective versions (R-NSGEP-2 and AR-NSGEP-

2); three-objective (R-NSGEP-3 and AR-NSGEP-

3); and the four-objective versions (simply named

as R-NSGEP and AR-NSGEP).

As the evolutionary process is dependent on the

MOEA it includes, then the second experiment is

responsible for evaluating the performance of our

previous best proposals against three well known

MOEAs. In the last experiment, we evaluated the

performance of our best proposal against six widely-

known GP techniques for discovering classifica-

tion rules that represent a large variety of learning

paradigms. The methods used in the last comparison

were: UCS, GASSIST, HIDER, SLAVE, LOGIT-

BOOST, CORE. A more detailed explanation of

each of the first six algorithms above can be found

condensed in an excellent review37. The following

subsection provides details of the real-world prob-

lems chosen for the experiments, the experimental

tools and configuration parameters as well as the re-

sults and statistical tests applied to compare them.

6.1. Training sets

To evaluate the behavior of our classifier, twenty-

seven real-world data sets were chosen from

KEEL∗38 and UCI†39 repositories. To execute the ex-

periments, data sets listed in Table 1 were used.

Table 1. Data set characteristics.

Id. Data set Inst. Attrib. Class

app Appendicitis 106 9 2

aus Australian 690 14→18 2

aut Automobile 159 25 6

bal Balance 625 4 3

ban Banana 5300 2 2

bad Bands 365 19 2

bup Bupa 345 6 2

cle Cleveland 297 13 5

con Contraceptive 1473 9 3

der Dermatology 358 34 6

eco Ecoli 336 7 8

gla Glass 214 9 7

hab Haberman 306 3 2

hea Heart-s 270 13 2

hep Hepatitis 80 19 2

ion Ionosphere 351 33 2

iri Iris 150 4 3

lym Lymphography 148 18→38 4

pim Pima 768 8 2

son Sonar 208 60 2

thy Thyroid 7200 21 3

wdb Wdbc 569 30 2

win Wine 178 13 3

wis Wisconsin 683 9 2

wpb Wpbc 194 32 2

yea Yeast 1484 8 10

zoo Zoo 101 17→21 7

In our experimental assessment, all the exam-

ples with missing values were removed from the

datasets. In Australian, Lymphography and Zoo

datasets nominal attributes were binarized. In total,

we have 14 binary problems, 5 three-class problems

and 8 problems including between 5 and 10 classes.

The evaluation of the quality of a classification algo-

∗ http://www.keel.es/
† http://archive.ics.uci.edu/ml/
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rithm may be seen as a multi-objective problem40 so

we used three metrics for the assessment. We eval-

uated the performance of models evolved by each

learning system with the test accuracy metric (pro-

portion of correct classifications over previously un-

seen examples), AUC (area under ROC curve) and

number of rules of the models obtained in each case.

We used a ten-fold cross validation procedure with

5 different random seeds over each data set.

6.2. Experimental tools

We used the JCLEC‡ framework described in41, a

software system for Evolutionary Computation (EC)

research, developed in Java programming language.

The parameters used in the algorithm are summa-

rized in Table 2.

Table 2. AR-NSGEP sumary parameters.

Parameter Value

Population size (popsize) 500

Maximum of generations (genmax) 100

Threshold support (support) 0.01

GEPSimpleMutator (mutprob) 0.10

GEPISTranspositionMutator (mutprob) 0.10

GEPRISTranspositionMutator (mutprob) 0.10

GEPOnePointRecombinator (recprob) 0.40

GEPTwoPointsRecombinator (recprob) 0.40

Epsilon non-domination reduction factor. (ε) 0.01

Mu. Damping factor. (μ) 0.9

In our experiments, we used the chromosome

size and constants list problem-dependent. The list

of constants was fixed for all data sets except for the

case of bands, pima and wine. In these cases, the

constant values were different due to those data sets

have attributes in a wide range of values. Note that

no additional parameter optimization was done for

R-NSGEP and AR-NSGEP. Thus, the configuration

used for this algorithm should not be taken as the

optimal set of parameters for each data set. Consid-

ering a particular dataset, a fine tuning may achieve

even better results. The configuration files for AR-

NSGEP and complementary material of the experi-

mental study are publicly available at the link§.

The way in which the size of the head in GEP

is defined is still an open issue24, so we have ad-

justed this parameter through trial and error with val-

ues equal to ten times the number of attributes for

each dataset. The source codes and optimum con-

figurations for CORE, GASSIST, HIDER, SLAVE,

UCS and LOGIT-BOOST were based on KEEL38

and their original authors as well as in the useful

review37.

6.3. Statistical analysis

We followed the recommendations pointed out by

Derrac et al.42 to perform the statistical analysis

of the results. As the authors suggested, non-

parametric statistical tests are used to compare the

accuracy and sizes of the models built by the differ-

ent learning systems. Specifically, we used Fried-

man’s test. Derrac et al.42 found in their work that

Finner and Li tests denoted the most powerful be-

havior, reaching the lowest p-values in the compar-

isons. Then, we applied these tests to arrive at solid

conclusions. To statistical computations we used the

“scmamp” library43 implemented with the R pro-

gramming language.

6.4. Experiment #1

In this experiment we analyze the behavior of the

proposed algorithm for two, three and four ob-

jectives. The previous mono-objective version,

MCGEP, is also included in this comparison. The

average results for each collection are shown in Ta-

ble 3. The last row shows the average rank for each

algorithm.

The multi-comparison Friedman’s test rejected

the following null hypotheses: all the systems per-

formed the same on accuracy (Acc) with Fried-

man’s p− value = 1.1826× 10−10; all the systems

performed the same on AUC with Friedman’s p−
value = 9.2003× 10−9 and the number of rules in

the models was equivalent on average with Fried-

man’s p− value = 7.3714× 10−11. To check the

results, we apply Finner’s and Li’s methods to test

the hypotheses ordered by their significance. As can

‡ http://jclec.sourceforge.net/
§ http://www.uco.es/grupos/kdis/kdiswiki/AR-NSGEP/
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be seen in Table 4, all tests with α = 0.05 detect

a significant difference in Acc performance of AR-

NSGEP against the rest.

Table 4. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for Acc metric

Algorithm pFinner pLi
R-NSGEP-2 0.000000 0.000000

AR-NSGEP-2 0.000000 0.000000

R-NSGEP-3 0.000064 0.000038

AR-NSGEP-3 0.000073 0.000057

MCGEP 0.002698 0.002659

R-NSGEP 0.156376 0.156376

AR-NSGEP Control ///

Table 5. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for AUC metric

Algorithm pFinner pLi
R-NSGEP-2 0.000000 0.000000

AR-NSGEP-2 0.000001 0.000000

R-NSGEP-3 0.000111 0.000063

AR-NSGEP-3 0.000141 0.000106

MCGEP 0.027945 0.025706

R-NSGEP 0.115291 0.115291

AR-NSGEP Control ///

As it is illustrated in Table 5, when analysing

the AUC metric, Finner and Li test detected sig-

nificant differences of AR-NSGEP against MCGEP,

AR-NSGEP-3, R-NSGEP-3, AR-NSGEP-2 and R-

NSGEP-2. In Figure 4, it is shown the Bonferroni-

Dunn test comparing all systems in terms of number

of rules.

Fig. 4. Critical difference comparison of AUC and accu-

racy.

As it is illustrated, the three-objective versions

and MCGEP obtained the simplest classifiers, how-

ever this is achieved at the expense of decreasing

the values of the Acc and AUC metrics as shown

in the previous test. On the other hand, it is clearly

illustrated in Figure 4 that simpleness-objective ver-

sions significantly improved the ones that do not

optimize the size of rules. Then, it was empir-

ically manifested that finding simplest rules it is

also possible to build more comprehensible classi-

fiers. It was hoped that AR-NSGEP approach will

fail to find good solutions in all metrics at the same

time, but it finds good trade-off solutions. This ver-

sion was built with three accuracy-objectives against

only one comprehensibility-objective, then it gener-

ates much more selective pressure in the accuracy

direction than the comprehensibility direction. As

it is demonstrated, the proposed AR-NSGEP algo-

rithm significantly improved the AUC and Acc met-

rics regarding to versions of three and two objec-

tives, as well as versus the single-objective version

(MCGEP). With this experiment, we verify the scal-

ability in the number of objectives of the proposed

approach.

6.5. Experiment #2

In this second experiment and similarly to the pre-

vious experiment, we assessed the performance of

models evolved by each MOEA (NSGA-II, SPEA2

and R-NSGA-II implemented as R-NSGEP). The

average results for each collection are shown in Ta-

ble 6. According to the obtained results, we statisti-

cally analyze them to detect significant differences

between models evolved by the different search

methods. The multi-comparison Friedman’s test re-

jected the following two null hypotheses: performed

the same on accuracy with Friedman’s p− value =
5.7925× 10−3; performed the same on AUC with

Friedman’s p− value = 4.1844× 10−2. The num-

ber of rules in the models was equivalent on average

with Friedman’s p− value = 1.4474×10−1. These

last hypotheses were not rejected.

Then, we applied Finner’s and Li’s methods to

test the hypotheses ordered by their significance. As

can be seen in Tables 7 and 8, all the tests with

α = 0.05 detected a significant difference in Acc and

AUC performance for AR-NSGEP. As for the num-

ber of rules (NR) in the learned models, our proposal

is not the first-ranking algorithm, then we decided to

test all the pairwise comparisons with Bergmann and

Hommel’s correction. For this we used the scmamp

R-library implementation, in particular the function

drawAlgorithmGraph() was used to generate a graph

where all the significant differences among the com-

binations of algorithm-pairs are shown.
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Table 7. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for Acc metric

Algorithm pFinner pLi
SPEA2-GEP 0.007968 0.002672

NSGA2-GEP 0.007968 0.003755

R-NSGEP 0.007968 0.006132

AR-NSGEP Control ///

Table 8. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for AUC metric

Algorithm pFinner pLi
SPEA2-GEP 0.033847 0.011637

NSGA2-GEP 0.034943 0.023605

R-NSGEP 0.034943 0.030704

AR-NSGEP Control ///

The graph illustrated in Figure 5 shows that the

NSGA-II algorithm is the first in ranking. However,

no significant difference was found according to the

Bergmann’s test between the four algorithms evalu-

ated in this experiment.

Fig. 5. All pairwise comparisons obtained by Bergmann

and Hommel’s method for NR metric.

6.6. Experiment #3

In this last experiment, we assessed the perfor-

mance of AR-NSGEP algorithm against other six

Genetic Rule Based Systems (GRBS) referenced by

the specialized literature. The average results for

each collection are shown in Table 11, where the

last row indicates the average rank for each algo-

rithm. The multi-comparison Friedman’s test re-

jected the following null hypotheses: all the sys-

tems performed the same on Acc with Friedman’s

p− value = 6.7901× 10−10; all the systems per-

formed the same on AUC with Friedman’s p −
value = 2.4236× 10−13 and the number of rules in

the models was equivalent on average with Fried-

man’s p− value < 2.2204×10−16.

Then we applied Finner’s and Li’s methods to

test the hypotheses ordered by their significance.

As illustrated in Table 9 for the Acc metric, both

Finner’s and Li’s methods detected a significant

improvement of our algorithm against CORE and

SLAVE. In addition, the Finner’s test detected sig-

nificant differences between our proposal and both

Hider and LogitBoost. On the contrary, UCS and

Gassist were not significantly improved by AR-

NSGEP for the Acc metric.

Table 9. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for Acc metric

Algorithm pFinner pLi
CORE-C 0.000000 0.000000

SLAVEv0-C 0.000048 0.000635

Hider-C 0.030360 0.378414

LogitBoost 0.044303 0.54219

UCS-C 0.184585 0.861562

Gassist-ADI-C 0.974873 0.974873

AR-NSGEP Control ///

Table 10. Post hoc comparison (Friedman) table with α = 0.05
and adjusted p-values for AUC metric

Algorithm pFinner pLi
CORE-C 0.000000 0.000000

SLAVEv0-C 0.000000 0.000000

Hider-C 0.000006 0.000003

LogitBoost 0.000267 0.000191

UCS-C 0.019978 0.017573

Gassist-ADI-C 0.067726 0.067726

AR-NSGEP Control ///

As for the AUC metric, we applied the same tests

as before. Table 10 illustrates that the proposed AR-

NSGEP algorithm is the first in ranking and it signif-

icantly improves UCS, LogitBoost, Hider, SLAVE

and CORE algorithms. All the test were applied

with α = 0.05. On the contrary, Gassist was not sig-

nificantly improved by AR-NSGEP.

Regarding to the metric number of rules (NR) in

the learned models, we decided to test all pairwise

comparisons with Bergmann and Hommel’s correc-

tion. Results shown in Figure 6 denote that CORE

algorithm is significantly better than the rest, except

for Gassist. CORE discovers nearly one-rule per

class, this fact has a very high cost and it is also the

worst in Acc and AUC metrics. Figure 6 shows that

Gassist, Hider, SLAVE, R-NSGEP and AR-NSGEP

are not significantly different between them.
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Fig. 6. All pairwise comparisons obtained by Bergmann

and Hommel’s method for NR metric.

Next, Figure 7 represents the algorithms’ behav-

ior in the metrics assessed (Acc, AUC and NR) at

the same time. With this, we visualize in a better

way the compromise solutions found by all the algo-

rithms in this experiment. Therefore, we have rep-

resented the cut-off points defined by the Finner’s

test for AUC and Acc metrics by horizontal and

vertical lines respectively. Finally, we combined

the Bergmann and Hommel’s test by linking the

equivalent algorithms. Our proposal, AR-NSGEP, is

marked as the most well balanced of all methods an-

alyzed in this work when only Acc and AUC metrics

are taken into account. Additionally, Gassist appears

as one of the most balanced algorithm too.

Fig. 7. Combining Finner’s for Acc and AUC metrics with

Bergmann and Hommel’s tests for NR metric.

In favour of the proposed AR-NSGEP approach,

we can assert that, rule-set complexity for discrimi-

nant functions is not exactly the same of rule-based

complexity. Gassist were stated in the review44 as

one of “the two most outstanding learners in the

GBML history”.

7. Conclusions and further work
In this paper, we have tested and statistically vali-

dated the competitiveness of a gene expression pro-

gramming algorithm (AR-NSGEP) for discovering

classification rules in the multi-objective space. It

was built based on R-NSGA-II proposed by Deb
et al.22. Several objectives led the search in a

multi-objective space. Vectors with those candi-

date solutions that are close to the ideal point al-

lowed to select the final solution from the non-

dominated fronts. Twenty seven datasets were taken

from KEEL and UCI projects. In a first time, we

assessed several versions of our approach. The

adaptive four-objectives version statistically outper-

formed the rest with respect to accuracy and area

under ROC curve metrics. The complexity of rule-

set obtained by AR-NSGEP fell in an intermediate

zone among two-objectives and three-objectives al-

gorithms. In a second experiment, we found that our

AR-NSGEP algorithm significantly outperformed

another three well-know MOEAs (NSGA2, SPEA2

and R-NSGA-II implemented as R-NSGEP). In

a third experiment, the competitiveness of AR-

NSGEP was analysed in comparison to six well

known rule-based algorithms. The experimental re-

sults, showed that AR-NSGEP together with Gas-

sist were the most balanced algorithms. Our ap-

proach found a good trade-off between accuracy and

comprehensibility. Additionally, the competitive-

ness of multi-objective GEP approach for discover-

ing classification rules was statistically and empir-

ically manifested for the AUC metric. However, a

great deal of future work remains to be carried out:

the treatment of missing data and a method for adapt

the evolutionary GEP parameters needs to be imple-

mented. Furthermore, we need to make improve-

ments in reducing the number of generated models

because it was clearly seen to be one of the weak

points of this work.
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40. Guzman Santafe, Iñaki Inza, and Jose A.
Lozano. Dealing with the evaluation of su-
pervised classification algorithms. Artificial
Intelligence Review, 44(4):467–508, 2015. doi:
10.1007/s10462-015-9433-y.

41. Sebastián Ventura, Cristóbal Romero, Amelia Zafra,
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