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Abstract

In previous work we presented CoCoNAD (Continuous-time Closed Neuron Assembly Detection), a
method to find significant synchronous patterns in parallel point processes with the goal to analyze paral-
lel neural spike trains in neurobiology3,9. A drawback of CoCoNAD and its accompanying methodology
of pattern spectrum filtering (PSF) and pattern set reduction (PSR) is that it judges the (statistical) signifi-
cance of a pattern only by the number of synchronous occurrences (support). However, the same number
of occurrences can be significant for patterns consisting of items with a generally low occurrence rate,
but explainable as a chance event for patterns consisting of items with a generally high occurrence rate,
simply because more item occurrences produce more chance coincidences of items. In order to amend
this drawback, we present in this paper an extension of the recently introduced CoCoNAD variant that
is based on influence map overlap support (which takes both the number of synchronous events and the
precision of synchrony into account), namely by transferring the idea of Jaccard item set mining to this
setting: by basing pattern spectrum filtering upon item cover similarity measures, the number of coinci-
dences is related to the item occurrence frequencies, which leads to an improved sensitivity for detecting
synchronous events (or parallel episodes) in sequence data. We demonstrate the improved performance
of our method by extensive experiments on artificial data sets.

Keywords: graded synchrony, cover similarity, synchronous events, parallel episode, frequent pattern,
pattern mining

1. Introduction

We tackle the task of finding frequent synchronous
patterns in parallel point processes using Frequent
Item Set Mining (FIM) methodology. The objec-
tive of FIM is to find item sets that are frequent
in a given transaction database, where an item set
is called frequent if its support reaches or exceeds
a (user-specified) minimum support threshold. In
standard FIM the support of an item set is a sim-
ple count of transactions (namely those in which the
item set occurs). Here, however, we consider event
sequence data on a continuous (time) scale and strive
to find sets of items (event types) that occur fre-

quently together, that is, almost synchronously or at
least sufficiently close together in time. This contin-
uous form causes several problems, especially w.r.t.
the definition of a suitable support measure.

Our motivating application area is parallel spike
train analysis in neurobiology, where spike trains
are sequences of points in time, one per neuron, that
represent the times at which an electrical impulse
(action potential or spike) is emitted. It is generally
believed that biological neurons represent and trans-
mit information by firing sequences of spikes in var-
ious temporal patterns 6. However, in the research
area of neural coding, many competing hypotheses
have been proposed how groups of neurons repre-
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sent and process information, and ongoing research
tries to develop methods to confirm or reject (some
of) these hypotheses by analyzing recordings of neu-
ronal firing patterns. Here we focus on the temporal
coincidence coding hypothesis, which assumes that
neurons are arranged in neuronal assemblies, that is,
groups of neurons that tend to exhibit synchronous
spiking (such cell assemblies were proposed in 11),
and claims that the tighter the spikes are in time,
the stronger the encoded stimulus is. In this set-
ting, the precision of synchrony is relevant, because
(more tightly) synchronous spike input to receiving
neurons is known to be more effective in generat-
ing output spikes 1,16. Of course, neural spike train
analysis is not the only imaginable application area.
Wherever data in the form of (labeled or parallel)
point processes occurs, for example, log data of ma-
chinery or (telecommunication) networks, and syn-
chronous or at least temporally close events are of
interest, our methods may, in principle, prove to be
useful and may help to discover relevant episodes
(or frequent synchronous patterns).

In order to improve over earlier work in this
area that relied on (fairly naive) time binning to
reduce the problem to the transactional case 21,29,
CoCoNAD (for Continuous-time Closed Neuron
Assembly Detection) 3 was developed as a method-
ology to test the temporal coincidence coding hy-
pothesis without (time) discretization. This ap-
proach defines synchrony in a (still) binary fashion
by declaring that a group of items (event types) co-
occur if their occurrence times are no farther apart
than a (user-defined) maximum (time) distance, and
that they are not synchronous otherwise. As a sup-
port measure it uses the size of a maximum inde-
pendent set (MIS) of pattern instances, which can
be computed efficiently with a greedy algorithm
3,20. In addition, the CoCoNAD methodology com-
prises two further steps: Pattern Spectrum Filtering
(PSF), which filters the CoCoNAD output for statis-
tically significant patterns, and Pattern Set Reduc-
tion (PSR), which removes induced spurious pat-
terns (subsets, supersets, or overlap patterns), which
may appear significant on their own, but are explain-
able as a chance event given other patterns. While
PSF generates and analyzes (a large number of) sur-

rogate data sets to determine what pattern types are
explainable as chance events, PSR is based on a
preference relation between patterns and keeps only
patterns to which no other pattern is preferred.

Although CoCoNAD solves the problems caused
by time binning (particularly the boundary problem,
cf. 22), it does not take the precision of synchrony
in the individual pattern instances into account. A
straightforward extension with a notion of graded
synchrony requires to solve a maximum weight inde-
pendent set problem, for which the greedy algorithm
of the binary case no longer guarantees the optimal
solution and which is NP-complete in the general
case 14. In order to avoid these complications, an
efficient approximation scheme for the support was
presented in 9, based on an earlier conceptual ap-
proach using influence maps and their overlap 22.

Although the CoCoNAD variant based on influ-
ence map overlap support led to substantial results, it
still suffers from the drawback that it neglects that in
real-world data the different neurons can have con-
siderably different firing rates. This is a problem, be-
cause the same number of coincident spiking events
can be statistically significant for a set of neurons
with generally low firing rates, but explainable as
a chance event for a set of neurons with generally
high firing rates, simply because higher firing rates
produce more spikes and thus more chance coinci-
dences. In order to amend this drawback, we present
in this paper an extension of this CoCoNAD vari-
ant, in which we transfer the ideas of Jaccard Item
Set Mining (JIM) 24 to the continuous setting of Co-
CoNAD: by basing pattern spectrum filtering upon
item cover similarity measures, the support is related
to the item occurrence frequencies, which leads to
an improved sensitivity for detecting synchronous
events, particularly among items with a low occur-
rence frequency.

The remainder of this paper is structured as fol-
lows: Section 2 covers basic terminology and nota-
tion and reviews the graded notion of synchrony as it
was introduced in 9 as well as influence map overlap
support. Section 3 discusses Jaccard item set min-
ing and transfers it to the continuous setting. Sec-
tion 4 reviews how patterns are filtered and reduced
using pattern spectrum filtering (PSF) and pattern
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set reduction (PSR). Section 5 considers some im-
plementation aspects of the proposed methodology.
In Section 6 we report experimental results on data
sets with injected synchronous patterns. Finally, in
Section 7 we draw conclusions from our discussion.

2. Frequent Item Set Mining

Frequent item set mining (FIM) is a data analysis
method that was originally developed for market
basket analysis. Its purpose is to find item sets that
are frequent in a database of transactions, for exam-
ple, the purchases made by the customers of a super-
market. In this application scenario frequent item
sets are sets of products that are frequently bought
together.

There are various extensions of this basic set-
ting, of which we consider here the case in which
instead of a database of transactions we are given a
sequence of events on a continuous (time) scale and
we strive to find sets of items (event types) that occur
frequently (close) together (in time). A well-known
seminal paper about this particular pattern mining
variant is 19, from which we adopt notation and ter-
minology to define our framework.

Our data are sequences of events S =
{⟨i1, t1⟩, . . . ,⟨im, tm⟩}, m ∈ N, where ik in the event
⟨ik, tk⟩ is the event type or item (taken from an item
base B) and tk ∈R is the time of occurrence of ik, k ∈
{1, . . . ,m}. W.r.t. our motivating application area
(i.e. spike train analysis) the event types or items
represent the neurons and the times indicate when
spikes of the corresponding neurons were recorded.
Note that S is defined as a set and thus there cannot
be two events with the same item occurring at the
same time. That is, events with the same item must
differ in their occurrence time and events occurring
at the same time must have different types/items.
Note that such data may also be represented as
parallel point processes by sorting the events by
their associated item i ∈ B and listing the times
of their occurrences for each of them, that is, as
P = {⟨i1,{t(1)1 , . . . , t(1)m1 }⟩, . . . ,⟨in,{t(n)1 , . . . , t(n)mn }⟩}.

We define a synchronous pattern (in S ) as a set
of items I ⊆ B that occur several times (approxi-
mately) synchronously in S . Formally, an instance

(or occurrence) of such a synchronous pattern (or
a set of synchronous events for I) in an event se-
quence S with respect to a (user-specified) time
span w ∈ R+ is defined as a subsequence R ⊆ S ,
which contains exactly one event per item i ∈ I and
can be covered by a (time) window at most w wide.
Hence the set of all instances of a pattern I ⊆ B,
I ̸= /0, in an event sequence S is

ES ,w(I) =
{
R ⊆ S | {i | ⟨i, t⟩ ∈ R}= I ∧ |R|= |I|

∧ σw(R)> 0
}
,

where σw is a synchrony operator which checks
whether the events in R are synchronous or may
even measure the degree of their synchrony.

In the case of binary synchrony, the syn-
chrony operator only checks whether events are syn-
chronous, for example, by checking whether the oc-
currence times of all events in R can be covered by
a time window of width at most w (in this case it is
σw(R) = 1) or not (σw(R) = 0) 3,20. In the case of
graded synchrony, however, we desire a synchrony
operator that yields a degree of synchrony between 0
and 1. Such a synchrony operator is described in 9,
based on the notion of an influence map as it was in-
troduced in 22. An influence map describes the vicin-
ity around an event in which synchrony with other
events is expedient and can be defined formally as

ft(x) =
{ 1

w if x ∈ [t − w
2 , t +

w
2 ],

0 otherwise.
(1)

With this notion we define that there is synchrony to
some degree between events iff the influence maps
of these events overlap, and that the area of the over-
lap measures the degree of synchrony, or formally,
that the degree of synchrony is the integral over the
minimum of the influence maps 9.

A synchrony operator σw gives rise to the def-
inition of a support operator sS ,w(I). In FIM, the
support is used to define whether an item set is fre-
quent, namely if its support reaches or exceeds a
(user-specified) minimum support smin. In order to
render the search for frequent item sets efficient, a
support operator should be anti-monotone, that is,
∀I ⊆ J ⊆ B : sS ,w(I) > sS ,w(J). Or in words: if an
item is added to an item set, its support cannot in-
crease. This implies the so-called apriori property:
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∀I,J ⊆ B : (J ⊇ I ∧ sS ,w(I) < smin) ⇒ sS ,w(J) <
smin. Or in words: no superset of an infrequent pat-
tern can be frequent. The apriori property allows
to prune the search for frequent patterns effectively
(cf., for example, 2).

Unfortunately, simply defining the support of an
item set I as

sS ,w(I) = ∑
R∈ES ,w(I)

σw(R) (2)

yields a support measure that is not anti-monotone.
A natural solution to this problem, which has also
been applied in related settings 30,10, is to compute
the weight of a maximum (weight) independent set,
that is, to define

sS ,w(I) = max
U ⊆ES ,w(I)

∀R1 ,R2∈U :R1=R2∨R1∩R2= /0

∑
R∈U

σw(R) (3)

If the synchrony operator σw is binary, this sup-
port is feasible, because there exists an efficient
greedy algorithm that computes this support 3,20.
With a graded synchrony operator, however, this
greedy algorithm is no longer guaranteed to find
the optimal solution 9, while the general problem of
finding a maximum independent set is NP-complete
14 and even hard to approximate 12, rendering gen-
eral solution approaches inefficient.

To avoid these complications, we resort to an
approximation by defining a support measure as
the integral over the maximum (union) of the min-
imum (intersection) of influence maps, where the
minimum represents the synchrony operator and the
maximum aggregates over different instances 9:

sS ,w(I) =
∫ ∞

−∞
max

R∈ES ,w(I)

(
min

⟨i,t⟩∈R
ft(x)

)
dx. (4)

Exploiting the properties of maxima and minima,
we can rewrite this as

sS ,w(I) =
∫ ∞

−∞
min
i∈I

(
max

⟨ j,t⟩∈S ; j=i
ft(x)

)
dx. (5)

In this form it is easy to see that this support mea-
sure is anti-monotone.

Figure 1 illustrates how this support measure is
computed. Clearly, this computation can be seen as

a natural generalization of the transaction list inter-
section carried out by the Eclat algorithm 31 to a
continuous domain. As a consequence, Eclat’s item
set enumeration scheme, which is based on a divide-
and-conquer approach (for a general discussion cf.,
for example, 2), can be transferred with only few
adaptations to obtain an efficient algorithm for min-
ing frequent synchronous patterns with this support
measure.

The divide-and-conquer scheme can be charac-
terized roughly as follows: for a chosen item i, the
problem to find all frequent patterns is split into two
sub-problems: (1) find all frequent patterns con-
taining item i and (2) find all frequent patterns not
containing i. Each sub-problem is then further di-
vided based on another item j: find all frequent
patterns containing (1.1) both i and j, (1.2) i but
not j, (2.1) j but not i, (2.2) neither i nor j etc.

a

b

c

union of
influence

maps

items/neurons

t (time)

w ww

intersection of
influence maps

0.56w 0.86w

Fig. 1. Support computation for three items a, b, c. Each
event has an influence map (represented as a rectangle). If
two influence maps overlap, their maximum (union) is com-
puted. (In the diagram, item b has two events, the influence
regions of which overlap.) The support results from the in-
tegral over the minima of the influence maps (intersections).

In order to reduce the output we restrict it to
closed frequent patterns. A pattern is called closed if
no super-pattern has the same support. Closed pat-
terns have the advantage that they preserve knowl-
edge of what patterns are frequent and allow us to
compute the support of any non-closed frequent pat-
tern easily (see, for example, 2). However, it should
be noted that the restriction to closed patterns is less
effective with graded synchrony than with binary
synchrony, because adding an item can now reduce
the support not only by losing instances, but also by
worsening the precision of synchrony. As a conse-
quence, most patterns are closed under graded syn-
chrony.
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3. Jaccard Item Mining

As stated in the introduction, the objective of this
paper is to develop a methodology that not only con-
siders the number of synchronous events and the
precision of their synchrony (like the synchrony op-
erator does that we reviewed in the preceding sec-
tion). Rather we want to be able to take into account
whether the items have a low or high occurrence
rate. The reason is that the same number of syn-
chronous occurrences of a set of items can be signif-
icant for items with generally low occurrence rates,
but explainable as a chance event for items with gen-
erally high occurrence rates, simply because high
occurrence rates create more and larger chance co-
incidences.

For the transactional setting, such a behavior can
be achieved by an approach that relies on item cover
similarity measures instead of standard support 24.
This approach is also referred to as Jaccard item
set mining, because the most natural basis for an
item cover similarity measure is the Jaccard index
13, which is a statistic for comparing sets. In the
general case, for two arbitrary sets A and B, the Jac-
card index is defined as

J(A,B) =
|A∩B|
|A∪B|

.

In frequent item set mining, the sets we consider are
the so-called covers of items and item sets. Given
a transaction database T = (τ1, . . . ,τm) over an item
base B (that is, ∀k ∈ {1, ...,m} : τk ⊆ B), the cover
KS(I) of an item set I is defined as KS(I) = {k ∈
{1, ...,m} | I ⊆ τk}, that is, as the set of indices of
transactions that contain I. Analogously, the carrier
LT (I) of an item set I is defined as LT (I) = {k ∈
{1, ...,m} | I ∩ τk ̸= /0} 24, that is, as the set of in-
dices of transactions that contain at least one item
in I. Note that the support is sT (I) = |KT (I)| and the
extent is rT (I) = |LT (I)| 24.

The core idea of using the Jaccard index for item
set mining lies in the insight that the covers of (posi-
tively) associated items are likely to have a high Jac-
card index, while a low Jaccard index indicates inde-
pendent or even negatively associated items. How-
ever, since we are considering item sets of arbitrary
size, we need a generalization of the Jaccard index

to more than two sets. Following 24, we define such
a generalized Jaccard index as

JT (I) =
sT (I)
rT (I)

=
|KT (I)|
|LT (I)|

=
|
∩

i∈I KT ({i})|
|
∪

i∈I KT ({i})|
(6)

Using influence maps, this definition can easily be
transferred to the continuous setting we consider
here. We define a continuous item cover as

KS ,w({i}) = max
⟨ j,t⟩∈S ; j=i

ft(x) (7)

that is, as the function that combines all influ-
ence maps of an item. Note that with this definition
the support can also be written as

sS ,w(I) =
∫ +∞

−∞
KS ,w(I) with

KS ,w(I) = min
i∈I

(
max

⟨ j,t⟩∈S ; j=i
ft(x)

)
(8)

which takes the place of sT (I) = |KT (I)|. By trans-
ferring the carrier and the extent in an analogous
fashion, we obtain

rS ,w(I) =
∫ +∞

−∞
LS ,w(I) with

LS ,w(I) = max
i∈I

(
max

⟨ j,t⟩∈S ; j=i
ft(x)

)
(9)

which takes the place of rT (I) = |LT (I)|. As a con-
sequence, we can define a Jaccard index for the con-
tinuous setting simply as

JS ,w(I) =
sS ,w(I)
rS ,w(I)

=

∫ +∞
−∞ KS ,w(I)∫ +∞
−∞ LS ,w(I)

. (10)

Since the support sS ,w(I) is obviously anti-
monotone and the extent rS ,w(I) obviously mono-
tone (that is, ∀I ⊆ J ⊆ B : rS ,w(I) 6 sS ,w(J); or in
words: if an item is added to an item set, its extent
cannot decrease), we infer that the Jaccard index is
anti-monotone, that is,

∀I ⊆ B : ∀i ∈ B− I : JS ,w(I ∪{i})6 JS ,w(I).

Given a user-specified minimum Jaccard value Jmin,
an item set is called Jaccard-frequent iff JS ,w(I) >
Jmin. Since the Jaccard measure has essentially the
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same properties as the influence map overlap sup-
port defined in the preceding section, we can apply
the same frequent item set mining scheme.

quantity behavior

nT constant

sT (I) = |KT (I)|= |
∩

i∈I KT ({i})| anti-monotone

rT (I) = |LT (I)| = |
∪

i∈I KT ({i})| monotone

qT (I) = rT (I)− sT (I) monotone

oT (I) = nT − rT (I) anti-monotone

Table 1. Quantities in terms of which the considered similarity
measures are specified.

As an example consider Figure 1 again, namely
for the computation of the support (numerator of the
Jaccard index) of the set {a,b,c}, and Figure 2 for
the computation of its extent (denominator of the
Jaccard index), which results from the union of all
influence maps of all involved items. Therefore, for
the example shown in these two figures, we obtain

J({a,b,c})= 0.56w+0.86w
1.44w+1.20w+1.60w

=
1.42
4.24

≈ 0.335

as the value of the Jaccard index.

a

b

c

union of
influence

maps

items/neurons

t (time)

w ww

union of all
influence maps

1.44w 1.20w 1.60w

Fig. 2. Additional computations for the Jaccard index
for three items a, b, c (cf. Figure 1). The extent re-
sults from the integral over the maxima of the influence
maps (union). The resulting Jaccard index is J({a,b,c}) =

0.56w+0.86w
1.44w+1.20w+1.60w = 1.42

4.24 ≈ 0.335.

Note that apart from the Jaccard index there are
many other similarity measures for sets that can
be generalized beyond pairwise comparisons and
which also yield anti-monotone item cover similar-
ity measures 24. All of these measures are defined in
terms of the five quantities listed in Table 1 (which
refers to the transactional setting). We already saw
how the quantities sT (I) and rT (I) can be transferred
and thus also know how to compute an analog of

qT (I). The only problem is the quantity nT , the to-
tal number of transactions. In order to transfer this,
we have to restrict our considerations in the continu-
ous case to a finite recording period [ts, te], to which
all integrals are then constrained. With such a con-
straint, we can define

nS ,w =
te − ts

w
and (11)

oS ,w(I) = nS ,w − rS ,w(I) = nS ,w −
∫ te

ts
LS ,w(I)

This allows, in principle, to transfer all item
cover similarity measures considered in 24 to the
continuous setting. However, we confine ourselves
here to those measures that are derived from the in-
ner product (listed in Table 2), and neglect those that
are derived from the Hamming distance. The reason
is that in our motivating application domain (spike
train analysis) only the joint presence of spikes (as
captured by sS ,w(I)) is considered as an indicator of
joint processing of information, but not the joint ab-
sence of spikes (as captured by oS ,w(I), which oc-
curs in addition in the numerator of similarity mea-
sures derived from the Hamming distance). Note
also that the first measure in Table 2 (Russel&Rao)
is merely a normalized form of the influence map
overlap support defined in the preceding section.

Russel&Rao 23 SR =
s
n

=
s

r+o

Kulczynski 17 SK=
s
q

=
s

r− s

Jaccard 13

Tanimoto 28 SJ =
s

s+q
=

s
r

Dice 7

Sørensen 27

Czekanowski 5
SD=

2s
2s+q

=
2s

r+ s

Sokal&Sneath
25,26 SS =

s
s+2q

=
s

r+q

Table 2. Considered similarity measures for sets/binary
vectors.

Finally, note that the influence maps could, in
principle, be generalized beyond rectangular func-
tions as we use them in this paper. Even though it
might not be so easy to justify the use of triangular or
trapezoidal shapes in a meaningful way, there may

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 525–539
___________________________________________________________________________________________________________

530



be applications were such a generalization could be
useful. In this case, the minimum of the influence
maps (for their intersection) could be replaced by
any t-norm and their maximum (for their union) by
any t-conorm (see 15 for a comprehensive overview
of t-norms and t-conorms). Alternatively, overlap
functions as suggested in 4 could be used, general-
ized in a similar way to more than two arguments.

4. Pattern Spectrum Filtering and Pattern Set
Reduction

The large number of patterns in the output of syn-
chronous pattern mining is a general problem and
thus further reduction is necessary. This is achieved
by identifying statistically significant patterns. Pre-
vious work showed that statistical tests on individ-
ual patterns are not suitable 21,29. The main prob-
lems are the lack of proper test statistics as well as
multiple testing, that is, the huge number of patterns
makes it very difficult to control the family-wise er-
ror rate, even with control methods like Bonferroni
correction, the Benjamini-Hochberg procedure, the
false discovery rate etc. 8.

To overcome this problem, we rely here on the
approach suggested in 21 and refined in 29, namely
Pattern Spectrum Filtering (PSF). This method is
based on the following insight: even if it is highly
unlikely that a specific group of z items co-occurs
s times, it may still be likely that some group of
z items co-occurs s times, even if items occur in-
dependently. From this insight it is inferred that pat-
terns should rather be judged based on their signa-
ture ⟨z,s⟩, where z = |I| is the size of a pattern I and
s its support. A pattern is not significant if a coun-
terpart, which has the same or larger pattern size z
and the same or higher support s, can be explained
as a chance event under the null hypothesis of inde-
pendent events.

In order to determine the likelihood of pattern
signatures ⟨z,s⟩ under the null hypothesis of inde-
pendent items, a data randomization or surrogate
data approach is employed. The general idea is to
represent the null hypothesis implicitly by (surro-
gate) data sets that are generated from the original
data in such a way that their probability is (approxi-

mately) equal to their probability under the null hy-
pothesis. Such an approach has the advantage that
it needs no explicit data model for the null hypothe-
sis, which in many cases (including the one we are
dealing with here) may be difficult to specify. In-
stead, the original data is modified in random ways
to obtain data that are at least analogous to those
that could be sampled under conditions in which the
null hypothesis holds. An overview of several surro-
gate data methods in the context of neural spike train
analysis can be found in 18.

In a nutshell, the idea of pattern spectrum filter-
ing consists in collecting, for each pattern size z, the
largest support value that was observed in the surro-
gate data sets for patterns of this size. Of the pat-
terns obtained from the actual data set to analyze
only those are kept that have a support larger than
this maximum for their size. Note that since we are
working in a continuous time domain, the support
values are (non-negative) real numbers.

Unfortunately, even after pattern spectrum filter-
ing, many spurious patterns may remain. Such pat-
terns are caused by an actual pattern interacting with
background chance events, which gives rise to sub-
set, superset and overlap patterns. Supersets result
from items outside of an actual pattern occurring by
chance together with some of the instances of the ac-
tual pattern. Subsets result from some of the items in
the actual pattern occurring together, in addition to
the instances of the actual pattern, as a chance event.
Finally, overlap patterns result from items outside of
an actual pattern co-occurring with some instances
of the injected pattern and at least one chance event
of a subset of the actual pattern.

In order to remove such spurious induced pat-
terns, we draw on pattern set reduction (PSR), as it
was proposed in 29 for time-binned data, and trans-
fer it to our setting. The basic idea is to define a
preference relation between patterns X and Y with
Y ⊂ X ⊆ B. Only patterns to which no other pat-
tern is preferred are kept. All other patterns are dis-
carded.

The preference relations considered in 29 are
based on three core principles: (1) explaining excess
coincidences (subsets), (2) explaining excess items
(supersets) and (3) assessing the pattern probability
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based on the number of covered events. More for-
mally, let zX = |X | and zY = |Y | be the sizes of the
patterns X and Y , respectively, and let sX = sS ,w(X)
and sY = sS ,w(Y ) be their support values. Since
we have Y ⊂ X it follows zX > zY and sY > sX ,
because support is anti-monotone and we consider
only closed patterns. With (1), X is preferred to Y if
the excess coincidences sY − sX that Y exhibits over
X can be explained as a chance event. With (2), Y
is preferred to X if the presence of zX − zY excess
items that X contains over Y can be explained as a
chance event. With (3), the pattern is preferred for
which z · s (or, alternatively, (z− 1) · s) is larger. In
the case of time-binned data or binary synchrony,
z · s is the number of individual events supporting a
pattern. In the alternative version, the events of a ref-
erence item, to which the events of the other items
are synchronous (as it makes no sense to speak of
synchronous events if there is only one item), are
disregarded.

Transferring (1) and (2) to the case of graded
synchrony turns out to be difficult, because the de-
cision whether excess coincidences or excess items
can be explained as chance events is made based
on the pattern spectrum, using heuristic signature
modifications that are tricky to transfer to a non-
integer support. In addition, they are based on
pairwise pattern comparisons, while the third ap-
proach relies on a potential function (in the sense
of physics), thus simplifying the reduction process
(see Section 5). As a consequence, we focus here
on the third method, even though its intuitive justifi-
cation as a number of events is also lost. However,
we argue that the product of size (or size minus 1)
and support can also be justified as derived from the
shape of the decision border between significant and
non-significant patterns as it is induced by the pat-
tern spectrum. This border generally has a hyper-
bolic shape and is derived, in the binary case, from
curves of pattern signatures having equal probability
under certain simplifying assumptions (see 29). For
this paper a visual inspection of a pattern spectrum
as it is shown at the top left of Figures 3 and 5 may
suffice as an intuition: The border between the white
rectangles (pattern signatures that do no occur) and
the rectangles with colored bars (pattern signatures

occur with frequencies that are indicated by the bar
heights and the bar colors) has a roughly hyperbolic
shape.

However, the graded synchrony we employ in
this paper forces us to adapt this function. The rea-
son is that with graded synchrony increasing the pat-
tern size generally reduces the support, and not nec-
essarily because instances get lost, but because the
precision of synchrony is reduced by added items.
This needs to be taken into account in the eval-
uation function. Since the loss of synchrony de-
pends on the number of items, we heuristically chose
(z−1)(s+ kz), where k is a (user-specified) param-
eter that is meant to capture the loss of synchrony
relative to the pattern size.

5. Implementation Aspects

Having presented the theory of our method, we
briefly consider some implementation aspects. The
search for frequent synchronous patterns follows es-
sentially the schemes of the Eclat algorithm for fre-
quent item set mining 31 and of the JIM algorithm
for mining Jaccard item sets 24. These algorithms
work with a vertical representation of the transac-
tion database, that is, they list for each item (or item
set) the identifiers of the transactions in which the
item (or item set) occurs. This approach is translated
to a continuous (time) domain by collecting for each
item (or item set) the intervals (of points in time) that
are covered by an influence map (of a single item or
of all items in the considered set). Like in Eclat or
JIM these interval lists are processed by intersecting
them to obtain the interval list (and thus the support)
for the union of the item sets they refer to.

While this transfer is straightforward, it takes
slightly more consideration how to obtain the ex-
tent rS ,w(I) of an item set I. There are two basic op-
tions: one can represent the carrier LS ,w(I), which
is the union of the interval lists representing the in-
fluence maps of the items in I, or one can represent
the complement of LS ,w(I), which is the intersec-
tion of the complements of the interval lists repre-
senting the influence maps of the items in I, since
the total length of the intervals in the complement
of LS ,w(I) is oS ,w(I), which is obviously related to
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rS ,w(I) by rS ,w(I) = nS ,w(I)−oS ,w(I).

In the transactional setting that is considered in
JIM, the same two options exist in principle, but un-
der normal conditions it is relatively clear that the
second option is preferable, because the intersection
becomes smaller with a growing number of items
(fewer transactions do not contain any of the items)
while the union grows with the number of items
(more transactions contain at least one of the items).
Since the length of the transaction identifier lists is
decisive for the speed of the processing, intersection
is preferable, because it leads, at least for larger item
sets, to shorter lists.

In a continuous domain, however, the situation
is different, because we work with interval lists in-
stead of transaction identifier lists. This leads imme-
diately to the observation that in terms of the lengths
of these lists, there is no fundamental advantage for
either choice, since the interval list representing the
carrier LS ,w(I) and the list representing its comple-
ment can differ in length by at most one. The reason
is that any interval end in the carrier is necessarily
an interval start in its complement and vice versa.
A difference can only result from the interval start
that is the start of the recording period and the in-
terval end that is the end of the recording period as
these have no counterpart in the other list. If these
two points occur in the same interval list (either both
in the carrier LS ,w(I) or both in its complement), the
corresponding list contains one interval more than
the other, otherwise the number of intervals in both
lists is exactly the same.

Since the length of the lists cannot be used to
choose between the options, we wrote a test pro-
gram to measure whether it is faster to merge two
interval lists (forming the union of the contained in-
tervals) or to intersect their complements. Since the
program code for these two operations is consid-
erably different, a speed advantage may result for
one of the options. This is indeed what we found:
over a wide range of parameters controlling, for in-
stance, the size of the intervals versus the size of
the gaps we found that computing the union is be-
tween 10% to 35% faster than computing the inter-
section of their complements, with the speedup most
of the time falling into the range 20–25%. Due to

this clear advantage, we chose to implement inter-
val list merging to compute the extent rS ,w(I), in
contrast to JIM, which intersects the complements
of transaction identifier lists.

Note that, by analogy, this result could trigger
us to compute the support sS ,w(I) not by intersect-
ing the interval lists representing the influence maps
of the items, but by merging their complements,
exploiting that the total length of the intervals in
this union represents oS ,w(I)+qS ,w(I) and thus al-
lows to compute sS ,w(I) as sS ,w(I) = nS ,w(I)−
oS ,w(I)−qS ,w(I). However, we maintained the in-
tersection, because the complement can only be used
if the recording period is fixed, but with intersection,
influence map overlap support alone can be com-
puted without this knowledge (ignoring that, in prin-
ciple, one may not want to consider the part of an
influence map that extends before the start or after
the end of the recording period).

Another implementation aspect concerns pattern
set reduction, which was generally introduced in 29

based on a preference relation between patterns, one
of which is a subset of the other. If the preference
relation can only be evaluated by looking at every
pair of patterns explicitly (as it is the case for some
of the methods proposed in 29), the complexity of
this step is quadratic in the number of patterns. Un-
fortunately, in our setting we have to deal with many
more patterns (sometimes thousands to tens of thou-
sands after pattern spectrum filtering), mainly be-
cause there are fewer non-closed patterns: (1) influ-
ence map overlap support already tends to change
with the addition of an item, because it captures
not only the number of coincidences (which may
stay the same), but also the precision of synchrony
(which may be reduced by the additional item) and
(2) even if the support of an item set is not affected
by adding an item, the extent of the item set almost
certainly changes, thus affecting basically any item
cover similarity measure.

To cope with this problem, we employed in 9

only preference relations that assign a numeric value
to each pattern (potential function) and establish a
preference by simply comparing these values. This
allows for a faster pattern set reduction scheme:
the patterns are sorted descendingly w.r.t. the value
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assigned to them and all patterns are marked as
selectable. Then the following candidate selec-
tion is repeated until no selectable patterns remain:
the selectable pattern with the highest evaluation is
marked as a candidate and all subsets of this pattern
that are further down in the list are marked as ex-
cluded. This leaves a (usually considerably) reduced
list of candidate patterns, which is further reduced
as follows: for each candidate pattern it is checked
whether there exists (among all patterns, including
the ones marked as excluded) a subset with a better
evaluation. If such a subset exists, the candidate pat-
tern is marked as excluded. Finally only the patterns
not marked as excluded are returned. Although this
procedure still has quadratic time complexity in the
worst case, it is usually much faster in practice.

6. Experiments

In order to test our algorithm, we generated artificial
data sets, so that we know what can (and should)
be found in these data sets. Using real-world data
sets at the stage of method development (and this
is what we do here: we develop a method to effec-
tively and efficiently detect statistically significant
synchronous activity in sequence data) is not pos-
sible, because for a real-world data set—especially
from the area of neural spike train analysis, our mo-
tivating application area—no one can tell (yet) what
a correct result would be. However, the parameters
we used for generating data sets are inspired by the
properties of actual parallel neural spike trains and
the current technological possibilities for recording
them: we consider 100 items (or neurons), which
is in line with the sizes of current multi-electrode
arrays, a recording length of 3s (in neurobiological
practice recording times range from a few seconds
to about half an hour), and an average item rate of
20Hz, which is a typical average physiological fir-
ing rate of biological neurons.

Since our objective is to improve the sensitiv-
ity of detecting synchronous spiking in groups of
neurons with a (comparatively) low firing rate in
the presence of neurons with a (much) higher fir-
ing rate, we split the 100 items into 4 groups with
25 items each and item occurrence rates of 8, 16,

24, and 32Hz, respectively (thus obtaining an over-
all average rate of 20Hz). All item occurrences
are generated as independent stationary Poisson pro-
cesses. Starting from this basic setup we generate
1000 data sets for each pattern signature ⟨z,c⟩ ∈
{2, . . . ,12}2, injecting a pattern with that signature
into the group of 25 items with 8Hz occurrence rate.
This is done by sampling c points in time uniformly
from the recording period of 3s, which are then jit-
tered for each of the z items individually by adding
random offsets that are sampled from the interval
[−1ms,+1ms]. The remaining (background) item
occurrences are generated as independent stationary
Poisson processes with rates (8−c/3)Hz (where the
3 refers to the recording period length of 3s), thus
obtaining a combined item occurrence rate of 8Hz.

Note, however, that this does not mean that our
method focuses solely on detecting synchronous ac-
tivity among the items in this group (for which we
could just as well restrict the analysis to this sub-
group, with possibly better results). Our method
rather places no restrictions on the combinations of
items, so that any mixture of items with high or low
occurrence rates could constitute a pattern, which
our method would be able to detect. We merely
chose to inject synchronous activity into the group
with lowest rate, because this demonstrates the ad-
vantages of our method most distinctly.

For each data set with an injected pattern we
mined (closed) frequent synchronous patterns with
the extended version of CoCoNAD we developed,
using influence map overlap support or (also) item
cover similarity to guide the search. We employed
an influence map width of 3ms and a minimum sup-
port threshold of 1 (in accordance with the choices
in 9), while no minimum item cover similarity
threshold was employed. That is, we effectively
mined the same set of patterns in both cases, but en-
dowed them with the additional information of the
item cover similarity in the latter.

For pattern spectrum filtering we generated
10,000 independent data sets with the same param-
eters stated above, but without any injected syn-
chronous patterns. These data sets were mined for
(closed) frequent synchronous patterns with the ex-
tended version of CoCoNAD we developed, in es-
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sentially the same way as we mined the data sets
with injected patterns (influence map width 3ms,
minimum support threshold 1, cf. 9). For each pat-
tern size we recorded the largest item cover similar-
ity (or largest influence map overlap support, respec-
tively) that occurs for patterns of this size. These
values constitute the significance decision border:
any pattern in the data to analyze that achieves a
higher item cover similarity (or influence map over-
lap support, respectively) than the maximum ob-
served for the same pattern size in any of these data
sets will be labeled significant.

Note that, in a strict sense, this procedure is a
shortcut, because in principle we should generate
new surrogate data sets for each of the data sets with
an injected pattern. However, since with the de-
scribed setup we have to analyze 121,000 data sets
(11 sizes × 11 numbers of coincidences × 1000 data
sets), generating several thousand separate surrogate
data sets for each of them is impossible. In order to
obtain a feasible procedure, we use the single pat-
tern spectrum derived from the 10,000 independent
data sets for all detection runs. This is admissible,
because all of these data sets share the same basic
properties (same parameters) and therefore the dif-
ferences between using a pattern spectrum derived
from such independent data sets or one derived from
specific surrogate data sets are negligible.

The remaining patterns are reduced with pattern
set reduction, using (z−1) · (c+0.15z) as the eval-
uation measure (in accordance with 9) for both se-
tups. That is, even if item cover similarity was used
for pattern spectrum filtering, the remaining patterns
were reduced based on influence map overlap sup-
port. The reason for this choice is that experiments
in which we tried to base pattern set reduction on
item cover similarity as well always produced some-
what worse results. With the reduced pattern set it is
then checked whether the injected pattern was found
and what other patterns were returned instead of or
in addition to the injected pattern.

The results are depicted in Figures 3 to 6, of
which the first two refer to influence map over-
lap support and the latter two to item cover sim-
ilarity. Since all of the item cover similarity
measures we tried (Jaccard/Tanimoto, Kulczynski,

Dice/Sørensen/Czekanowski, Sokal&Sneath) pro-
duced almost the same results, we only show the
results for the Jaccard measure. However, the com-
plete set of results can found on the web page stated
in section 8.

As can be seen in Figures 3 and 4, the detec-
tion quality is already fairly good with influence
map overlap support, provided the injected pattern is
sufficiently large or exhibits sufficiently many syn-
chronous events. However, compared to the results
in 9, in which all 100 neurons had the same firing
rate of 20Hz, a larger pattern size or more coinci-
dences are needed for a reliable detection. The rea-
son for this is, of course, that the items with a larger
firing rate increase the decision border by producing
more and larger chance coincidences, which make
the pattern detection more difficult.

In contrast, the results based on item cover sim-
ilarity show a much larger sensitivity, especially for
patterns with 3 to 5 items, which are detected with
considerably fewer coincidences, as can be seen
from a comparison of Figures 5 and 3. Alternatively,
we may say that patterns can be detected with about
two items less than with influence map overlap sup-
port.

However, at first sight, a comparison of Figures 6
and 4 seems to indicate that this improvement comes
at the price of more patterns that are not the in-
jected one (like subsets, supersets and overlap pat-
terns). However, a closer look reveals that these ad-
ditional patterns occur mainly for pattern signatures
for which an influence map overlap support does not
produce any output at all. Clearly, it is preferable to
detect actually present patterns at the price of a few
subset or overlap patterns in some runs. Note also
that the vertical axis has a logarithmic scale and thus
that in most cases in 90% of all runs no subset pat-
tern is produced. Merely overlap patterns become
slightly more frequent, though mainly for very low
numbers of coincidences.
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Fig. 3. Experimental results with influence map overlap
support: pattern spectrum and detection performance. Trial
runs in which patterns other than the actual (injected) pat-
tern are returned are few and concern mainly patterns with
few coincidences, where a superset may be detected. De-
tails about these additional patterns (divided into supersets,
subsets, overlap and unrelated patterns) are depicted in Fig-
ure 4.
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support: average numbers of patterns other than the actual
(injected) pattern per data set. These patterns may be pro-
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dition, as can be seen by comparing the diagram with the
false negative diagrams in Figure 3.
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Fig. 5. Results with Jaccard similarity: pattern spectrum
and detection performance. Note the lower number of false
negatives compared to Figure 3. Trial runs in which pat-
terns other than the actual (injected) pattern are returned
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dences, where a superset may be detected. Details about
these additional patterns (divided into supersets, subsets,
overlap and unrelated patterns) are depicted in Figure 6.
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Fig. 6. Results with Jaccard similarity: average numbers of
patterns other than the actual (injected) pattern per data set.
These patterns may be produced instead of or in addition to
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More patterns compared to Figure 4 occur mainly where no
detection was possible with influence map overlap support.
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without injected patterns
width w cov.sim. execution time

3.0ms none 36.08ms
3.0ms Jaccard 51.48ms
4.5ms none 92.29ms
4.5ms Jaccard 139.14ms

with one injected pattern
width w cov.sim. jitter pat.size z #coins. c execution time

3.0ms none 2.0ms 8 8 45.04ms
3.0ms Jaccard 2.0ms 8 8 64.92ms
3.0ms none 2.0ms 12 12 114.15ms
3.0ms Jaccard 2.0ms 12 12 594.63ms
4.5ms none 3.0ms 8 8 111.86ms
4.5ms Jaccard 3.0ms 8 8 171.90ms
4.5ms none 3.0ms 12 12 252.33ms
4.5ms Jaccard 3.0ms 12 12 1707.98ms

Table 3. Execution times of individual detection runs on data
sets with the parameters stated in the text. All times were com-
puted as averages over 1000 runs. The top table records exe-
cution times of runs for establishing a pattern spectrum (that is,
on data without injected patterns) while the bottom table shows
execution times for data with injected patterns with two differ-
ent pattern signatures. The pattern set reduction was carried out
with the methods that we found to be best (see text).

In order to give a rough idea of the execution
times needed by our methodology, we report some
time measurements from our experiments as we de-
scribed them above, Table 3.∗However, we caution
a reader not to over-interpret these numbers. Actual
execution times on specific data sets differ widely,
depending on the parameters of the data (like the
number of neurons, their firing rates, the chosen
window width, the patterns that are contained etc.).
In order to get a better idea of execution times on
data a reader wants to apply our method to, we re-
fer to the software we made publicly available (see
below), with which concrete experiments can easily
be carried out. The times show that at least for the
parameters we chose the execution is very fast and
usually consumes only a fraction of a second per de-
tection run. If the patterns become larger, both the
computation of the similarity measure as well as the
pattern set reduction (mainly the latter) lead to in-
creases of the computation time. However, at least
in this context, the execution times stay within very
reasonable limits and thus it should not be too prob-
lematic to enlarge the window width if required.

7. Conclusions

We presented an extension of the CoCoNAD al-
gorithm and its accompanying methodology to sin-
gle out significant and relevant synchronous patterns
with the help of pattern spectrum filtering (PSF) and
pattern set reduction (PSR) that improves the detec-
tion sensitivity by taking the individual item rates
into account. This is achieved by basing pattern
spectrum filtering upon item cover similarity mea-
sures (like the Jaccard index) transferred to a con-
tinuous (time) domain. The core idea is that in this
way the ratio of coincident occurrences to the total
number of occurrences of some items (rather than
merely the number of coincident occurrences and
their precision of synchrony) determines whether a
synchronous event is significant or not. Detection
sensitivity is thus improved, because the same num-
ber of occurrences can be a chance event among
items having high occurrence rates, but a (statisti-
cally) significant event among items having low fir-
ing rates. Pattern set reduction still employs influ-
ence map overlap support, though, because for com-
paring filtered patterns the number of synchronous
events and the precision of synchrony is better suited
than an item cover similarity measure. This com-
bined methodology leads to a considerable improve-
ment if patterns are potentially disguised by (many)
items with a high occurrence rate, as we demon-
strated with extensive experiments on artificial data
sets.

8. Software and Result Diagrams

The described variant of the CoCoNAD algorithm
is available as a command line program ccn-ovl as
part of the basic CoCoNAD package

http://www.borgelt.net/coconad.html

and as a special function in the corresponding
Python extension module

http://www.borgelt.net/pycoco.html

The Python scripts with which we conducted our ex-
periments as well as the full set of result diagrams
we produced can be found at

∗ All experiments were run on an Intel Core 2 Quad Q9650@3GHz system with 8GB of main memory under Ubuntu Linux 16.04; the
Python extension library—written in C—was compiled with gcc 5.3.1, the scripts were executed with Python 2.7.11.
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http://www.borgelt.net/cocojim.html

With the efficient implementation of the command
line program as well as the Python extension library,
a single analysis run (one data set) in our experi-
ments takes only a fraction of a second. The most
costly part is the generation of the pattern spectrum,
since it involves analyzing 10,000 data sets, but even
this takes only a few minutes. Running the whole
set of experiments, however, can take several hours,
due to the huge number of data sets (> 100,000) that
need to be generated and analyzed in several ways.
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la Société Vaudoise des Sciences Naturelles, 37:547–
579, 1901.

14. R.M. Karp. Reducibility among combinatorial prob-
lems. In R.E. Miller and J.W. Thatcher, editors, Com-
plexity of Computer Computations, pages 85–103.
Plenum Press, New York, NY, USA, 1972.

15. E.P. Klement, R. Mesiar, and E. Pap. Triangular
Norms. Kluwer, Dordrecht, Netherlands, 2000.

16. P. König, A.K. Engel, and W. Singer. Integrator or
coincidence detector? the role of the cortical neuron
revisited. Trends in Neurosciences, 19(4):130–137,
1996.

17. S. Kulczynski. Classe des sciences mathématiques et
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