
Active Fuzzy Weighting Ensemble for Dealing with Concept Drift

Fan Dong 1 2, Jie Lu 2, Guangquan Zhang 2, Kan Li 1

1 School of Computer Science and Technology, Beijing Institute of Technology,
5 Zhongguancun South Street, Haidian District, Beijing 100081, China

2 Centre for Artificial Intelligence, University of Technology Sydney
15 Broadway, Ultimo, New South Wales 2007, Australia

Abstract

The concept drift problem is a pervasive phenomenon in real-world data stream applications. It makes
well-trained static learning models lose accuracy and become outdated as time goes by. The existence
of different types of concept drift makes it more difficult for learning algorithms to track. This paper
proposes a novel adaptive ensemble algorithm, the Active Fuzzy Weighting Ensemble, to handle data
streams involving concept drift. During the processing of data instances in the data streams, our algorithm
first identifies whether or not a drift occurs. Once a drift is confirmed, it uses data instances accumulated
by the drift detection method to create a new base classifier. Then, it applies fuzzy instance weighting and
a dynamic voting strategy to organize all the existing base classifiers to construct an ensemble learning
model. Experimental evaluations on seven datasets show that our proposed algorithm can shorten the
recovery time of accuracy drop when concept drift occurs, adapt to different types of concept drift, and
obtain better performance with less computation costs than the other adaptive ensembles.

Keywords: concept drift, change detection, ensemble learning, data streams

1. Introduction

Concept drift refers to unforeseeable changes in the

underlying data distribution of data streams over

time. Data in non-stationary environments always

involves concept drift and is a very pervasive phe-

nomenon in real-world applications, such as changes

in user interest in recommender systems, the emer-

gence of new types of spam in email filtering sys-

tems, or the evolution of fraud methods in electronic

transactions, to name a few1. If the concept drift

occurs, the patterns which have been induced from

past data may not be relevant to the new data, lead-

ing to poor decision-making outcomes2 or inappro-

priate recommendation3. Learning from such a non-

stationary environment becomes a critical problem

when applying machine-learning techniques on real-

world applications. There are four types of con-

cept drift: sudden drift, gradual drift, incremental

drift and reoccurring concepts4. In most real-world

applications, data is organized in the form of data

streams, in which the nature or rate of drift is vari-

ous and convoluted5, making it more challenging to

learn knowledge from data streams involving con-

cept drift.

Through a comprehensive analysis of existing

literature, we summary that there are three types of

approaches that deal with concept drift: retraining

models, adaptive models, and adaptive ensembles.

The retraining models focus on detecting when a

drift occurs. When a drift is detected, there is a

mechanism that indicates the learner to retrain its

model using recently instances that reflect the cur-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

438

Received 13 October 2017

Accepted 22 December 2017

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

rent data distribution. The drift detection method

is usually conducted by statistical theory that mon-

itors the outputs (error) of learners6,7,8 or monitors

the underlying data distribution9,10,11,12,13,14. Adap-

tive models15,16,17 have the ability to partially up-

date themselves when the underlying data distribu-

tion changes. This approach is arguably more effi-

cient when drift only occurs in local regions. How-

ever these two approaches usually have a restrictive

assumption that there are no reoccurring concepts in

the data stream. Adaptive ensembles18,19,20,21, using

novel voting strategies to combine several base clas-

sifiers, can handle different types of concept drift,

however their computation costs is high.

Motivated by these issues above, we propose a

novel adaptive ensemble algorithm, Active Fuzzy

Weighting Ensemble, to dealing with data streams

involving concept drift. The main idea is to inte-

grating the drift detection method into an adaptive

ensemble learning model. By monitoring distance-

error-rate of the ensemble learning model, our al-

gorithm has the ability to indicate when a drift oc-

curs, therefore we can create a new base classifier

on demand. We use fuzzy instance weighting and

a dynamic voting strategy to organize all the exist-

ing base classifiers to construct an ensemble learning

model for to make the final prediction. Our proposed

algorithm can shorten the recovery time of accuracy

drop when concept drift occurs, adapt to different

types of concept drift, and obtain better performance

with less computation costs than the other adaptive

ensembles.

This paper is organized as follows. Section 2 re-

views the literature on the approaches dealing with

concept drift. Section 3 presents a preliminary study

related to our proposed algorithm. Section 4 pro-

poses our Active Fuzzy Weighting Ensemble algo-

rithm. Section 5 evaluates our proposed algorithm

with seven datasets. Section 6 summarizes the con-

clusion with a discussion of future work.

2. Literature Review

The retraining models follows a straightforward

strategy for dealing with concept drift. It retrains

a new model with recent data instances to replace

the obsolete model when concept drift occurs. An

explicit concept drift detector is required to decide

when to retrain the model. One of the most high

concept drift detection algorithms is the Drift Detec-

tion Method (DDM)6. It monitors the online error-

rate of the base classifier to determine whether there

are changes in new incoming data. DDM can work

independently of the base classifier because it only

needs information on whether the base classifier has

classified the data instance correctly. DDM assumes

that 1) the online error-rate drops when data dis-

tribution is stationary; 2) a significant increase in

the online error-rate indicates that drift has occurred.

Similar implementations have been adopted and ap-

plied in the Early Drift Detection Method (EDDM)7,

and Dynamic Extreme Learning Machine8. Another

type of drift detection method monitors the underly-

ing data distribution. Kifer, Ben-David & Gehrke10

proposed a modified Kolmogorov-Smirnov test that

compares the cumulative distribution functions of

two data windows with all possible orderings. They

introduced a novel family of distance to measure the

two distributions. The largest difference is taken

as the test statistics, which quantitatively shows

the degree of drift. Dasu et al.11 presented an

information-theoretic-based drift detection method

which uses Kullback-Leibler divergence to measure

the difference between two sets of data within the

given past and recent window. If the dissimilarity

is proven to be statistically significantly different,

the system will trigger a learning model retraining

process. Similar distribution-based drift detection

methods are: competence model drift detection9,

fuzzy competence model drift detection12, equal

density estimation13, and nearest neighbor-based

density variation identification14.

Adaptive models partially update the existing

learning model rather than retraining an entire

learner when concept drift has occurred. This ap-

proach is arguably more efficient when drift only oc-

curs in local regions. Many models in this category

are based on the decision tree algorithm because de-

cision trees have the ability to examine and adapt

to each sub-region separately. CVFDT15 is an on-

line decision tree algorithm which can handle con-

cept drift. In CVFDT, a sliding window is main-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

439

tained to hold the latest data. An alternative sub-tree

is trained based on the window and its performance

is monitored. If the alternative sub-tree outperforms

its original counterpart, it is used for future pre-

diction and the original obsolete sub-tree is pruned.

VFDTc16 is another attempt to improve VFDT with

several enhancements: the ability to handle numer-

ical attributes; the application of naive Bayes clas-

sifiers in tree leaves and the ability to detect and

adapt to concept drift. Noise-Enhanced Fast Con-

text Switch17 is a case-base editing technique. When

a drift occurs, it only remove the data instance who

conflict with current concept from the case-base, and

keep the other data instances for further case-base

reasoning.

Adaptive ensembles that handle concept drift by

extending classical ensemble methods or by creat-

ing specific adaptive voting rules have been devel-

oped. Dynamic Weighted Majority (DWM)18 is an

ensemble method that is capable of adapting to drifts

with a simple set of weighted voting rules. It man-

ages base classifiers according to the performance

of both the individual classifiers and the global en-

semble. If the ensemble incorrectly predicts an in-

stance, DWM will train a new base classifier and add

it to the ensemble. If a base classifier incorrectly

predicts an instance, DWM reduces its weight by a

factor. When the weight of a base classifier drops

below a user defined threshold, DWM removes it

from the ensemble. Learn++.NSE (NSE)19 has the

advantage of being able to handle any type of con-

cept drift. NSE does not store history data, only the

latest batch of data and the base classifiers trained by

each batch of data. Underperforming classifiers can

be reactivated or deactivated as needed by adjust-

ing their weights. Other adaptive ensemble strate-

gies have been applied to handle concept drift, such

as hierarchical ensemble structure20 and short-long

term memory21.

Due to strategies being constantly updated, re-

training models and adaptive models do not han-

dle reoccurring concepts better than adaptive ensem-

bles. However, adaptive ensembles usually have

high computation costs as they need to use a dy-

namic voting strategy to maintain several base clas-

sifiers.

3. Preliminary study

In this section, we present some preliminary stud-

ies related to our proposed algorithm, including

the problem of concept drift (Section 3.1), the

Early Drift Detection Method (Section 3.2), and

an adaptive ensemble algorithm Learn++.NSE (Sec-

tion 3.3).

3.1. The problem of concept drift

Concept drift is a phenomenon in which the sta-

tistical properties of a target domain change over

time in an arbitrary way9. Compared to data un-

der a stationary environment, data involving con-

cept drift should consider the time dimension. Given

a time period [0, t], a set of samples is denoted as

S0,t = {d0, . . . ,dt}, where di = (Xi,yi) is one data in-

stance, Xi is the data attributes, yi is the data label,

and S0,t follows a certain joint distribution Pt(X ,y).
Concept drift means that the data joint distribution

Pt(X ,y) changes as time shifts. A concept drift be-

tween time stamp t0 and time stamp t1 can be written

as ∃X : Pt0(X ,y) �= Pt1(X ,y), where t0 refers to the

time stamp before the concept drift, and t1 refers to

the time stamp after the concept drift4.

There are four types of concept drift as shown in

Fig. 1:

• Sudden drift: A new concept occurs within a short

time.

• Gradual drift: A new concept gradually replaces

an old one over a period of time.

• Incremental drift: An old concept incrementally

changes to a new concept over a period of time.

• Reoccurring concepts: An old concept may reoc-

cur after some time.

Ref. 22 details another types of drift based on

multiple criteria: drift speed, severity, predictability,

frequency and recurrence.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

440

Sudden
Drift:
A new concept occurs within a short time.

D
at
a

di
st
ri
bu
tio
n

Time

Gradual
Drift:
A new concept gradually replaces an old one over a period of time.

D
at
a

di
st
ri
bu
tio
n

Time

Incremental
Drift:
The old concept incrementally to new concept over a period of time.

D
at
a

di
st
ri
bu
tio
n

Time

Reoccurring
Concepts:
The old concepts may reoccur some time.

D
at
a

di
st
ri
bu
tio
n

Time

Fig. 1. An example of concept drift types.

3.2. Early drift detection method

The Early Drift Detection Method (EDDM)7 moni-

tors the online error-rate of the learning algorithm.

This method considers the distance between two

error classifications, which can improve its ability

to identify slow gradual concept drift. When this

method detects a significant decrease in the distance,

this suggests that a drift may have occurred. It cal-

culates the average distance between two errors (pi)

and its standard deviation (si =
√

pi(1− pi)/i). In

addition, it obtains pmax and smax when pi + 2 · si
reaches its maximum value. This method defines

two thresholds α = 0.95 for the warning level and

β = 0.90 for the drift level. If (pi + 2 · si)/(pmax +
2 · smax) < α , the instances will be cached in ad-

vance of a possible change of context. When (pi +
2 · si)/(pmax + 2 · smax) < β , a new learning model

will be retrained by using the instances cached since

the warning level was triggered, and then pmax and

smax are reset. However, EDDM has a limitation that

it triggers more false alarms when detecting drift on

data steams involving noise.

3.3. Learn++.NSE algorithm

Learn++.NSE19 is an adaptive ensemble learn-

ing algorithm for non-stationary environments.

Learn++.NSE is a passive ensemble learning model

which does not identify when a drift occurs. It

assumes that data are incrementally received in

batches. For each incoming data batch, this algo-

rithm creates a new base classifier, and then dynam-

ically adjusts each existing classifier voting weight

based on its time-adjusted accuracy on the latest data

batch. Its dynamic voting strategy allows the algo-

rithm to learn new knowledge, temporarily forget ir-

relevant knowledge, and then recall such knowledge

when it becomes relevant again. The final classifica-

tion decision is determined by the weighted major-

ity voting of all base classifiers. This algorithm can

track concept drift closely without making any as-

sumptions about the types of concept drift. Since

a new base classifier will be created when a new

batch of data instances is received, the complexity

of Learn++.NSE grows linearly when the number of

data instances increases.

4. Active fuzzy weighting ensemble

The Active Fuzzy Weighting Ensemble (AFWE) is

an adaptive ensemble algorithm for dealing with

data streams involving concept drift. To solve the

issue of the high computation costs of the common

adaptive ensemble algorithm, we integrate the Early

Drift Detection Method (EDDM) to monitor the on-

line distance-error-rate of the ensemble algorithm.

Therefore, we can create a new base classifier on

and to reduce unnecessary computation. We also

use fuzzy instance weighting to track the new con-

cept closely and shorten the recovery time of ac-

curacy drop when concept drift occurs. We apply

a similar dynamic voting strategy to that used in

Learn++.NSE to handle a variety of drift scenarios.

An overview of the AFWE process is shown in

Fig. 2, and the details of AFWE are listed in the

pseudo-code of Algorithm 1. Lines 1-4 show the

initial stage of AFWE. A training dataset is used to

create the first base classifier C1 to the initial ensem-

ble learning model E0. Also, the sigmoid weight

ω1
1 = 1, the normalized error ε1

1 = 1, the time stamp

s1 = 0, and the voting weight w1 = 1 are set up.

AFWE processes each instance of a data stream one

by one. At Line 6, the prediction label ŷt is ob-

tained by the majority voting of all base classifiers

of ensemble learning model Et−1 with voting weight

W . Classifiers with large voting weights provide the

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

441

most support of class. We assume the class label yt
of dt can be accessible after the prediction label ŷt
is made. Therefore, the prediction label ŷt and the

class label yt are used as input for DriftDetector
to get the current drift status at Line 7. AFWE

takes different actions for each of the three different

drift statuses ‘normal’, ‘warning’, and ‘drift’. The

DriftDetector could be any online error-based con-

cept drift detection method, while different drift de-

tection method may lead to different learning perfor-

mance on the same dataset. AFWE adopts EDDM

since it is very sensitive to sudden, gradual and in-

cremental drifts. Therefore, AFWE can react to con-

cept drift in a short time.

New data dt = (Xt ,yt) arrives,

the class label yt can be ac-

cessible after the prediction is

made

Initial Ensemble

E0 by training

dataset Dtrain

Get prediction ŷt
by the ensemble

Et−1
k (Xt)

Concept

drift

detection

Cache the

new data

D = D∪{dt}

Fuzzy instance

weighting on

data cache D

Create a new

base classi-

fier Ck+1 by

data cache D

Update ensemble

voting weight W

Reset the data

cache D = ∅

Incremental

update the latest

base classifier

Ck by dt

Read next

available data

ŷt and yt are used as input

Normal

Warning

Drift

Update Update

Init

Fig. 2. Overview of the AFWE process

If the current drift status is ‘normal’, the data

cache D resets to a null set (Line 9), whereas if

the current drift status is ‘warning’, the new data

will be cached in D (Line 13). After resetting or

caching the new data, the new ensemble Et keeps all

base classifiers in Et−1 except the latest classifier Ck.

The Ck ∈ Et will incrementally be updated with the

newly arrived data (Xt ,yt) (Lines 10-11 and 14-15).

Algorithm 1 Active Fuzzy Weighting Ensemble
Require:

Training dataset Dtrain = {(X ′1,y′1), · · · ,(X ′m,y′m)}, where

ClassLabel ∈ {1, · · · ,h}
Data cache D =∅

Data stream {(X1,y1), · · · ,(Xt ,yt)}
Supervised learning algorithm base classifier C
Online error-based concept drift detector DriftDetector
DriftDetector parameter warning level α and drift level β
Sigmoid parameter slope a, infliction point b, and period p

1: k = 1, t = 0

2: Train classifier C1 : X ′i → y′i, for (X ′i ,y′i) ∈ Dtrain, i = {1, · · · ,m}
3: Assign sigmoid weight ωk

j = 1, normalized error εk
j = 0, time stamp

sk = t and voting weight wk = 1 of classifier Ck
4: Initial ensemble Et = {Ck} and voting weight W = {wk}
5: for all t = 1,2, · · · do
6: ŷt = Et−1(Xt) = argmaxh ∑k wk · (Ck(Xt) = h)
7: Status = DriftDetector(ŷt ,yt ,α,β)
8: if Status == ‘Normal’ then
9: D =∅

10: Et = Et−1

11: Ck ∈ Et = IncrementalUpdate(Ck ∈ Et−1,Xt ← yt)
12: else if Status == ‘Warning’ then
13: D = D∪{(Xt ,yt)}
14: Et = Et−1

15: Ck ∈ Et = IncrementalUpdate(Ck ∈ Et−1,Xt ← yt)
16: else if Status == ‘Drift’ then
17: D = D∪{(Xt ,yt)} // D = {(X1,y1), · · · ,(Xn,yn)}
18: Train classifier Ck+1 : Xi→ yi, (Xi,yi) ∈ D, i = {1, · · · ,n}
19: sk+1 = t
20: Et = Et−1 ∪{Ck+1},k = k+1

21: W =∅

22: f = ∑n
i=1

(Et (Xi)�=yi)
n // The error of Et on D

23: for all i = 1, · · · ,n do
24: g = exp(−(i−n)2

2(n/3)2) // Gaussian membership function

25: if (Et(Xi) == yi) then
26: Fi = g/n
27: else
28: Fi = (f ·g)/n
29: end if
30: end for
31: Fi = Fi/∑2

i=1 Fi, for i = {1, · · ·n} // Normalize each Fi
32: for all j = 1, · · · ,k do
33: ek

j = ∑n
i=1 Fi ·

(
Cj(Xi) �= yi

)
// Evaluate Cj on D with Fi

34: if ek
j > 0.5 then

35: ek
j = 0.5

36: end if
37: εk

j = ek
j/(1− ek

j) // Normalized error εk
j of Cj

38: ωk
j = 1/(1+ exp(−a(t−s j

p −b)))

39: ωk
j = ωk

j /∑k
i= j ω i

j // Get sigmoid weight ωk
j of Cj

40: w j = log(1/∑k
i= j ω i

jε
i
j) // Get voting weight w j of Cj

41: W =W ∪{w j}
42: end for
43: end if
44: end for

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

442

We choose the latest base classifier Ck to incre-

mentally update the new data since it has obtained

knowledge of the recent data environment and has

the largest voting weight in the ensemble. When

the current drift status reaches ‘drift’, the new base

classifier will be trained and all existing base clas-

sifiers will be re-evaluated through the data cache

D. The evaluation strategy used in AFWE uses the

Learn++.NSE’s dynamic voting strategy for refer-

ence because it has the ability to handle reoccurring

concepts.

The reaction to the ‘drift’ status starts with train-

ing a new base classifier Ck+1 based on data cache D
(Line 18), recording the creating time stamp sk+1 of

Ck+1 (Line 19), and adding Ck+1 to existing ensem-

ble Et−1 to construct a new ensemble Et (Line 20).

Then, the voting weights W of all the base classifiers

are reset for further evaluation.

The adaptive ensemble evaluation strategy of

AFWE has two steps: 1) fuzzy instance weighting

on the cached data; and 2) dynamic voting strat-

egy on all existing base classifiers. The evaluation

strategy starts with fuzzy instance weighting on data

cache D, and the results are used as penalty weights

in next step dynamic voting strategy. The error f of

ensemble Et on data cache D is proportional to the

sum of misclassification of Et (Line 22). We assume

the size of current data cache D is n. For each in-

stance di ∈ D, the fuzzy instance weight Fi depends

on the prediction of Et on di. In addition, the degree

of a cached data instance that belongs to the new

concept is also considered, since there is no clear

time point to distinguish the old concept and the new

concept. After a concept drift is confirmed, a data

instance received in most recently has more confi-

dence that it belongs to the new concept. Therefore,

a data instance di ∈ D received in most recently and

misclassified by Et will be grant a higher fuzzy in-

stance weight Fi. At Line 23-30, if Et correctly clas-

sifies di, Fi = g/n, and if Et misclassified di, Fi =
(f · g)/n, where g is the degree of di belonging to

the new concept, which is calculated through mem-

bership function of fuzzy sets theory. The choice of

membership function should meet the following cri-

teria: cached data instances received in recent have

higher membership value, and cached data instances

received in past have lower membership value. In

this paper, we use Gaussian membership function as

an illustration. The other form membership func-

tions can be considered, and the different member-

ship functions may lead different learning perfor-

mance of AFWE on the same dataset. The Gaussian

membership function g = exp(−(x−μ)2

2σ2) with μ = n
and σ = n/3 determines the degree of a data instance

belonging to the new concept (Line 24). Through

adjusting parameters μ and σ , it can easily control

the ratio that how many recent data instances could

get relative higher weights, and how many past data

instances could get relative lower weights. At last,

all fuzzy instance weights are normalized by their

sum (Line 31).

The current error ek
j of Cj is calculated by the

sum of misclassified instance di ∈ D made by Cj
times with fuzzy instance weighting Fi (Line 33).

Such a fuzzy instance weight ensures that previous

recently misclassified instances are given a higher

penalty weight than those correctly classified by en-

semble Et . Any base classifier, whose error ek
j > 0.5,

has its error saturated at ek
j = 0.5 (Line 34-36). The

normalized error εk
j is mapped to interval [0,1]. εk

j =
0 represents Cj to get the best classification of D. In

contrast εk
j = 1 represent the worst classification. An

error of ek
j = 0.5 is mapped to εk

j = 1. This step will

effectively remove the base classifier whose perfor-

mance is poor on the current date cache by assigning

a zero voting weight, which is equivalent to discard-

ing the knowledge taken by that classifier. Since the

classifier is not truly removed from the ensemble,

the knowledge is temporarily removed. A reoccur-

ring concept can make an earlier classifier relevant

again by assigning a normalized error εk
j < 1 and a

positive voting weight in the next step.

The voting weight w j of Cj is not only based on

its current performance on data cache D but also

its recent average performance. The recent perfor-

mance of Cj is considered by the sum of history nor-

malized error times with a sigmoid-based weight.

The sigmoid-based weight ωk
j is calculated and nor-

malized in Line 38-39 using three parameters: pa-

rameter a defines the slope, b defines the halfway

crossing point of the sigmoid, and p defines the pe-

riod. The sigmoid weights ω i={ j,··· ,k}
j are applied

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

443

to history normalized error ε i={ j,··· ,k}
j to obtain the

recent performance of Cj. The final voting weight

w j of Cj is computed as the logarithm of the re-

cent performance of Cj and is added to ensemble

voting weights W at Lines 40-41. Under this vot-

ing weighting strategy, any classifier containing rel-

evant knowledge can receive a high voting weight

regardless of the classifier’s age. Classifier age has

no direct effect on voting weight, rather, the recent

performance of the classifier determines its voting

weight.

5. Experimental evaluation

In this section, we evaluate our proposed AFWE al-

gorithm on seven experiments: two public synthetic

concept drift datasets and five real-world datasets in-

volving concept drift. The results on the synthetic

datasets demonstrate AFWE’s behavior in relation

to different types of concept drift. The results on

the real-world datasets demonstrate AFWE’s perfor-

mance in real-world situations. The details of these

datasets are described in Section 5.1. The selected

comparison learning algorithms that handle concept

drift and evaluation measurement are discussed in

Section 5.2. Finally, we present the results analysis

and discussion in Section 5.3.

5.1. Experiment datasets

5.1.1. SEA datasets

This is a synthetic dataset simulating sudden drift,

first introduced in Ref. 23. All the data is randomly

sampled from a feature space [0,10]3. All data in-

stances are equally divided into four blocks with dif-

ferent concepts. In each block, the two class deci-

sion boundary is given by x1 +x2 = θ , where x1 and

x2 represent the first two attributes and θ is a prede-

fined threshold, and x3 is an irrelevant attribute. The

threshold θ values are 8, 9, 7, and 9.5 for the four

concept blocks. Noise is introduced by randomly

switching the label of 10% of the data instances.

The experiment is set up as follows: Each block

contains 2500 random data instances, therefore there

are a total of 10,000 data instances. The first 100

data instances from the first block are used as the

training set. The remaining 9,900 instances are clas-

sified and learned incrementally.

5.1.2. Rotating Hyperplane datasets

This is a synthetic dataset simulating incremental

drift, first introduced in Ref. 15. Ref. 24 formally

described the parameter settings, which have been

widely used in many studies. The drift in this data

set is controlled by a rotating hyperplane defined

as ∑d
i=1 aixi = a0, where d is dimension, and ai are

weights that are randomly initialized in the range of

[0,1]. Data instances are uniformly randomly sam-

pled from the feature space [0,1]d . The label of each

data instance is positive if ∑d
i=1 aixi < a0 or negative

if ∑d
i=1 aixi � a0. a0 is set to 1/2∑d

i=1 ai to guarantee

that both parts dividing the hyperplane have similar

volume. Concept drift is defined as the weights of

dimensions that change over time. The total number

of changing dimensions is denoted as K; the magni-

tude of the changes is denoted as T ; the directions of

the changes are denoted as si ∈ {−1,1},1 � i � K.

The concept changes gradually during the arrival of

N samples as the weights vary by si× T
N after each

sample. Furthermore, there is 10% possibility that

the hyperplane will reverse its rotating direction af-

ter every N instances; that is si will be replaced by

−si with a probability of 10%. a0 needs to be recom-

puted after the weights have been updated to ensure

that the overall class distribution does not change.

Noise is introduced by randomly switching the label

of 10% of the data instances.

The experiment is set up as follows: The dataset

has a total of 10,000 instances with d = 10 dimen-

sions, using K = 5, T = 0.5, and N = 1000. Con-

cept drift occurs gradually over all 10,000 instances.

The first 100 data instances are used as the training

set. The remaining 9,900 instances are classified and

learned incrementally.

5.1.3. Electricity

This dataset was first introduced in Ref. 25 and had

been widely used for evaluating the adaptive learn-

ing model. 45312 data instances were collected

from the Australian New South Wales Electricity

Market, covering a period of two years between 7

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

444

May 1996 and 5 Dec 1998. Each data instance has

8 attributes and belongs to one of two classes. The

class label is defined by whether the current price is

higher (UP) or lower (DOWN) than a moving aver-

age over the last 24 hours (or 48 instances).

5.1.4. NOAA weather

These data instances were derived from the U.S.

National Oceanic and Atmospheric Administration

and have been pre-processed to eliminate missing

values. Ref. 19 collected 50 years (1949-1999)

of weather data from the Offutt Air Force Base in

Bellevue, Nebraska, to generate a long-term precip-

itation classification drift problem. The class labels

are determined by the binary indicators which pro-

vide 18159 daily readings of rainfall: 5,698 (31%)

positive (rain) and 12,461 (69%) negative (no rain).

5.1.5. Spam email

This dataset is a collection of 9,324 emails derived

from the Spam Assassin Collection. The task is to

identify spam/legitimate email. Approximately 20%

of the emails in the Spam Assassin collection are

spam emails. The Boolean bag-of-words approach

was used to represent email instances. 500 attributes

were retrieved using the chi-square feature selection

approach26. The characteristics of the spam email in

this dataset represent gradually concept drift as time

passes26,27.

5.1.6. Usenet datasets

The Usenet 1 and Usenet 2 datasets were derived

from usenet posts that exist in the 20 Newsgroup

collection26,28. The task is to classify messages into

interesting or junk as they arrive. The dataset is split

into 5 time periods. Data instances in each time pe-

riod pertain to different user interest topics. The data

instances in each time period were concentrated to

simulate sudden/reoccurring drift26,28.

5.2. Baselines for comparison and measurement
for evaluation

To evaluate our proposed AFWE algorithm, we

compare it with four learning algorithms that han-

dle concept drift (two retraining models and two

adaptive ensembles). The selected comparison al-

gorithms are: Drift Detection Method (DDM)6,

Early Drift Detection Method (EDDM)7, Dynamic

Weighted Majority (DWM)18, and Learn++.NSE

(NSE)19. All these algorithms were implemented

based on the MOA framework29, which is a popu-

lar open source framework for data stream mining.

To make a fair comparison, the default parameters

suggested by the authors are used. The warning

level and drift level of EDDM and AFWE are set

to α = 0.95 and β = 0.90. For DWM, NSE and

AFWE, the training period p is set to 100 data in-

stances. In relation to Usenet datasets, the train-

ing period for DWM, NSE, and AFWE is set to 50.

The sigmoid parameter slope and infliction point are

set to a = 0.5 and b = 10 in NSE and AFWE. The

base classification model of all algorithms is set as

a Naive Bayes classifier. All data instances are pro-

cessed incrementally. The first 100 data instances

in each dataset, except Usenet 1 and 2, are used as

training datasets. For Usenet 1 and 2, the size of the

training dataset is 50.

In addition to classification accuracy (Acc.) and

computation time (Time), the following measure-

ments are considered for evaluation: precision of

minority class (Pre.), recall of minority class (Rec.),

and F1 score of minority class (F1), since the NOAA

weather and Spam email datasets are imbalanced. In

our experiment settings, the minority class is treated

as a positive class, and the majority class is treated

as a negative class. Pre = TP
TP+FP

, Rec = TP
TP+FN

, and

F1 = 2·Pre·Rec
Pre+Rec

. The term TP represents the num-

ber of instances correctly labeled as a positive class.

FP represent the number of instances incorrectly la-

beled as a positive class. FN represents the number

of instances incorrectly labeled as a negative class.

5.3. Results analysis and discussion

Fig. 3 and Fig. 4 show the classification accuracy

of the different learning algorithms evaluated in the

SEA dataset and the Rotating Hyperplane dataset.

The classification accuracy at each time point is re-

ported based on the most recent 500 instances. Ac-

cording to the SEA dataset settings, three sudden

drifts occur at time point 2500, 5000, and 7500. The

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

445

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Time, instances

0.75

0.80

0.85

0.90

A
cc

ur
ac

y
of

 r
ec

en
t 5

00
 in

st
an

ce
s

DDM EDDM DWM NSE AFWE

Fig. 3. Classification accuracy over sequential data streams for the SEA datasets.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Time, instances

0.76

0.82

0.88

0.94

A
cc

ur
ac

y
of

 r
ec

en
t 5

00
 in

st
an

ce
s

DDM EDDM DWM NSE AFWE

Fig. 4. Classification accuracy over sequential data streams for the Rotating Hyperplane datasets.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

446

Table 1. The performance of the learning algorithms on different datasets.

Datasets #Insts. #Attrs. #Cls. Algorithms Acc. (Rank) Pre. Rec. F1 (Rank) Time(s)

SEA 10000 3 2

DDM 0.8653 (1) 0.8613 0.9272 0.8930 (1) 0.065

EDDM 0.8521 (3) 0.8534 0.9131 0.8822 (3) 0.073

DWM 0.8362 (4) 0.8291 0.9194 0.8719 (4) 0.121

NSE 0.8335 (5) 0.8414 0.8941 0.8670 (5) 0.458

AFWE 0.8568 (2) 0.8622 0.9092 0.8851 (2) 0.119

Rotating

Hyperplane
10000 10 2

DDM 0.8378 (4) 0.8418 0.8365 0.8391 (4) 0.107

EDDM 0.8716 (3) 0.8689 0.8788 0.8738 (3) 0.113

DWM 0.8802 (2) 0.8747 0.8908 0.8827 (2) 0.328

NSE 0.8258 (5) 0.8262 0.8303 0.8282 (5) 1.484

AFWE 0.8816 (1) 0.8830 0.8830 0.8830 (1) 0.163

Electricity 45312 8 2

DDM 0.8116 (3) 0.7978 0.7453 0.7706 (3) 0.460

EDDM 0.8482 (1) 0.8206 0.8224 0.8215 (1) 0.494

DWM 0.7836 (4) 0.7892 0.6692 0.7243 (4) 2.074

NSE 0.7094 (5) 0.6590 0.6542 0.6566 (5) 14.505

AFWE 0.8241 (2) 0.8101 0.7653 0.7870 (2) 4.271

NOAA

Weather
18159 8 2

DDM 0.7065 (3) 0.5257 0.6640 0.5868 (2) 0.180

EDDM 0.7279 (1) 0.5702 0.5407 0.5551 (4) 0.227

DWM 0.6892 (5) 0.5035 0.7190 0.5923 (1) 1.393

NSE 0.6904 (4) 0.5063 0.5493 0.5270 (5) 2.677

AFWE 0.7209 (2) 0.5491 0.6197 0.5823 (3) 1.213

Spam Email 9324 499 2

DDM 0.8942 (4) 0.8402 0.7079 0.7684 (4) 1.736

EDDM 0.9073 (2) 0.8591 0.7490 0.8003 (3) 1.773

DWM 0.9069 (3) 0.8263 0.7906 0.8080 (2) 3.402

NSE 0.6004 (5) 0.3505 0.7171 0.4709 (5) 9.797

AFWE 0.9190 (1) 0.8513 0.8159 0.8332 (1) 3.785

Usenet 1 1500 913 2

DDM 0.7083 (3) 0.7471 0.6780 0.7109 (3) 0.618

EDDM 0.7628 (1) 0.7794 0.7692 0.7743 (1) 0.608

DWM 0.5779 (4) 0.6063 0.5763 0.5909 (4) 2.226

NSE 0.5028 (5) 0.5271 0.5841 0.5541 (5) 4.747

AFWE 0.7476 (2) 0.7614 0.7614 0.7614 (2) 1.052

Usenet 2 1500 99 2

DDM 0.7352 (3) 0.8551 0.7260 0.7852 (4) 0.049

EDDM 0.7386 (2) 0.8594 0.7270 0.7877 (3) 0.055

DWM 0.7124 (4) 0.7478 0.8583 0.7992 (2) 0.078

NSE 0.6497 (5) 0.8114 0.6184 0.7019 (5) 0.171

AFWE 0.7738 (1) 0.8417 0.8139 0.8276 (1) 0.060

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

447

classification accuracy of all learning algorithms

dropped immediately after drift occurs, for exam-

ple, accuracy at time point 3000, 5500, and 8000.

At time point 3500, 6000, and 8500, the accuracy of

AFWE always recovers more quickly than the other

learning algorithms. For the Rotating Hyperplane

dataset, since the concept always gradually drifts,

crossing all data instances, it makes it more chal-

lenging to track concepts as time goes on. However,

AFWE still achieves the best results after the 7000

time point.

Table 1 lists the details of all the datasets and

the performance results of all the learning algo-

rithms. The dataset details are including the num-

ber of instances (#Insts.), the number of attributes

(#Attrs.), and the number of classes (#Cls.) as

well as the accuracy and F1 score and the rank-

ing of the learning algorithms. Table 2 lists the

average performance ranking of the five learning

algorithms on seven datasets in Table 1. Since

two datasets (NOAA weather and Spam email) are

imbalanced class datasets and the other real-world

datasets might be biased, we calculate not only the

average performance ranking of accuracy, but also

the average performance ranking of F1 score of mi-

nority class.

From the results of these two tables, it can be

seen that AFWE outperforms than the other learning

algorithms on most datasets and achieves the best

average ranking of accuracy and F1 score across all

datasets. EDDM has the second best performance

because its drift detection strategy is very sensitive,

and it can retrain a new learning model in time to

track concept drift. DDM is very suitable for data

streams involving sudden drift, such as the SEA and

the Usenet datasets. However DDM cannot main-

tain good performance when dealing with compli-

cated concept drift. Adaptive ensemble DWM only

has good results on the Rotating Hyperplane and the

NOAA weather datasets. Even though NSE adopts

novel weighting strategies to combine multiple base

classifiers and claims that it can track changing data

stream regardless of the type of concept drift, the re-

sults show that it did not outperform any of the other

learning algorithms.

Table 2. The accuracy and F1 score average rank of the learning
algorithms. The bold text in the table is the best average rank.

Algorithms Acc. Avg. rank F1 Avg. rank

DDM 3.00 3.00

EDDM 1.86 2.57

DWM 3.71 2.71

NSE 4.86 5.00

AFWE 1.57 1.71

From the last column of Table 1, we can find out

that the computation time of all the adaptive ensem-

bles (DWM, NSE, and AFWE) is higher than the

retraining models since they need more computa-

tion cost to evaluate and weight the multiple base

classifiers. These extra computation costs make the

performance of the adaptive ensemble models more

stable in different data mining situations. Compared

with other adaptive ensembles, AFWE can obtain

better prediction results with less computation cost.

From these results, we conclude that AFWE can

shorten the recovery time of accuracy drop when

concept drift occurs, adapt to different types of con-

cept drift, and obtain better performance with less

computation costs than others adaptive ensembles.

6. Conclusions and further studies

In summary, this paper analyzed the characteristic of

existing concept drift adaptation algorithms. Based

on the advantages of different types of concept drift

adaptation algorithms, we proposed a novel adap-

tive ensemble algorithm, called the Active Fuzzy

Weighting Ensemble (AFWE), to deal with data

streams involving concept drift. The novelty of

AFWE is its integrated active drift detection mech-

anism, fuzzy instance weighting, and dynamic vot-

ing strategy for constructing an adaptive ensemble

learning model. An active drift detection mechanism

helps AFWE to track concept drift quickly and elim-

inate the unnecessary evaluation stage of dynamic

voting. Fuzzy instance weighting and the dynamic

voting strategy enable AFWE to accommodate a va-

riety of drift scenarios. Seven experiments, contain-

ing different types of concept drift, indicate that our

proposed algorithm can shorten the recovery time

of accuracy drop when concept drift occurs, adapt

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

448

to different types of concept drift, and obtain bet-

ter performance with less computation costs than the

other adaptive ensembles. In our future research, we

will improve our algorithm by equipping it with the

ability to identify the different types of concept drift,

and will enable it to react to different types of con-

cept drift using different dynamic voting strategies.

Acknowledgments

The work presented in this paper was supported by

the Australian Research Council (ARC) under dis-

covery grant DP150101645.

References

1. J. B. Gomes, E. Menasalvas, and P. A. Sousa, Learn-
ing recurring concepts from data streams with a
context-aware ensemble, in Proceedings of the 2011
ACM symposium on applied computing, ACM, 2011,
pp. 994–999.

2. J. Lu, J. Han, Y. Hu, and G. Zhang, Multilevel
decision-making: a survey, Information Sciences,
346–347 (2016) 463–487.

3. Q. Zhang, D. Wu, J. Lu, F. Liu, and G. Zhang, A
cross-domain recommender system with consistent
information transfer, Decision Support Systems, 104
(2017) 49–63.

4. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, A survey on concept drift adaptation,
ACM Computer Survey, 46 (4) (2014) 1–37.

5. A. Tsymbal, The problem of concept drift: defini-
tions and related work. Computer Science Depart-
ment, Trinity College Dublin, 106 (2) (2004).

6. J. Gama, P. Medas, G. Castillo, and P. Rodrigues,
Learning with drift detection, in Proceedings of
the 17th Brazilian Symposium Artificial Intelligence,
Springer, 2004, pp. 286–295.

7. M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo,
A. Bifet, R. Gavaldà, and R. Morales-Bueno, Early
drift detection method, in Proceedings of the 4th Inter-
national Workshop Knowledge Discovery from Data
Streams, 2006.

8. S. Xu and J. Wang, Dynamic extreme learning ma-
chine for data stream classification, Neurocomputing,
238 (4) (2014) 433–449.

9. N. Lu, G. Zhang, and J. Lu, Concept drift detection
via competence models, Artificial Intelligence, 209
(2014) 11–28.

10. D. Kifer, S. Ben-Dav id, and J. Gehrke, Detecting
change in data streams, in Proceedings of the 30th In-
ternational Conference Very Large Databases, VLDB

Endowment, 2004, pp. 180–191.
11. T. Dasu, S. Krishnan, S. Venkatasubramanian, and

K. Yi, An information-theoretic approach to detect-
ing changes in multi-dimensional data streams, in Pro-
ceedings of the Symposium on the Interface of Statis-
tics, Computing Science, and Applications, Citeseer,
2006, pp. 1–24.

12. F. Dong, G. Zhang, J. Lu, and K. Li, Fuzzy compe-
tence model drift detection for data-driven decision
support systems. Knowledge-Based Systems, (2017)
in press, accepted manuscript.

13. F. Gu, G. Zhang, J. Lu, and C.-T. Lin, Concept drift
detection based on equal density estimation, in Pro-
ceedings of the 2016 International Joint Conference
Neural Networks, IEEE, 2016, pp. 24–30.

14. A. Liu, J. Lu, F. Liu, and G Zhang, Accumulating re-
gional density dissimilarity for concept drift detection
in data streams, Pattern Recognition, 76 (2018) 256–
272.

15. G. Hulten, L. Spencer, and P. Domingos, Mining time-
changing data streams, in Proceedings of the 7th ACM
SIGKDD International Conference Knowledge Dis-
covery and Data Mining, ACM, 2001, pp. 97–106.

16. J. Gama, R. Rocha, and P. Medas, Accurate decision
trees for mining high-speed data streams, in Proceed-
ings of the 9th ACM SIGKDD International Confer-
ence Knowledge Discovery and Data Mining. ACM,
2003, pp. 523–528.

17. N. Lu, J. Lu, G. Zhang, and R. Lopez de Mantaras,
A concept drift-tolerant case-base editing technique,
Artificial Intelligence, 230 (2016) 108–133.

18. J. Z. Kolter and M. A. Maloof, Dynamic weighted ma-
jority: An ensemble method for drifting concepts, J.
Machine Learning Research, 8 (Dec) (2007) 2755–
2790.

19. R. Elwell and R. Polikar, Incremental learning of con-
cept drift in nonstationary environments, IEEE Trans-
actions on Neural Networks, 22 (10) (2011) 1517–
1531.

20. X.-C. Yin, K. Huang, and H.-W. Hao, De2: Dy-
namic ensemble of ensembles for learning nonstation-
ary data, Neurocomputing, 165 (2015) 14–22.

21. V. Losing, B. Hammer, and H. Wersing, Knn classifier
with self adjusting memory for heterogeneous concept
drift, in Proceedings of the 16th International Confer-
ence Data Mining, IEEE, 2016, pp. 291–300.

22. L. L. Minku, A. P. White, and Y. Xin, The impact
of diversity on online ensemble learning in the pres-
ence of concept drift, IEEE Transactions on Knowl-
edge Data Engineering, 22 (5) (2010) 730–742.

23. W. N. Street and Y. Kim, A streaming ensemble algo-
rithm (sea) for large-scale classification, in Proceed-
ings of the 7th ACM SIGKDD International Confer-
ence Knowledge Discovery and Data Mining, ACM,
2001, pp. 377–382.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

449

24. H. Wang, W. Fan, P. S. Yu, and J. Han, Mining
concept-drifting data streams using ensemble classi-
fiers, in Proceedings of the 9th ACM SIGKDD Inter-
national Conference Knowledge Discovery and Data
Mining, ACM, 2003, pp. 226–235.

25. M. Harries and N. S. Wales, Splice-2 comparative
evaluation: Electricity pricing, 1999.

26. I. Katakis, G. Tsoumakas, and I. Vlahavas, Tracking
recurring contexts using ensemble classifiers: an ap-
plication to email filtering, Knowledge and Informa-
tion Systems, 22 (3) (2009) 371–391.

27. I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades,
and I. Vlahavas, An adaptive personalized news dis-
semination system, Journal of Intelligent Information
Systems, 32 (2) (2008) 191–212.

28. I. Katakis, G. Tsoumakas, and I. P. Vlahavas, An en-
semble of classifiers for coping with recurring con-
texts in data streams, in 18th European Conference Ar-
tificial Intelligence, 2008, pp. 763–764.

29. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer,
MOA: Massive online analysis, Journal of Machine
Learning Research, 11 (May) (2010) 1601–1604.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 438–450

450

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

