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Abstract

A novel approach is proposed to complete the fault diagnosis of pumping systems automatically. Fast Dis-
crete Curvelet Transform is firstly adopted to extract features of dynamometer cards that sampled from
sucker rod pumping systems, then a sparse multi-graph regularized extreme learning machine algorithm
(SMELM) is proposed and applied as a classifier. SMELM constructs two graphs to explore the inherent
structure of the dynamometer cards: the intra-class graph expresses the relationship among data from the
same class and the inter-class graph expresses the relationship among data from different classes. By
incorporating the information of the two graphs into the objective function of extreme learning machine
(ELM), SMELM can force the outputs of data from the same class to be as same as possible and simul-
taneously force results from different classes to be as separate as possible. Different from previous ELM
models utilizing the structure of data, our graphs are constructed through sparse representation instead
of K-nearest Neighbor algorithm. Hence, there is no parameter to be decided when constructing graphs
and the graphs can reflect the relationship among data more exactly. Experiments are conducted on dy-
namometer cards acquired on the spot. Results demonstrate the efficacy of the proposed approach for
faults diagnosis in sucker rod pumping systems.

Keywords: curvelet transform; extreme learning machine; sparse representation; sucker rod pumping

systems; fault diagnosis
1. Introduction

Sucker rod pumping systems are the most common
artificial lift methods used for oil production. Nearly
90% artificially lifted wells in the world! and nearly
94% artificially lifted wells in China® adopt sucker
rod pumping systems. In production practice, sucker
rod pumping systems are not stable and many kinds
of faults can cause reduction of oil production, stop
production and even damage to equipments. There-
fore, diagnosing the faults of suck rod pumping sys-
tems automatically has been a very important re-
search subject.

Many advanced methods have been adopted to
overcome this problem. J.P. Wang, Z.F. Bao® used
a rough classifier to diagnosis faults. Y.H. He et
al* transferred the time domain signals into the
frequency domain signals and used a fuzzy math-
ematical recognition model for diagnosis of fail-
ures in pumping wells. P. Xu et al’ constructed a
self-organizing competitive neural network model to
achieve automatization of fault diagnosis. W. Wu et
al® decomposed cards to get eight energy eigenvec-
tors by using three layers of wavelet packet, and then
regard them as the input of the RBF networks. K. Li
et al’ used the moment curve method to extract the
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features of typical dynamometer cards and then used
the improved SVM method for pattern classification.
These researches show that fault diagnosis of sucker
rod pumping systems can be regarded as a process
of pattern recognition.

Feature extraction and the pattern classifica-
tion are two important factors in pattern recogni-
tion problems. For sucker rod pumping systems,
different working conditions can be represented
by the shapes of dynamometer cards. Further-
more, the differences among dynamometer cards are
mainly reflected in the scales and the directions.
Curvelet Transform is a multi-resolution method
which has been widely used to handle feature ex-
traction problems®?!%. It is not only a multi-scale
but also a multi-direction transform, so features ex-
tracted by Curvelet Transform are very sensitive to
the shapes of dynamometer cards. In this paper, Fast
Discrete Curvelet Transform (FDCT) is adopted to
extract features of dynamometer cards.

After feature extraction, an appropriate model
should be chosen to classify the dynamometer cards.
Extreme Learning Machine (ELM) proposed by
G.B. Huang et al'' is a non-iterative method that
has been proven to be an efficient model for clas-
sification. Many efforts have been made to im-
prove the performance of ELM. Recently, using the
data’s inherent structure detected by manifold learn-
ing algorithms!>!13:1415 to improve the performance
of existing machine learning methods has drawn
much attention'®!7:18:1% Y. Peng er al? used the
K-nearest Neighbor algorithm (KNN) to construct
the graphs and introduce the discriminative infor-
mation into the ELM model to improve the per-
formance, but how to choose the value of the pa-
rameter k in KNN is still a problem. Motived by
Sparsity preserving projection?! and Graph regular-
ized sparsity discriminant analysis??, we propose a
sparse multi-graph regularized extreme learning ma-
chine (SMELM) for classification. In SMELM, two
graphs: intra-class graph and inter-class graph are
constructed to utilize the inherent structure of the
training data more effectively. The intra-class graph
can reflect the similarity among data in the same
class; the inter-class graph can reflect the relation-
ship among data from different classes. These two
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graphs help to improve the performance by forc-
ing the output results of data from same class to
be as same as possible and meanwhile forcing re-
sults from different classes to be as different as pos-
sible. Different from discriminative graph regular-
ized extreme learning machines??, the sparse repre-
sentation algorithm is used instead of the KNN algo-
rithm, so there is no parameter to be decided when
constructing graphs and the elements in graph ma-
trix are not simplify set as O or 1. The graph ma-
trix calculated by sparse representation can reflect
the relationship among data more exactly so that the
proposed SMELM can achieve better performance.

2. Dynamometer card feature extraction based
on Discrete Curvelet

2.1. Dynamometer card and its properties

The dynamometer card is a closed curve of load
versus displacement. Different working conditions
of sucker rod pumping systems can be represented
by the shapes of the dynamometer cards. For ex-
amples, the condition “normal operation pump” is
reflected by a closed curve of approximate paral-
lelogram; the lower left corner of hitting bottom”
has an extra circular pattern; for “travelling valve
leakage”, the upper portion of the curve is like a
parabola; on the contrary, for ”standing valve leak-
age”, its shape is a downward arch; The curves of
“feed liquid failure” lack the right-bottom corner;
and for “sucker rod breakage”, its shape is a flat
strip curve. Some main reference patterns of con-
ditions are shown in Fig. 1. It can be seen that
the differences among dynamometer cards of differ-
ent conditions are obvious. Therefore, recognizing
the shapes of dynamometer cards can distinguish the
normal and fault conditions.

2.2. Fast Discrete Curvelet Transform

Curvelet Transform proposed by J.C. Emmanuel,
D.L. Donoho?* is one kind of Multi-resolution meth-
ods, it has been widely used for feature extraction
because of its ability to represent images at different
scales and angles. The discrete curvelet transform
provides a decomposition of the frequency space
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Fig. 1. Classes of dynamometer card patterns.

into "wedges”. A wedge is defined by the support of
the radial window and the angular window?>. The
radial window is given by:

Wi(w) = \/q>§+l(w) —®2(0),j20 (1)
where @ is defined as the inner product of low-pass

1D window:
@j(r, ) =2 0)p(2 ), 0< 9 <1 (2)
The angular window is defined as follows:
Vi(@) =V (2" /an) (3)
By introducing the set of equispaced slopes as
tan @, = [-271/2 1 = —2li/2l _ 2li/2l 1 the wedge

in the cartesian coordinate system can be described
as:

Uji(@) = W;(©)Vj(So,0) ©
where Sg, is the shear matrix of the form:
1 0
SGL_( —tanf 1 ) )
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Thus, the expression of Discrete Curvelet trans-
form can be presented as followed:

CUL LK) = / F0)T(S5' 0)e "> dw  (6)

where b &~ (kj277,k,277/2), f is the 2D FFT of the
image and j, [, k are the parameters of the scale, the
direction and the position, respectively.

In this paper, the Fast Discrete Curvelet
transform (FDCT) via Unequispaced Fast Fourier
Transform?® is utilized to extract the features of dy-
namometer cards.

2.3. Features extracted by Fast Discrete Curvelet
transform

A five-level scale fast discrete curvelet transform
is used for dynamometer cards. Every card is a
256 x 256 gray image. After the transformation,
the image composed of the curvelet coefficients at
first four scales is shown in Fig. 2. The cartesian
concentric coronas show the coefficients at differ-
ent scales. The low frequency coefficients are stored
in the center of the image while the high frequency
coefficients are stored in the outer corona®’. There
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are four strips in each corona and the strips are fur-
ther subdivided in angular wedges. The numbers of
wedges of all five scales are 1, 32, 32, 64 and 1. Ev-
ery wedge can represent coefficients at a specified
scale and orientation.

Fig. 2. Curvelet coffients of a dynamometer card at scale
Jj=0,1,2,3 in multiple directions.

The energy of each wedge?® can be adopted as
features:
Ej1=Y.|CG.LK)P ()
k
Features of six typical dynamometer cards are
shown in Fig. 3.

3. Sparse multi-graph regularized extreme
learning machines

3.1. Extreme Learning Machine

Extreme Learning Machine is a kind of single-
hidden layer feed-forward neural networks whose
input weights and the hidden layer biases are ran-
domly generated. Assuming that the number of hid-
den neurons is L, and the output function for an input
X is expressed as:

(8)

=1

where B = [Bi,...,B.] is the output weight vec-
tor between the hidden layer and the output layer.
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h(X) = [h(X),...,h(X)] is a nonlinear mapping
function, each /;(X) is defined as:
hl(X) - G(ahbi)X) (9)
where G(-) denotes an active function such as a sig-
moid function or a Gauss function. a; is the input
vector between the ith hidden node and the inputs
nodes, b; is the bias term.
Let Y denotes the label matrix, traditional ELM
aims to minimize the following objective function:

min||Hp —Y|? (10)

where H is the hidden layer output matrix denotes
as:

hi(x1)  ha(xp) hi(x1)
Ho hy (Xz) hz(:Xz) hL(:Xz) (11
hi (;(N) hZ(;(N) hL(;(N)

The output weight vector can be obtained as the
optimal solution of (10):
B=H'Y (12)
where H' is the MoorePenrose generalized inverse
of H.
A regularization term is introduced to avoid the
singularity problem when calculating H'. There-

fore, the objective function of regularized ELM can
be rewritten as:

LRI LA P
HEHQWH +§i§1\|§i\|z
st.: & =y,—h(x;)p

(13)

where &; is the error vector and A > 0 is a regular-
ization parameter. The output weight vector B in
regularized ELM can be estimated as:

1

B:aﬂH+IrﬁﬂY (14)
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Fig. 3. Features of six typical dynamometer cards

3.2. Sparse representation

Traditional signal representations such as Fourier
representation and Wavelet representation assume
that an observation signal y can be modeled as a lin-
ear combination of a set of basis functions y;:

N
= Z%“lfi
i=1

where @; is the combination coefficient.

As an extension to these classical methods,
sparse representation constructs the signal with an
over-complete set of basis functions and most coef-
ficients are set to zero. J. Wright et al*® utilized the
training samples A = [x|,x2,...,xy] € R¥*V as the
basis functions to represent the observation sample
as:

(15)

y=Aax (16)

where o = [0, 0, . . ., aty] € RV*! is the coefficient
vector.
The sparsest coefficient vector can be obtained

by solving the following optimization problem:

a = argmin||a||;

t:1y=Aa (n
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In practice, the dimension of data is always much
larger than the number of samples, so it is hard to get
the over-complete dictionary. In this case, the spars-
est coefficient vector can be obtained by simultane-
ously minimizing both the reconstruction error and
the norm of coefficient vector, and turned to solve
the following optimization problem:

o/ = argmin||a||,
18
t.:y=A'd (18)

where A’ = [A,I] € R¥*(V+d),
3.3. Sparse multi-graph regularized extreme
learning machines

M. Belkin et al*® proposed a manifold framework to
estimate unknown functions:

J=argminlV +0]|ful*+ 0[] (19)
where V is the loss function, fy represents the com-
plexity of the unknown functions and f; represents
the inherent structure of the samples. 6 and 1} are the
tradeoff parameters. Suppose that we have a train-
ing set X = {X! X?,... X} = {x1,x2,..., x5} of N
samples, where x; € RYi=1,2,...,N and d is the
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dimensionality. There are C classes and each class
has N, samples, where k = 1,2,...,C. In traditional
methods, The inherent structure can be expressed by
constructing one graph G =<V, E; W >, where V is
the vertex set in which each vertex represents a data
x;, E is the edge set in which each edge means the
relationship between two vertexes, and the weights
of the edges form the weight matrix of W.

To improve the discriminative ability of ELM,
motived by manifold learning methods®'?2, we con-
struct two graphs: the intra-class graph Gipyya =<
X,7,R > and the inter-class graph Giper =<
X,86,D >.

The intra-class graph can reflect the similarity
among data of same class. For every sample x}" in
the mth class, its corresponding over-complete dic-
tionary includes all the samples in X" except x" i.e.
X = [ X ] € RN )
can be represented as:

Y = argmin||y"[|;
s.t.:xjt = X"y

where 7;” — [ﬂﬁ’%’""mfl’erl’""’}{nNm] €

RWn=1)x1 s the coefficient vector. The intra-class
weight matrix R can be calculated as:

(20)

R 0 -~ 0
0O R2 .- 0

R = (21)
0 0 R¢

where the matrix R” denotes the similarity among
samples in mth class. Elements of R” can be calcu-

lated as:
Y, 0>
r = 0, i=j
Vo, i<
To improve the discriminative ability, we hope

that the output results of similar samples from the
same class are as close as possible:

(22)

1
min fiprg = EZFUHf(xi) —f(xj)Hz
i,j

= Zf(xi)ztﬁ + Zf(xi)f(xj)rij (23)
i i,j
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= fTTf — ' Rf = £7 Ly f

where Ling, =T —R, T is a diagonal matrix that can
be calculated as:
Li = Zi’i j
i

The inter-class graph can represent the rela-
tionship among data in different classes. For
every x;' from the mth class, its correspond-
ing over-complete dictionary includes all data ex-
cept the samples from mth class ie. X"

(24)

{Xl X2 xn—1 xm+tl XC} c RAX(N=Np) X;
) P Y P > 1
can be represented as:
o/" = argmin||8/"||; 25)

s.toxlt = X"

ml ¢m2 ¢m?2 gm2
9 i,N[ ,6"1 ,6~72 ,5~73 goeeey

m__rsml ¢m,l
where 6" =[5;",8;, ... ) ; )

] 1

m,2 mm—1 gmm—1 ¢mm—1 mm—1 gmm+1
Oinyr -0 20y 65 LGy .0
mm+1 gmm+1 m,m+1 m,C ¢m,C ¢m,C
Y i SR VAN Y 1 Y i

5im1(lf] e RW=Nw)x1 is the coefficient vector. The
inter-class weight matrix D can be calculated as:

0 D2,l D3’1 DC,l
D172 0 D3,2 DC’Z
D= (26)
Di,C Dé,C Dé,C . 0

where D" denotes the relationship among samples
in mth class and samples in nth class. Elements in
D™ can be calculated as:

mn __ Smn
dij" =6;;

To improve the discriminative ability, we hope
that the output results of similar samples from dif-
ferent classes are as different as possible:

1
maxfinter = Ezdlef(xJ _f(xj)||2
L,J

27

= Y F) v+ Y f () fxj)dij (28)

=f'VE—'Df = f L, f

where Liyr = V—D, V is a diagonal matrix that can
be calculated as:
vii = Y dij
i

(29)

)
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However, the elements in the coefficient vector
calculated by sparse representation are not guaran-
teed to be greater than zero. For the intra-class
graph, the negative element will transform the ob-
jective function (23) into:

1
maxfintra: §Z|rl’j”’f(xi)_f(xj)”2 (30)
LJ

Eq. (30) means that, a larger |r;;| will make the
output results f(x;) and f(x;) to be more different,
although x; and x; are from the same class.

Similarly, for the inter-class graph, the negative
element will transform the objective function (28)
into:

1
min fier = 5 ¥ |di LF )~ S)IP - BD)
L

Eq. (31) means that, a larger |d;;| will make the
output results f(x;) and f(x;) to be more similar, al-
though x; and x; are from different classes. The ob-
jective function (30) and (31) will obviously reduce
the discriminative ability.

In classical methods, when x; belongs to the set
of k nearest neighbors of x;, the edge between x;
and x; is set to 1; otherwise, the edge between x;
and x; is set to 0. The sparse coefficients calcu-
lated through sparse representation can reflect the
relationship among samples. The greater coefficient
corresponds to the more similar pairwise samples.
When constructing graphs via sparse representation,
a positive coefficient means that x; and x; are similar,
so x; can be regarded in the set of k nearest neigh-
bors of x;; a negative coefficient means that x; and
x; are not similar so we can deem that x; is not in
the set of k nearest neighbors of x;. Therefore, ele-
ments in intra-class graph and inter-class graph can
be recalculated as:

p(), >
r’;} = 0, i=j (32)
p(%—l)? i< ]
and N
di,f —P(Si,f ) (33)
where
x,x>0
o ={ 5320 64
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Combine (23) and (28), || f;||? in (19) has the fol-
lowing expression:

T
||f1||2 =Tr (fT (Linteril/z) Lintra<Linteril/2)f) (35)

According to (8) and (10), choose the following
loss function V:
V=|[HB-Y|? (36)

where Y = [y1,y2,...,yn] € ROV is the label matrix,
and || fy||? in (19) has the following expression:

I full* = 1181 (37)
Substituting (35) (36) (37) into (19):
f = argmin[|[HB — Y||* + 0||B||* (38)

T
+ T'TI' (BTHT (Linteril/z) Lintra(Linteril/Z)Hﬁ)]

Differentiating it with respect to 3, and the out-
put weight vector B can be estimated as:

B\ = (nHT(Linteril/z)
+H'H+0601) 'H'Y

T _
Lintra (Linter 12 ) H

(39)

Based on the above discussion, the SMELM al-
gorithm is summarized as Algorithm 1.

4. Experiments

4.1. Experiments results

In order to verify the correctness and validity of
the proposed approach, experiments are carried out
on dynamometer cards that sampled from LiaoHe
oil fields, China. The dynamometer cards set in-
cludes six classes which are: “normal operation”;
hitting bottom”; “travelling valve leakage”; stand-
ing valve leakage”; “feed liquid failure” and “’sucker
rod breakage”. Each class has 30 samples. FDCT is
adopted on each dynamometer card to extract fea-
tures. We randomly select 25 samples per class
as training samples and the rest samples are used
for testing. Repeat the segmentation process for 15
times to make better estimates of the accuracy. The
sigmoid function is selected as the active function



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 428-437

Algorithm 1 Sparse multi-graph regularized extreme learning machine algorithm

Input: Training set X = {X!,..., X} = {xi,...
ber of hidden nodes L; the parameters 6 and n;
Output: Output weight vector 3;

Compute the hidden layer output matrix H;

AN O i ol S

Compute f3 according to by (39).

,xN},xi ERd,i: 1,2,...

,N; the activation function G;the num-

: Randomly initialize the input vector ¢; and the bias term b;, i = 1,2,...,L;

For every sample in training set X, calculate its sparse representation according to (20) and (25);
Construct the intra-class weight matrix R according to (21) and (22);
Construct the inter-class weight matrix D according to (26) and (27);

for SMELM. The whole procedure of fault diagno-

sis in sucker rod pumping systems is shown in Fig.
4.

Training
samples

|

FDCV to extract
features

Testing samples

| A 4

v

Construct the
inter-class graph

v

Construct the
intra-class graph

FDCV to extract
features

v

Calculate the
output weight
vector

v

Results of fault
diagnosis

Fig. 4. The flow chart of fault diagnosis in sucker rod pump-
ing systems.

The proposed method is compared with the al-
gorithms of ordinary ELM, discriminative mani-
fold extreme learning machine (DMELM), Sup-
port Vector Machine (SVM) and BP neural network
(BPNN). Fig. 5 shows the accuracy curve of dif-
ferent algorithms over different splittings. It can be
found the proposed SMELM gets the best accuracy.
More specifically, with the help of the information
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of data’s inherent structure, the accuracy curve of
SMELM and DMELM are both higher than the one
of ordinary ELM, SVM and BPNN. Utilizing the
sparse representation method to construct graphs,
SMELM achieves better discriminative ability than
DMELM because the sparse coefficients can reflect
the relationship among samples more effectively.

95

9Q0r

A
g:‘ & <>\ /@o
= ¥ 4 7 Ao
Sas| "
3
[}
£ —o—SMELM
—+—DMELM
SVM
80r ELM
—+—BPNN
75 : :
0 5 10 15

15 different splittings

Fig. 5. Performance of different algorithms.

4.2. Parameter sensitivity analysis

There are three parameters L, 8 and 7 in the pro-
posed SMELM algorithm. Fig. 6 shows the perfor-
mance of SMELM with respect to different number
of hidden neurons L.

It can be concluded that in the case of less num-
ber of hidden neurons, the accuracy arises quickly
when the number of the hidden neurons increases;
in the case of large number of hidden neurons, the
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accuracy is no more sensitive to the increasing of
hidden neurons. Therefore, in our experiments, the
number of hidden neurons is simply set as 5 times of
the feature dimension i.e. L = 650.

100

90

80

70

Accuracy (%)

60 -

50

40

1000 1500 2000 2500

Number of hidden neurons

0 500 3000

Fig. 6. Performance according to the number of neurons.

As for the remaining two parameters: 6 and 1,
we vary their values from the following exponen-
tial sequence {107'0 ... 10'°}. Fig. 6 shows per-
formance with regard to different combinations of 6
and 7). It can be found that the optimal values of the
parameters are near 1] = 1 and @ = 104, and there is
a large flat area near the optimal values. This means
SMELM is not very sensitive to the combination of
parameters 0 and 1. A relatively large 1 can em-
phasize the samples’ inherent structure information
to achieve better performance.

Accuracy (%)

log, 4 -10 .10

Fig. 7. Performance with regard to different combinations
of 6 and 1.
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In this paper, we fixed L = 650, 1 = 1 and
6 = 10~* in the previous experiments.

5. Conclusion

In this paper, a novel approach is proposed for
faults diagnosis in sucker rod pumping systems.
First, FDCV is employed to extract features of dy-
namometer cards. Then, a novel model named
sparse multi-graph regularized extreme learning ma-
chine is proposed and applied as a classifier. In
SMELM, two graphs are constructed to explore the
inherent structure of data more exactly. The inter-
class graph shows the similarity among data from
the same class, and the inter-class graph shows the
relationship among data from different classes. With
the help of these two graphs, the discriminative abil-
ity of the ordinary ELM is enhanced. Each graph
is obtained through the sparse representation algo-
rithm to avoid the difficulty of choosing the appro-
priate parameter. The experimental results demon-
strate the effectiveness of our method for fault diag-
nosis in sucker rod pumping systems.
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