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Abstract

Recently, Neural Network Language Models have been effectively applied to many types of Natural Lan-
guage Processing (NLP) tasks. One popular type of tasks is the discovery of semantic and syntactic
regularities that support the researchers in building a lexicon. Word embedding representations are no-
tably good at discovering such linguistic regularities. We argue that two supervised learning approaches
based on word embeddings can be successfully applied to the hypernym problem, namely, utilizing em-
bedding offsets between word pairs and learning semantic projection to link the words. The offset-based
model classifies offsets as hypernym or not. The semantic projection approach trains a semantic trans-
formation matrix that ideally maps a hyponym to its hypernym. A semantic projection model can learn
a projection matrix provided that there is a sufficient number of training word pairs. However, we argue
that such models tend to learn is-a-particular-hypernym relation rather than to generalize is-a relation.
The embeddings are trained by applying both the Continuous Bag-of Words and the Skip-Gram training
models using a huge corpus in Turkish text. The main contribution of the study is the development of a
novel and efficient architecture that is well-suited to applying word embeddings approaches to the Turkish
language domain. We report that both the projection and the offset classification models give promising

and novel results for the Turkish Language.

Keywords: Word Embeddings, Semantic Relation Projection, Semantic Relation Classification.

1. Introduction

The discovery of semantic relations plays essential
role in a variety of Natural Language Processing
(NLP) tasks. As one of the important semantic re-
lations, hypernymy indicates is-a relation between
two words a and b. The notation (a — b) indicates
that a is a hyponym of b, and b is a hypernym of a,
e.g. (cat — animal).

A considerable amount of studies have been pre-
sented on hypernymy so far. Over the last two
decades, these studies generally have employed

pattern-based and distributional models. In the
pattern-based approach, the pioneer study, Ref. ',
proposed a precise acquisition methodology that re-
lies on Lexico-Syntactic Patterns (LSPs) for hyper-
nym relation. However, LSPs often suffer from low
recall. Besides, the distributional hypothesis, Ref. 3
assumes that semantically similar words share sim-
ilar contexts. Some studies have been conducted to
detect hypernymy using the distributional hypothe-
sis, Ref. 103544 For distributional similarity, each
word is represented by its contexts in the form of
a high-dimensional sparse vector and some similar-
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ity functions such as cosine similarity are used for a
comparison, Ref. 42,

High-dimensionality and sparsity can be am-
biguous and insufficient. Recently neural-network
inspired models have been effectively used for vec-
tor representation, namely word embeddings, in the
form of dense and low-dimensional real-valued vec-
tors. These model have been effectively applied to
the semantic and syntactic problems. In the sequel,
a word embedding shall be denoted as a mapping
V — RP : w — w that maps a word w from a vocab-
ulary V to a real-valued vector w in dimensionality
D.

The word embeddings are recently gaining more
attention and may help to address a broad range of
NLP applications such as multi-task learning (part-
of-speech tagging, chunking, named entity tags, se-
mantic role labeling, language model, semantically
related words) Ref. 6781341 "adjectival scales Ref.
15 text classification Ref. !®, sentiment analysis Ref.
21,3840 dependency parsing Ref. ', analogies Ref.
11,22,26,30 " paraphrase detection Ref. 37, recommen-
dation system Ref. 2 and machine translation Ref.
19

Many training approaches have been proposed
for word embeddings in Ref. “7#!. Recently, Ref.
25 showed that word embeddings are good at cap-
turing syntactic and semantic regularities, using the
vector offsets between word pairs sharing a particu-
lar relation. For example, if we denote the vector
of word as x,,,,y for comparative/superlative rela-
tion, it was found that xp;; — Xpigger ~ Xgmall — Xsmaller
> Xbig — Xbiggest = Xsmall — Xsmallest» and so on. The
vector offsets are also used to represent the shared
semantic relation between the word pairs. A well-
known example is that the offset between the vectors
for “queen” and “king” lies very close to the offset
between “woman” and “man”, i.e. Xqueen — Xking ~
Xwoman — Xman- All these examples show that the
word vectors capture the syntactic and semantic reg-
ularities. This capacity has been tested against anal-
ogy questions that are formulated as in a-b = c-d,
where d is unknown and can be estimated by the for-
mula x;= xp - x; + Xc.

Later, Ref. %* showed how word embeddings
are efficiently trained with different architectures,
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namely the Continuous Bag of Words (CBoW) and
the Skip-gram (SG) training model in order to mini-
mize computational complexity and maximize accu-
racy. These studies have often been an inspiration to
other researchers in the field for relation similarity
prediction and classification tasks.

In this study, we present and compare two ap-
proaches based on word embeddings to solve the
hypernym problem in Turkish language, namely, the
word embedding offset classification and the seman-
tic projection. While the embedding offset model
labels a given word pair as hypernym or not, the se-
mantic projection model maps the embedding of a
given word to that of its hypernym. Both approaches
are based on supervised learning and require a suf-
ficient number of labeled word pairs. We show that
these approaches are successfully and effectively ap-
plied to hypernym acquisition for the Turkish lan-

guage.

2. Related Work

Semantic relation studies include three tasks: rela-
tion acquisition, relation classification and relational
similarity. The acquisition task aims to automati-
cally extract all possible pairs in a given relation.
The classification task includes mapping a word pair
to the correct relation from a pre-defined semantic
relation set. The relation similarity measures the
similarity score between two given word pairs as ap-
plied in an analogy task. It checks if a word pair
(a,b) stands in the same relation as another word pair
(c,d).

Word embeddings approach has became the pop-
ular technique to solve these types of tasks because
of its good performance. In Ref. 22, word em-
bedding has been utilized to capture a considerable
amount of syntactic/semantic relations. The vector-
offset based methods using simple algebraic oper-
ations and cosine similarity have been successfully
applied to analogy questions. These important tech-
niques often provided insights about several differ-
ent studies on relation learning that have been pro-
posed in the literature. Ref. 32 utilized the vector
offset technique to complete the task of generating
hyponyms. An averaged vector is learned for the
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hyponym relation by averaging all the offset vectors.
Then, the averaged vector is added to a given word
to find its hypernym.

Another similar approach was applied to extract
hypernym candidates in Ref. 3'. The authors’ main
assumption was that hypernyms may be induced by
adding a vector offset to the corresponding hyponym
word embedding. However, they concluded that
the diversity involved in the complicated hypernym-
hyponym semantic relations cannot be extracted by
a simple vector embeddings offset mean. Ref. 3°
utilized the vector concatenation and difference on
the task of detecting lexical entailment and showed
that the study can be used to train a detector to
identify several different kinds of Hearst’s patterns.
Ref. %7 proposed a supervision framework to iden-
tify hypernymy relations. The authors designed a
dynamic distance-margin model to learn term em-
beddings and then used the embeddings as input fea-
tures to further train a supervised classifier to iden-
tify hypernymy.

Ref. 10 proposed another embedding-based
model to identify hypernym-hyponym relation for
Chinese language. In this model, a target word x
can be mapped to its hypernyms y based on transi-
tion matrix & such as y = ® x. The paper proposed
two projection approaches: Uniform linear projec-
tion and Piecewise linear projection. In Ref. 3°, in-
stead of the learning transition matrix @, the vector
of “is_a” token in the corpus was learned. So, the
multiplication of the vector v(w) of any given word
w and v(is_a) yields a vector that lies very close to
the vector of the hypernym of word w.

Ref. # proposed a classification model based on
embeddings to learn lexical relations with two dif-
ferent approaches: clustering and classification. The
relation types are divided into three categories: lex-
ical semantic, morphosyntactic paradigm and mor-
phosemantic relations. While many morphosyn-
tactic paradigm and morphosemantic relations were
captured by vector offsets in clustering task, lexical
semantic relations were captured well through clas-
sification task. Ref. 27 also proposed another clas-
sification model to classify the word pairs into one
of three lexical-semantic relations: co-hyponym, hy-
pernym and meronym.
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For Turkish language, Ref. 3¢ trained the word
embeddings and measured the performance of the
model against manually prepared semantic and syn-
tactic analogy questions which are considered coun-
terpart of English language Ref. 2°. Another word
embedding study in Turkish language was done by
Ref. 2°. The relations were extracted from the
Wikipedia corpus to enrich ontology.

3. Methodology

In this study, we propose two different approaches
to solve the problem of hypernym relation in Turk-
ish language; Offset-based binary classification and
semantic projection learning. Offset-based clas-
sification model takes both negative and positive
hypornym-hypernym pairs, while the negative set
includes the ones such as <chair, animal>, the posi-
tive set includes pairs such as <Denmark, country>.
A list of word pairs (w;,w;) are encoded into vector
embeddings offsets as predictors and their relation
are considered to be a binary target class as shown
in (w;,wj) — {true, false}. The problem is known
as statistical binary classification.

The second approach is based on a semantic pro-
jection that learns a semantic projection from a list
of unambiguous hypernym pairs. Once trained a
uniform transition matrix from the hypernym pairs,
it simply further maps any given word to its hyper-
nyms. The approaches based on embedding pro-
jection have been successfully applied especially in
machine translation Ref. 2°. While offset-based
classification builds a classifier by taking into ac-
count the differences of word embedding vectors,
the projection approach learns a uniform transition
matrix that maps one vector to another. While
the former needs a sufficient number of positive
and negative examples, the latter needs only posi-
tive pairs to train a model. For classification, the
most appropriate models are Support Vector Ma-
chine (SVM), Artificial Neural Network (ANN), or
logistic regression because these models conform
with numeric variables. Semantic projection can be
roughly learned using the following Eq. (1), where
a target word A can be mapped to its hypernyms B
based on a transition matrix  such as B =® A.
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As the formula is applied to training data, min-
imizing the mean squared error produces a projec-
tion matrix. It is simply considered a multiple linear
regression, since there are multiple input variables.
The most common technique recently employed in
machine learning literature is the Gradient Descent
Procedure. It consists of a process optimizing the
values of the coefficients by iteratively minimizing
the error of the linear model on training data. It
starts by assigning random values to the model co-
efficients and repeats the optimization process until
no additional improvement is possible or a specific
error threshold is achieved. In the semantic projec-
tion problem, the output is a vector of size K, rather
than a scalar value. To adopt the regression model,
we train K linear models rather than a single model
that predicts a numeric vector.

One can argue that it is a worthwhile determin-
ing whether word embeddings are efficient enough
to capture hypernym relations. The question is to de-
termine if such offset-based classifiers or a learned
projection matrix can outperform a simple baseline
algorithm and the conventional n-gram models. We
used the averaging function as baseline algorithm.
Some studies Ref. 283132 employ the averaging
function to solve the problem. They compute the
mean of hypernymy offsets and employ the mean
vectors as a stable representation of a particular se-
mantic relation. A given candidate pairs are then
evaluated on the cosine similarity closeness to the
mean vector. These studies claimed that by adding
the averaged offset to a given word one can estimate
its hypernym.

3.1. Preliminary Experiments with
Dimensionality Reduction

To see the applicability of such an approach, we
conduct some preliminary experiments. The en-
couraging observations show that offsets may have
significant potential within both the classification

@ TSNE-R: https://github.com/jdonaldson/rtsne/
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and projection models. We compiled a set of pos-
itive and negative examples; hypernym (735), non-
hypernymy (1647). All pairs were randomly and
manually selected. Hypernym relations were de-
rived from 20 unique hypernyms such as animal,
country, emotion, etc.

The embeddings have been trained from a large
Turkish corpus with size of 1.8G tokens. The
t-Distributed Stochastic Neighbor Embedding (t-
SNE) approach “s applied to understand the hidden
patterns. This is a powerful technique for dimen-
sionality reduction, particularly useful for the visu-
alization of high-dimensional data. The projection
of offsets along with their relation label is mapped
onto a 2D coordinate system as seen in Fig. 1. The
figure shows that while hypernym-hyponym rela-
tions are properly scattered in the clusters, unrelated
relations are disorderly scattered so that they can-
not be clustered. One can say that a general model
might not fit hypernym-hyponym relations, thus a
fine-grained decomposition model could be applica-
ble.

. ;’f*+

-—+- Hypernym
A Unrelated

Fig. 1. t-SNE projection of offsets for hypernym and unre-
lated pairs

Ref. 0 showed similar plotting for the Chinese
language and proposed that hypernym-hyponym re-
lations need to be decomposed into more fine-
grained sub-relations. Fig. 1 also shows dense clus-
ters associated with certain words such as country,
animal, etc. Even though such clusters include pos-
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itive and negative labels, we also observe that those
labels can be separable and a linear model can suf-
ficiently fit the data. Briefly saying, t-SNE projec-
tion indicates that the model can distinguish positive
and negative examples from each other. However,
to induce a general linear model capturing the is-a
relation is still challenging. The problem requires
more fine-grained mapping as can be deduced from
our experimental results supporting these prelimi-
nary observations.

3.2. Preliminary Experiments with Analogy
Questions

We also test our embeddings to answer the analogy
questions that are very similar to those designed in
English language by Ref. 2°. The study of Ref.
25 comprises a list of syntactic and semantic anal-
ogy questions to prove the idea that the word em-
beddings differences capture syntactic and semantic
regularities. As such, the study is able to answer
questions with about 40% accuracy in English lan-
guage. The list contains analogy questions of the
form a:b::c:d, where the question is what would the
word d be, when a,b and c are given. We find x,,xp, X,
embedding vectors and compute y=xp-x,+x.. We
search the word whose embedding vector has the
greatest cosine similarity to y and computed as in
the following Eq. (2)

XwyY
[l [ {131l

Ref. 3 complied the Turkish counterpart of this
analogy question set. It contains around 2000 anal-
ogy questions regarding semantic and syntactic reg-
ularities. The study applies the trained word em-
beddings to find the *word d’s in the questions. We
also test our trained embeddings against the same
questions. We get comparable results with previ-
ous Turkish study. Semantic questions are answered
with an accuracy of 29% and syntactic ones are an-
swered with an accuracy of 43%.

2)

w* = argmax,,

b http://www.nltk.org/

€ http://scikit-learn.org

d https://radimrehurek.com/gensim/

€ https:/github.com/savasy/TurkishWordEmbeddings
f MT™: http://www.medyatakip.com.tr
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4. Experimental Setup

In this work, the codes were mostly implemented
with the Python programming language and some
of its libraries: nltk ?sklearn¢ The word embeddings
vector was trained by the Python Gensim library ¢
R and Weka platforms were also used for obtaining
immediate results, K-fold cross validation, data vi-
sualization and some other analyses. All the code
implementations and other resources are accessible
under the Github platform “and the obtained results
are reproducible.

Thanks to MTM Media Monitoring Center, /a
textual corpus were compiled from digital archives
of the news agency in the years 2010 to 2014. The
corpus are manually categorized in several cate-
gories such as politics, economics, magazine etc. by
the company. The textual data consists of around
1.8G tokens in total. It is considered adequately rep-
resentative for deep learning studies in terms of size
and coverage. NLP tasks in Turkish mostly require
the application of a morphological analysis due to
morphologically rich structure of language. In this
work, we examine the morphological analysis to see
its contribution to the accuracy. We also skip phrase
detection phase and carry on with single tokens.

4.1. Classification

For training a model, we randomly prepared a list
of negative and positive word pairs of hyponym-
hypernym relation. The data set contains 735 pos-
itive and 1647 negative pairs. The positive list in-
cludes 20 unique hypernyms such as animal, fruits,
emotion. Once embeddings are learned from the
corpus, each word is associated with an embedding
vector of size K (300). Many studies experimentally
select the size of word vector, K. To see the impact
of vector size, we gradually vary the dimension size
K from 100 to 600, in steps of 100. Accordingly,
we decided to set the K value to 300. Ref. !° points
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that smaller contextual windows generally gets bet-
ter precision. We experimentally keep the windows
size 5.

As described before, the discovery of hypernym
relation is clearly considered a binary-class classifi-
cation wherein the hypothesis is that there is a strong
relation between offset vectors and semantic rela-
tions. The supervised models can effectively solve
semantic relations utilizing the word embedding off-
set. Independent variables, offsets, are numeric
and dependent variables, hypernym relation is bi-
nary. For such problem definition, machine learning
literature includes many algorithms; linear regres-
sion models (Logistic Regression, Stochastic Gradi-
ent Descent (SGD) classifier), Support Vector Ma-
chines (linear-SVM), k-Nearest Neighbor (KNN) as
alazy learner and Artificial Neural Network (ANN).
We choose SVM and ANN algorithms since these
algorithms perform better for numeric variables.
The kernel function of SVM is a linear kernel and
svm type is C-SVC. The loss function is epsilon-
insensitive, where the epsilon value is 0.1. ANN em-
ploys back-propagation algorithm to determine the
gradient and minimize the error. Then the gradient
is multiplied by the learning rate to learn the weights
on the network. We use only one hidden layer of
151 units, where the number of epoch is 500 and the
learning rate is 0.3. The settings are mostly default
parameters of the Weka software.

Ref. %* applied two log-linear embedding mod-
els, the Skip-Gram (SG) and Continuous Bag of
Words (CBoW) in order to induce word embedding
vectors. Such studies argue that SG performs bet-
ter for semantic relations. Ref. !° observed that
CBoW vectors give higher precision than SG for
both German and English. The study suggests that
the reason could be that CBoW vectors tend to be
slightly more syntactical compared to SG vectors.
The syntactical constraint on synonyms, as they ap-
pear in similar contexts, have enough influence for
CBoW vectors to perform better. We observe that
there is no significant differences between the SG
and CBoW training algorithms for the classification
model. As another factor in the embedding training
phase, Negative Sampling (NS) shows slightly bet-
ter performance than Hierarchical Softmax (HS).
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To evaluate the model performance, accuracy
could be misleading metric when using an imbal-
anced dataset. Imbalanced class distribution is very
predominant problem in many fields such as the
Non-Technical Losses (NTL), diagnosis of rare dis-
eases, bank fraud, earthquake detection etc. The
ratio between the majority and minority classes is
even higher than 1000/1. Ref '? addressed the im-
balanced dataset issue by giving a gentle example
for NTL problem. There is 1 NTL as positive class
against 999 non-NTL as negative class. The study
finally underlines that accuracy might lead to highly
artificial scores on such imbalanced data sets. Ref
9 also addressed the fact that the Receiver Oper-
ating Characteristics (ROC) curve has become in-
creasingly important in the presence of imbalanced
classes. The study stated that “true positive frac-
tion” and “false positive fraction” are more mean-
ingful than accuracy. The Area Under ROC Curve
(AUC) metric measures how well the classifier sep-
arates two classes since it is not sensitive to class
distribution. On the other hand, ref.* argued that
Precision-Recall Plot (PRC) could be more informa-
tive than AUC under some circumstances.

Beside, during training phase there are some
approaches to handling imbalanced datasets. Re-
sampling training data is a very common way
for the problem where we can replicate the in-
stances of under-represented (minority class), called
over-sampling, or discard the instances of over-
represented (majority class) to balance the class dis-
tribution, called under-sampling. An alternative to
the first approach is synthetically sampling minor-
ity examples other than replicating to reach the uni-
form class distribution, called SMOTE, ref *®. It ran-
domly selects an instance and produces similar syn-
thetic instances by using the distances to its neigh-
boring instances. We applied these resampling tech-
niques to our problem. Although the techniques
slightly improved F1 score of the machine learning
algorithms, they did not show any performance dif-
ferences in terms of AUC metrics.

As shown in Table 1, the ANN algorithm out-
performs other algorithms with the best F1, AUC
and PRC scores, 88.3% 97.5% and 92.8% respec-
tively. SVM with linear kernel has relatively smaller
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scores, 81.1% F1, 87.2% AUC and 70.7% PRC.
Some offset-based studies use averaging model for
classification. Instead, we employ it as a baseline al-
gorithm. Baseline algorithm using averaging model
gets low rates such as 79.8% F1, 84.1% AUC and
70.3% PRC.

The results suggests that ANN and SVM clas-
sifiers notably outperform the baseline algorithm.
The Kappa index is also helpful to check reliabil-
ity of such scores, where the Kappa value measures
how much better, or worse, a classifier is compared
with a random model. Since using accuracy only
might be misleading, Kappa Statistic compares the
accuracy of any system to the accuracy of a random
system. It compares an observed accuracy with an
expected accuracy based on random chance. The
Kappa values of three algorithm are 83.0%, 73.0%
and 70.0% in order. As a final remark, even though
the ANN has a good capacity as a classifier, the main
deficiency of ANN is its undesirable running time
complexity.

Table 1. Performances of the Classification Algorithms: The
scores are validated by 10-fold cross validation. (SR: Success
Rate, KI: Kappa Index, F1: F-Measure, P: Precision, R: Recall,
AUC: Area Under ROC, PRC: Precision-Recall AUC)

Model (%) SR KI F1 P R AUC  PRC
ANN 932 830 883 863 904 975 92.8
SVM 89 73.0 81.1 797 826 872 70.7

AVG.* 88.0 700 79.8 775 80.1 84.1 70.3

4.1.1. Challenges in Classification

Ref. ** addressed a significant issue while eval-
uating their experiments. They employ the addi-
tional constraint of prohibiting shared words be-
tween training and testing data. They conclude that
offsets-based learning methods can achieve artifi-
cially high scores as a consequence of lexical memo-
rization. The classifiers generally associate frequent
words with the hypernym relation. For example, the
terms such as bird, cat, snake all have the superclass
animal, and the model further classifies any word
pair including the frequent term animal as a positive
example. In other words, they claimed that word
embedding vectors encode some notion of general-
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ity which lets classifiers decide that a particular fre-
quent word is likely to have a hypernym relation,
irrespective of accompanying word.

We address this memorization problem by
proposing another scenario. We prepared a par-
ticular dataset that has a list of positive and negative
examples of a certain frequent hypernym. This ex-
periment is individually conducted for four different
frequent words; country, animal, occupation and
fruit. As shown in Table 2, each test implies that
offset based classifiers, where ANN is used, suc-
cessfully separate the instances as positive and nega-
tive, contrary to lexical memorization expecting that
each instance is labeled positive. Same property has
been observed to hold via t-SNE projection of the
offsets. The positive and negative offsets distribute
such a way that the placements are linearly separa-
ble. We clearly observe that a linear model might
be a good separation. Consequently, the supervised
model is able to take the second term into account
to make a decision. However, there still exists an
another issue, namely, if the training data lacks in-
stances of a particular hypernym, the models hardly
find the hypernym-hyponym relation corresponding
to the particular missing hypernym. Training algo-
rithm does not offer a generalized model for those
instances. We conducted an experiment to address

Table 2. Performance of ANN algorithm against Lexical Mem-
orization problem: Instances of a certain hypernym are taken
for training set. (SR: Success Rate, KI: Kappa Index, F1: F-
Measure, P: Precision, R: Recall, AUC: Area Under ROC, PRC:
Precision-Recall AUC)

Hypernym (%)SC ~ KI  FI P R AUC  PRC
Country 969 923 980 980 980 992 997
Animal 946 90.1 945 931 961 961 928

Occupation 955 899 97.6 965 988 979  99.0
Fruit 968 932 948 937 962 995 995

Table 3. Performance of ANN algorithm by leaving instance of
a certain hypernym out from training. (SR: Success Rate, KI:
Kappa Index, F1: F-Measure, P: Precision, R: Recall, AUC:
Area Under ROC, PRC: Precision-Recall AUC)

HypernymSC KI F1 P R AUC PRC
Country 469 0.14 441 932 289 713 88.3
Animal 41.0 -0.002 23 25 1.2 54.8 57.3
Occup. 332 -0.34 46.2 550 398 20.7 56.5

Fruit 542 0 0 0 0 64.1 53.6
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the issue, as shown in Table 3. When leaving all
instance of a particular hypernym out from training
data and using them as test set, the models get very
poor performance in terms of all measures such as
AUC, PRC, F-measure.

4.1.2. Other Factors

We investigated the impact of embeddings size,
amount of training corpus and morphological anal-
ysis. As expected, we observed that system perfor-
mance is definitely dependent on the vector size up
to an optimum point. We checked the effect of the
dimension by gradually changing the size from 100
to 600. The optimum pick point seems to be 300.
Ref. ! varied the window size, and the size of di-
mensions. They observed that the performances of
models using the CBoW are better than SG. They
also stated that the number of dimensions did not
seem to play a very important role. They obtained
the best results for dimensions of 300 and 600. They
found that the optimal contextual windows size was
about 4 for English and 8 for German. To see op-
timum corpus size, we partially use corpus ranging
from 20% to 100%. The study shows that as the
training corpus size increases, the model scores rise
slightly.

Morphological analysis is an essential phase for
many NLP problems especially in morphologically
rich language such as Turkish. On the other hand,
morphological analysis incurs a large running time
complexity. The studies regarding Big Data prob-
lems require less complex models and skip some
phases due to constraints such as resource alloca-
tion. For instance, a real-time social media analytics
handle huge data feeds instantaneously. In order to
see the contribution of a parser in terms of classifier
accuracy, we remove the suffixes and take only stem
of the tokens. We observe that there is no improve-
ment but even slight deterioration. We argue that if
the corpus size is sufficiently big, no morphological
analysis is needed.

4.2. Projection learning

The semantic projection matrix can be learned from
a sufficient list of unambiguous hypernym-hyponym
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word pairs. A projection matrix further maps a given
word embedding to an output embedding vector de-
pending on the learned task. The nearest word to
the output vector is proposed as a solution. Some
studies evaluate their model by taking first K nearest
words to the output vector into account. We only
use the first nearest word, K=1. This simple ap-
proach has been applied to various problems, such
as meronym identification, machine translation, cor-
pus alignment Ref, 17192345

We take the same hypernym set already used in
the classification model discussed in the previous
section. There exist 735 unambiguous word pairs
in which 20 unique hypernyms exist. The test phase
employs 10-fold cross validation. Table 4 shows the
performance of the projection model with respect to
three loss functions. The loss function “epsilon in-
tensive” is the most suitable one with the accuracy of
88.9%. The other two loss functions, squared loss
and squared epsilon, achieve 85.2% and 87.6% re-
spectively.
Table 4. Accuracy of the Semantic Projection Model across
three loss function

Loss Function Accuracy
SQ Loss 85.2
Epsilon_Insensitive 88.9
Sq Epsilon_Insensitive  87.6

Even though the obtained score is very promis-
ing, the essential deficiency of such a projection
learning model is that all the target words (hyper-
nyms) in training data are dominating the projec-
tions so that any given word is overwhelmingly
mapped to one of those hypernym words in train-
ing data. The model hardly maps any given word
(hyponym) to its hypernym that does not exist in the
training set. It works similarly to multi-class classifi-
cation model. It has the difficulties in learning a is-a
relation just as in the classification model. It further-
more requires at least some seed instances. One can
argue that these embedding-based approaches can
learn is-a-particular-hypernym relation rather than
is-a relation.

To see this effect, we run some additional ex-
periments using a method that leaves specific hy-
pernyms out from training as in the classification
model. In each round, a particular hypernym in-



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 371-383

stances extracted from training data are used as test
set. So the model does not learn any pattern regard-
ing that hypernym. We applied this leave-hypernym-
out validation method with some frequent words as
shown in the Table 5. Each row is associated with a
particular hypernym that is left out from the training
set and shows how the corresponding real hyponyms
incorrectly distribute under other hypernyms. Those
columns whose column sum is zero are dropped to
shrink table, such as sport, drink. We see that under
such condition the model cannot map the hyponym
to its real hypernym but to the most related ones.
E.g. the city instances are never mapped to the hy-
pernym “city” but “country” 79 times, 91%. Like-
wise, the fruits are never mapped to “fruit” but to
“vegetable” 28 times, 65%. That is, the projection
model tends to learn, to some extent, the notion of
relatedness.

However, one of the robust characteristics of the
semantic projection learning model is that even if
a few instances of a hypernym is provided in train-
ing phase, the model successfully learns the pattern.
This might give very high recall scores. We con-
ducted some experiments in order to analyze this
property. We built training data by selecting K in-
stances for each hypernym, where we vary K from
2 to 24. The model trained even with 2 instances
got a fairly remarkable result with the success score
68%. Fig. 2 shows that as the seed size increases,
the model performance naturally gets higher results.
Using more than 8 seeds lead to efficient results. The
optimum choice is around 16-18.

success
80
I

seed
Fig. 2. The performance of semantic projection by the seed
size
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4.3. Final Remarks and Discussion

We employ the offset averaging method as the base-
line algorithm. The classification model gets a suc-
cessful score of 88.3% F1, 97.5% AUC, 92.8% PRC.
It achieved 8.5% F1, 13.4% AUC and 22.5% PRC
improvement over the baseline method by 10-fold
cross validation. The Kappa values of all the clas-
sifiers are at very sufficient level. As a second ap-
proach, the projection learning model is considered
as hypernym generation model. Table 4 shows that
the model using the loss function “epsilon insensi-
tive” gets an accuracy of 88.9%, which is slightly
higher than that for the classification model. It also
outperforms the averaging model. One important
characteristic of projection learning is that training
even with few instances under each hypernym leads
to a successful classifier. We tests by varying the
seed size from 2 to 20. When using eight and more
seed instances, the projection model shows promis-
ing performance.

The main deficiency of the classification ap-
proach is that it poorly decides the instances of a par-
ticular hypernym if the training set does not include
its instances. It requires at least some seed instances.
Interestingly, the same property is observed for the
projection learning approach as well. Likewise, lack
of hypernym instances in training set leads to poor
performance for the projection learning model. For
a given hyponym, it mistakenly proposes the most
related hypernym instead of the correct one. So, the
hypernym list of training set dominates the model
such that hyponyms are consistently mapped to one
hypernym of the list.

Ref. ** and Ref. 20 assert that lexical memo-
rization is an important issue because frequent terms
always tend to be labeled hypernym by classifiers ir-
respective of accompanying words. They underline
the fact that the success ratio could be artificially
high. We checked the issue by conducting many
experiments as mentioned above. Our training data
had the frequent terms such country, animal along
with their positive and negative examples. When
we ran the classification model, it successfully sep-
arated the classes. We also designed another sce-
nario so that many positive and negative instances
of a particular frequent term are taken account as
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Table 5. Leaving a certain hypernym out: Each row associated with a particular hypernym depicts
that corresponding hypernym is left out from training set and how mappings of its real hyponyms

distribute
Predicted
city vegetable animal fruit occupation country Total
city 1 6 79 86
sport 1 5 39 45
vegetable 13 28 2 43
drink 17 8 1 1 27
Actual  animal 6 3 37 16 21 83
fruit 1 17 25 1 44
occupation 13 26 1 43 83
country 66 9 42 25 142
news 3 3 8 13 28
Total 90 30 113 38 58 87

training and test data. As shown in Table 2, the
terms country, fruit, animals, occupation were suc-
cessfully classified without lexical memorization. t-
SNE mapping of the offsets also shows these same
characteristics.

The architecture proposed in this study exhibits
a semi-automatic structure for the problem of hyper-
nymy extraction. To design a fully automatic one,
we can utilize additional methods. The classification
model needs a list of positive and negative exam-
ples for hypernyms. The semantic projection model
needs only positive examples. To designate a fully
automatic architecture, we envision the utilisation
of Lexico-Syntactic Patterns (LSPs) since they have
very high precision to produce a positive instance
for a given hypernym. In Ref. %6, a fully automatic
system for acquisition of hypernym/hyponymy re-
lations was proposed for Turkish Language. The
method relies on both LSPs and semantic similar-
ity. The model first utilized LSPs to extract seeds,
then it applied n-gram similarity based expansion to
increase recall. Likewise, we can design an auto-
mated architecture so that it takes initial pairs from
LSP patterns and expand the list by applying word
embeddings model as discussed in the paper.
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5. Conclusion

In this study, we propose two word-embedding
based approaches to solve the hypernym detection
problem in Turkish: Embedding Offset Classifica-
tion and Semantic Projection. While the former ap-
proach exploits the embedding differences of word
pairs and classifies them as hypernym or not, the lat-
ter maps a given word to its hypernym by a learned
transition matrix. Our experiments suggest that the
classification and the projection models show very
similar performances. They both achieve a substan-
tial improvement over the baseline algorithm that
uses the averaging method. We also address some
challenges. If a training set lacks an instance of a
certain hypernym, it becomes difficult for both ap-
proaches to decide on any instance of that hyper-
mym.

We show that such architectures tend to learn is-
a-particular-hypermym rather than is-a generaliza-
tion. On the other hand, if the training set includes
even few instances of hypernym, these architectures
successfully achieve the task as the experiments in-
dicate. We also check the lexical memorization issue
and report that the models do not show such a char-
acteristic and the achieved scores in the paper are
not artificially high. As a future work, syntactical
rules are also worth applying to word embeddings
especially for the Turkish language as it has mor-
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phologically rich characteristics. We hope that both
approaches discussed here can be effectively applied
to syntactics as well.
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