
Data-Intensive Service Provision Based on Particle Swarm Optimization

Lijuan Wang 1 ∗, Jun Shen2

1 School of Cyber Engineering, Xidian University, Xi’an, China
2 School of Computing and Information Technology, University of Wollongong, Wollongong, Australia

Abstract

The data-intensive service provision is characterized by the large of scale of services and data and also
the high-dimensions of QoS. However, most of the existing works failed to take into account the charac-
teristics of data-intensive services and the effect of the big data sets on the whole performance of service
provision. There are many new challenges for service provision, especially in terms of autonomy, scala-
bility, adaptability, and robustness. In this paper, we will propose a discrete particle swarm optimization
algorithm to resolve the data-intensive service provision problem. To evaluate the proposed algorithm,
we compared it with an ant colony optimization algorithm and a genetic algorithm with respect to three
performance metrics.

Keywords: data-intensive service provision; ant colony optimization; genetic algorithm; particle swarm
optimization.

1. Introduction

Data-intensive science is emerging as the fourth sci-

entific paradigm, and new techniques and technolo-

gies for the new scientific paradigm are needed.1

As a result, applications based on data-intensive ser-

vices have become one of the most challenging ap-

plications in service oriented computing and cloud

computing.2,3 The authors of Ref. 4 presented a sur-

vey of the challenges, techniques, and technologies

of data-intensive applications. For data-intensive ap-

plications, a variety of services for data mining, data

storage, data placement, data replication, data trans-

fer, and data movement have been deployed in dis-

tributed computing environments. To compose these

data-intensive services will be more challenging, es-

pecially in terms of autonomy, scalability, adaptabil-

ity, and robustness.

Ref. 4 proposed that bio-inspired computing was

one of the potential techniques to solve the data-

intensive problems. The authors stated that biolog-

ical computing models were better appropriate for

data-intensive problems because they had mecha-

nisms with high-efficiency to organize, access, and

process data. The authors of Ref. 5 already proved

that it was useful for service management and dis-

covery to add biological mechanisms to services.

In our previous work,6 we have presented a hier-

archical taxonomy of Web service composition ap-

proaches and provided a detailed analysis of each

approach. Then we found that the bio-inspired al-

gorithms could overcome the challenging require-

ments of the data-intensive service provision. It is

useful for the provision of data-intensive services to

explore key features and mechanisms of biological

systems.

In this paper, we propose a discrete particle

swarm optimization(PSO) algorithm to deal with the

∗ Corresponding author, E-mail: ljwang@xidian.edu.cn

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

330

Received 26 June 2017

Accepted 24 November 2017

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

data-intensive service provision problem. Then the

performance of the proposed algorithm is compared

with an ant colony optimization(ACO) algorithm

and a genetic algorithm(GA).

The remainder of the paper is organized as fol-

lows. In the next section, the related work is given.

Section 3 introduces the data-intensive service pro-

vision problem and the particle swarm optimization

algorithm. Section 4 presents the experimental set-

tings and numerical results. Finally, section 5 con-

cludes this paper.

2. Related Work

The process of developing a composite service is

called service composition.7 Service composition

can be performed by composing either component

Web services or composite services. The compo-

nent Web services are developed independently by

different service providers, so some services may

have same functionality but differ in quality of ser-

vice (QoS) attributes as well as other non-functional

properties. In the context of Web service composi-

tion, abstract services are the functional descriptions

of services, and concrete services represent the ex-

isting services available for potential invocation of

their functionalities and capabilities. Given a request

of composite service, which involves a set of ab-

stract services and dependency relationships among

them, there is a list of service candidate sets, which

includes many concrete services for each abstract

service. Web service selection refers to finding one

service candidate to implement each abstract service

according to users’ requirements, which is an im-

portant part of Web service composition. For each

abstract service of a composite service, the service

composition process is to bind one of its correspond-

ing concrete services and meet the constraints spec-

ified for some of the QoS attributes.8 The final goal

of the composite service construction is achieved by

solving the well-known service composition prob-

lem.

In the past ten years, bio-inspired algorithms

such as the ACO algorithm, the GA, and the PSO

algorithm have been used to solve the Web service

selection and composition problem. The ACO al-

gorithm is a probabilistic technique proposed by Dr.

Marco Dorigo in 1992 in his PhD thesis. It is widely

used for solving combinatorial optimization prob-

lems which can be reduced to finding good paths

through graphs. The authors of Ref. 9 used differ-

ent pheromones to denote different QoS attributes.

Ref. 10 modeled the Web service selection prob-

lem as a multi-objective optimization problem, and

proposed a multi-objective chaos ACO algorithm to

solve it. Ref. 11 integrated the max-min ant system

into the framework of culture algorithm to solve the

Web service selection problem.

The GA belongs to the larger class of evolu-

tionary algorithms, which generate approximate so-

lutions to optimization and search problems using

techniques inspired by the principles of natural evo-

lution: selection, crossover, and mutation. The orig-

inal GA was invented by Dr. John Holland in 1975.

The authors of Ref. 12 proposed a GA with static

and dynamic penalty strategies in the fitness func-

tion. Ref. 13 designed a repair GA to address the

Web service composition problem in the presence

of domain constraints and inter service dependen-

cies. Ref. 14 proposed a GA to conduct the service

composition, in which considering quantitative and

qualitative non-functional properties.

The PSO is one of the evolutionary computa-

tional techniques developed by Dr. Eberhart and

Dr. Kennedy in 1995, which was inspired by the

social behavior of bird flocking and fish school-

ing. The PSO algorithm finds the optimal solution

through iterations after initializing a group of ran-

dom particles. Zhang15 proposed a QoS-aware Web

service selection approach based on particle swarm

optimization. Kang and so on16 transformed the

Web service selection problem into a multi-objective

optimization problem with global QoS constraints,

then introduced a particle swarm optimization al-

gorithm to solve it. Ref. 17 presented a hybrid al-

gorithm that combined the Munkers algorithm with

particle swarm optimization to solve the Web service

composition problem.

In our previous work,18 we have presented a sur-

vey on bio-inspired algorithms for Web service com-

position. We also conducted a systematic review19

on the current research of Web service concretiza-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

331

tion based on ACO algorithms, GAs, and PSO al-

gorithms. The data-intensive service provision is

characterized by the large of scale of services and

data and also the high-dimensions of QoS. How-

ever, most of the existing works failed to take into

account the characteristics of data-intensive services

and the effect of the big data sets on the whole per-

formance of service provision. In this paper, we will

investigate the applications of the particle swarm op-

timization algorithm to solve the data-intensive ser-

vice provision problem.

3. Data-Intensive Service Provision Based on
PSO

3.1. Problem Statement

3.1.1. Data-Intensive Service Provision Problem

The data-intensive service composition problem is

an extension of the traditional service composition

problem, in which data sets as inputs and outputs

of services, are incorporated. The problem is mod-

eled as a graph, denoted as G = (V,E,D), as shown

in Fig. 1, where V = {AS1,AS2, . . . ,ASn} and E
represent the vertices and edges of the graph re-

spectively, D = {d1,d2, . . . ,dz} represents a set of

z data servers. Each edge (ASi,AS j) represent a

relationship between ASi and AS j. Each abstract

service ASi has its own service candidate set csi =
{csi,1,csi,2, . . . ,csi,m}, i ∈ {1, . . . ,n}, which includes

all concrete services to execute ASi. Each abstract

service ASi requires a set of data sets, denoted by

DT i, that are distributed on a subset of D. A binary

decision variable xi, j is the constraint used to repre-

sent only one concrete service is selected to replace

each abstract service during the process of service

composition, where xi, j is set to 1 if csi, j is selected

to replace abstract service ASi and 0 otherwise.

For simplicity, it is assumed that all data sets

needed by each service have already been distributed

in data centers prior to service composition follow-

ing a uniform distribution. In addition, we will only

consider the cost and response time of data-intensive

services.

AS1

AS2

AS3

AS5

AS6

AS7

AS4

AS9

p1

p2

AS8

l

data sets

data sets

data sets data sets

data sets data sets

data sets

data sets

data sets

Fig. 1. An example of graph for data-intensive service pro-

vision.

3.1.2. QoS Model

Consider a data-intensive service s̃ on platform y
has been chosen to implement abstract service ASi,

which is connected by links of different bandwidths

with all the data servers. The price of data set dt
is denoted by pdt , which is the fee that a data user

has to pay to the data provider for the data usage.

The size of data set dt is denoted by size(dt). Cac(s̃)
and Ctr(s̃) are used to denote the access cost and the

transfer cost of all data sets required by s̃, respec-

tively. Csr(s̃) is used to denote the service related

cost, which mainly includes the cost to provide the

service and the cost to process the data sets. The data

transfer time, Tt(dt,ddt ,y), is the time to transfer the

data set dt ∈ DT i from the remote platform ddt that

houses the data to the local platform y, which has

the service requesting the data. The cost for service

s̃, denoted by Cost(s̃), can be described by (1).

Cost(s̃) =Cac(s̃)+Ctr(s̃)+Csr(s̃)

Cac(s̃) = ∑
dt∈DT i

pdt

Ctr(s̃) = ∑
dt∈DT i

Tt(dt,ddt ,y)∗ tcost

Tt(dt,ddt ,y) = size(dt)/bw(ddt ,y)

(1)

The variable tcost is the cost of data transfer per

time unit, bw(ddt ,y) is the network bandwidth be-

tween data server ddt and service platform y, and

size(dt)/bw(ddt ,y) denotes the practical transfer

time.

The estimated execution time for service s̃, de-

noted by Tet(s̃), includes the time for processing data

sets, which is denoted by Tp(s̃), and the time for ac-

cessing data sets, which is denoted by Tad(s̃). Tad(s̃)

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

332

is the maximum value of response time for access-

ing all data sets required by service s̃. The access

response time of data set dt, which is denoted by

Trt(dt), includes the data transfer time Tt(dt,ddt ,y),
the storage access latency Tsal(ddt), and the request

waiting time Twt(ddt). Thus, Tet(s̃) can be described

by (2).

Tet(s̃) = Tp(s̃)+Tad(s̃)

Tad(s̃) = max
dt∈DT i

(
Trt(dt)

)
Trt(dt) = Tt(dt,ddt ,y)+Tsal(ddt)+Twt(ddt)

Tsal(ddt) = size(dt)/sp(ddt)

Twt(ddt) =
nr

∑
i=1

(
size(dti)/sp(ddt)

)
(2)

The variable sp(ddt) is the storage media speed of

ddt , and nr is the number of data requests waiting

in the queue prior to the underlying request for dt.
The data transfer time depends on the network band-

width and the size of the data. The storage access

latency is the delayed time for the storage media

to serve the requests, and it depends on the size of

the data and storage type.20 Each storage media has

many requests at the same time and it serves only

one request at a time. The current request needs to

wait until all requests that are prior to it have fin-

ished.

3.1.3. Utility Function

Suppose a composite service CS is composed of

n abstract services, and there are m concrete ser-

vices to implement each abstract service. Each con-

crete service csi, j is associated with a QoS vector

qi j = [q1
i j,q

2
i j, . . . ,q

r
i j] with r QoS parameters (i ∈

{1,2, . . . ,n}, j ∈ {1,2, . . . ,m}). The set of QoS at-

tributes can be classified into two groups: positive

and negative QoS attributes. The values of negative

QoS attributes like response time need to be min-

imized. The higher their values, the lower the QoS

attributes. The values of positive QoS attributes such

as availability need to be maximized. The higher

their values, the higher the QoS attributes. In order

to evaluate the multidimensional quality of concrete

service csi, j, an evaluation function is used. The

function maps the quality vector qi j into a single real

value to enable selecting of service candidates. In

this paper, a multiple attribute decision-making ap-

proach for the evaluation function is used, that is, the

simple additive weighting (SAW) technique.21

There are two phases in applying SAW: 1) the

scaling phase is used to normalize all QoS attributes

to the same scale, independent of their units and

ranges; 2) the weighting phase is used to compute

the utility of each service candidate by using weights

depending on users’ priorities and preferences. For

negative QoS attributes, values are scaled according

to (3). For positive QoS attributes, values are scaled

according to (4).

V k
i, j =

⎧⎪⎨
⎪⎩

Qmax
k,i −qk

i j

QMAX
k −QMIN

k
if QMAX

k −QMIN
k �= 0

1 if QMAX
k −QMIN

k = 0

(3)

V k
i, j =

⎧⎪⎨
⎪⎩

qk
i j−Qmin

k,i

QMAX
k −QMIN

k
if QMAX

k −QMIN
k �= 0

1 if QMAX
k −QMIN

k = 0

(4)

In (3) and (4), Qmax
k,i and Qmin

k,i (k ∈ {1,2, . . . ,r})
are the maximum and minimum values of the k-th
QoS attributes for candidate set csi, which are given

by (5).

Qmin
k,i = min

∀csi, j∈csi
qk

i j

Qmax
k,i = max

∀csi, j∈csi
qk

i j
(5)

Furthermore, QMAX
k and QMIN

k (k ∈ {1,2, . . . ,r}) are

the maximum and minimum possible aggregated

values of the k-th QoS attributes for the composite

service CS, which can be estimated by (6).

QMIN
k = F(k)n

i=1Qmin
k,i

QMAX
k = F(k)n

i=1Qmax
k,i

(6)

The function F denotes the aggregation function of

the k-th QoS attribute, which could refer our previ-

ous work.18

In addition, we use QMAX
k − QMIN

k instead of

Qmax
k,i −Qmin

k,i as the denominator of (3) and (4) be-

cause this scaling approach22,23 ensures that the

evaluation of each concrete service is globally valid.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

333

And this scaling method is important for guiding lo-

cal selection.

The utility function for a concrete service csi, j is

computed according to (7).

Ucsi, j =
r

∑
k=1

(V k
i, j ∗Wk) (7)

Here, Wk ∈ [0,1] and
r
∑

k=1
Wk = 1. Wk represents the

weight of k-th quality criteria with value normally

provided by the users based on their own prefer-

ences.

The utility function for a composite service CS is

also computed according to the SAW method, which

is similar to (3)-(7). When scaling the aggregated

values of QoS attributes for a composite service, the

numerators of (3) and (4) should be replaced by (8)

and (9).

QMAX
k −qk

CS (8)

qk
CS−QMIN

k (9)

Here, qk
CS is the k-th QoS attribute of composite ser-

vice CS.

3.2. Data-Intensive Service Provision Based on
PSO algorithm

3.2.1. The standard PSO algorithm

PSO has been widely used to solve optimization

problems because it is very robust, and it is sim-

ple and easy to implement. It uses a population

of particles that fly through the search space of the

problem with given velocities. The velocity of a

particle determines the direction and distance of its

evolution. Each particle i corresponds to a possi-

ble solution of the problem. The position of each

particle is determined by a d-dimensional vector

Xt
i = {xi1,xi2, . . . ,xid}, and the velocity of the par-

ticle is determined by vector V t
i = {vi1,vi2, . . . ,vid},

where d is equal to the dimension of the problem

hyperspace, t means the t-th iteration. At each itera-

tion, the velocity of an individual particle is adjusted

according to the historical best position for the par-

ticle itself and the neighborhood best position. Both

the particle best position and the neighborhood best

position are derived according to a user defined fit-

ness function.24

The particles update their positions and veloci-

ties according to (10).

Xt+1
i = Xt

i +V t+1
i

V t+1
i = ωV t

i + c1γ1(Pt
i −Xt

i)+ c2γ2(Pt
g−Xt

i)

(10)

The variable ω is the inertia weight that controls the

exploration and exploitation of the search space. γ1

and γ2 are two mutually independent random num-

bers. The variables c1 (cognition coefficient) and c2

(social coefficient) are the acceleration constants,24

which change the velocity of particle i towards Pt
i

and Pt
g. The variable Pt

i is the best position ever

found by the particle i, whose corresponding fitness

value is called the particle’s best. The variable Pt
g is

the best position found by the whole swarm, whose

corresponding fitness value is called global best.

The following procedure can be used for imple-

menting the PSO algorithm.

1 Initialization. The swarm population is formed.
2 Evaluation. The fitness of each particle is evalu-

ated.
3 Modification. The best position of each particle,

the velocity of each particle, and the best position
of the whole swarm are modified.

4 Update. Each particle is moved to a new position.
5 Termination. Steps 2-4 are repeated until a stop-

ping criterion is met.

The standard PSO approach is commonly used

on real-valued vector spaces, and can also be applied

to discrete-valued problems where either binary or

integer variables have to be arranged into particles.24

When integer solutions (not necessarily 0 or 1) are

needed, one way is to round off the real optimum

values to the nearest integer,25 and the other way is

to define new operations and entities of the PSO ap-

proach. For example, in a discrete PSO approach,

the velocity’s update is randomly selected from the

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

334

three parts in the right-hand side of Eq. (10), us-

ing probabilities depending on the value of the fit-

ness function.24 Inspired by Ref. 26, in the follow-

ing section we will redefine operations and entities

of Eq. (10) to adapted the PSO algorithm to solve

the service composition problem.

3.2.2. The proposed discrete PSO algorithm

The first key issue when designing the PSO algo-

rithm lies in its particle representation that related to

the problem hyperspace. In order to construct a di-

rect relationship between the domain of the service

composition problem and the PSO particles, d num-

bers of dimensions are presented n abstract services

in the composition process. Hence, each particle i
corresponds to a candidate solution of the service

composition problem. The location of a particle in

the d-th dimension represents the concrete service

which the d-th abstract service selects. Fig. 2 shows

a particle representation for a service composition

problem with nine abstract services and each has one

hundred concrete services.

24 86 67 75 59 39 24 63 72

AS1 AS5AS4AS2 AS3 AS6 AS7 AS8 AS9

Fig. 2. Illustration of a particle’s solution.

The fitness function of the PSO algorithm is the

utility function which presented in section 3.1.3.

Formally, the optimization problem in this paper is

described as follows. Find a solution CS in graph G
by replacing each abstract service ASi in V with a

concrete service csi, j ∈ csi such that the overall fit-

ness UCS is maximized with the constrained condi-

tion.

The process of generating a new position for a

selected particle in the swarm is depicted in Eq. (11).

V t+1
i =V t

i ⊕
(
(Pt

i �Xt
i)⊕ (Pt

g�Xt
i)
)

Xt+1
i = Xt

i ⊕V t+1
i

(11)

The definitions of the operators, used in the body of

Eq. (11) are as follow.

The subtract operator (�). Differences be-

tween a desired position Pt
i (or Pt

g) and the current

position Xt
i of the i-th particle can be viewed as a

velocity, which can be presented by a d-dimensional

vector in which, each element shows that whether

the content of the corresponding element in Xt
i is

different from the desired one or not. If yes, that

element gets its value from Pt
i (or Pt

g). For those el-

ements that have the same content in Xt
i and Pt

i (or

Pt
g), their corresponding values are assigned to zero.

The add operator (⊕). This operator is a

crossover operator that typically is used in GAs. We

select two cut points from the current position Xt
i

and the updated velocity V t+1
i of the i-th particle,

or from the two new created velocities by the sub-

tract operator (�), namely, Pt
i �Xt

i and Pt
g�Xt

i , or

from the old velocity Vt
i and the new created veloc-

ity by the add operator, and exchange dimensions

between them. This type of crossover is traditionally

known as two-point crossover, and it produces two

new chains. Then this two new chains are checked

if they have zero elements. If yes, the zero element

will be replaced by the assignment of another con-

crete service in the service candidate set, according

to the local selection approach. The local selection

approach is based on the utilities of the concrete ser-

vices. Prior to the crossover operation, the utility of

each concrete service in each service candidate set

is computed. Then we select the chain that has the

bigger fitness function value. Fig. 3 illustrates the

manner in which ⊕ operator performs.

99 13 5 11 89 0 61 35 72

21 88 41 82 5 58 45 62 76

99 13 41 82 5 58 61 35 72

21 88 5 11 89 0 45 62 76

A

chain 1

cut point 1

AS1 AS5AS4AS2 AS3 AS6 AS7 AS8 AS9

chain 2

cut point 2

B

Fig. 3. Illustration of the manner in which ⊕ operator per-

forms.

As it seems, the proposed equations have all ma-

jor characteristics of the standard PSO equations.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

335

The coefficient is a vector of ones. The following

pseudo-code describes in detail the steps of the pro-

posed PSO algorithm.

Data-Intensive Service Provision based on Dis-
crete PSO

1 t = 0;

2 for i = 1 to swarm size

3 Initialize Xt
i and V t

i ;

4 Pt
i ← Xt

i ;

5 end for
6 calculates the fitness value of each particle U(Xt

i);
7 Pt

g←{Xt
l |l = argmax

∀i
{U(Xt

i)}};
8 while 1

9 for i = 1 to swarm size

10 update velocity and position using (11);

11 calculates the fitness value U(Xt+1
i);

12 if U(Xt+1
i)>U(Pt

i)

13 Pt+1
i ← Xt+1

i ;

14 else
15 Pt+1

i ← Pt
i ;

16 end if
17 end for
18 if argmax

∀i
{U(Pt+1

i)}>U(Pt
g)

19 Pt+1
g ←{Pt+1

l |l = argmax
∀i
{U(Pt+1

i)}};
20 end if
21 t← t +1;

22 if stopping criteria are true

23 break;

24 end if
25 end while
26 return Pt

g.

4. Computational experiments

4.1. Evaluation method and the dataset

In this section, we investigate a comparison study on

the effectiveness of the proposed PSO algorithm, the

ACO algorithm27 and the GA28 by solving the data-

intensive service composition problem. The exper-

imental frameworks involves two influencing vari-

ables: the number of abstract services in the com-

posite service, and the number of concrete services

for each abstract service. Here, the influence of the

number of data sets is not considered.

For the purpose of the evaluation, different sce-

narios are considered where a composite service

consists of n abstract services, and n varies in the

experiments between 10 and 50, in increments of

10. There are m concrete services in each service

candidate set, and m varies in the experiments be-

tween 100 and 1000, in increments of 100. Each

abstract service requires a set of k data sets, and k is

fixed at 10 in the experiments. A scenario genera-

tion system is designed to generate all scenarios for

the experiments. The system first determines a basic

scenario, which includes sequence, conditional and

parallel structures. With this basic scenario, other

scenarios are generated by either placing an abstract

service into it or adding another composition struc-

ture as substructure. This procedure continues until

the scenario has the predefined number of abstract

services.

Three performance factors were evaluated: 1) the

required computation time; 2) the quality of the so-

lution; and 3) the value of OptIT , which is the num-

ber of the iterations when the best utility appeared,

and from this iteration the best utility will not change

until the termination condition has been reached. As

PSO, ACS and GA are sub-optimal, the solutions

obtained by these three bio-inspired algorithms have

been evaluated through comparing them with the op-

timal solutions obtained by the mixed integer pro-

gramming (MIP) approach.22,29 The open source in-

teger programming system lpsolve version 5.5.2.530

was used for the MIP approach.

The number of ants in the ACO27, the population

in the GA28, and the number of particles in PSO is

all set to 100. And the maximum number of itera-

tions is set to 1000. The synthetic datasets were ex-

perimented. For each scenario, the price of a data

set, the network bandwidth (Mbps) between each

data server and the service platform, the storage me-

dia speed (Mbps), the size (MB) of a data set, and the

number of data requests in the waiting queue were

randomly generated from the following intervals:

[1,100], [1,100], [1,100], [1000,10000] and [1,10].

Then every scenario was performed with 50 runs.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

336

All runs of the same scenario use the same data, and

the average results over 50 independent runs are re-

ported. All the experiments are conducted on MAT-

LAB 7.13.0.564 and executed on a computer with

Inter(R) Core(TM) i7-6700HQ CPU 2.6GHz with

16GB of RAM.

4.2. Results Analysis

0 100 200 300 400 500 600 700 800 900 1000
0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1

Iteration

G
lo

b
a
l
B

e
s
t
F

it
n
e
s
s

Fig. 4. The evolution of U(Pt
g) over the PSO iteration.

One example of all experiments is given to show

the evolution of fitness value over the PSO itera-

tion, which is shown in Fig. 4. The figure shows

a scenario where a composite service consists of 10

different abstract services, and each abstract service

has 200 service candidates. In the figure, the short

blue line represents the global best fitness value in

the current iteration. The results indicate that the

PSO could find the best fitness in the second itera-

tion.

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

Number of candidate services per candidate set

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
e

c
)

PSO
ACS
GA
MIP

Fig. 5. The computation time of PSO, ACS, GA, and MIP

vs. number of candidate services

10 20 30 40 50
0

100

200

300

400

500

Number of abstract services

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
e

c
)

PSO
ACS
GA
MIP

Fig. 6. The computation time of PSO, ACS, GA, and MIP

vs. number of abstract services

In Fig. 5 and Fig. 6, the computation time of

PSO, ACS, GA, and MIP are compared with respect

to the number of candidate services and the number

of abstract services. In Fig. 5, the number of can-

didate services for each abstract service varies from

100 to 1000, while the number of abstract service is

set to 10. The results indicate that the proposed PSO

is faster than other methods. By increasing the num-

ber of candidate services, the required computation

time of PSO increases very slowly, this makes PSO

be more scalable. In Fig. 6, the number of abstract

services varies from 10 to 50, while the number of

candidate services for each abstract service is fixed

at 100. The results of this experiment indicate that

the performance of all methods degrades as the num-

ber of abstract services increases. Again, we observe

that PSO outperforms others. The reason is that we

adopt a local selection approach in the add operator

of our discrete PSO algorithm.

Furthermore, after collecting all the results of the

scenarios, we find that the fitness value of the final

best solution obtained by PSO, ACS, GA in all sce-

narios are the same with that of the MIP approach.

In other words, the results show that all the three

bio-inspired algorithms are able to achieve the opti-

mal solutions. That’s because we use QMAX
k −QMIN

k
as the denominator of Eq. (3) and Eq. (4), and this

strategy could guide the local selection and ensure

the evaluation of each concrete service is globally

valid.

We also compared the mean of OptIT values

obtained by PSO, ACS and GA with respect to a

varying number of candidate services and a vary-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

337

ing number of abstract services. When the number

of abstract services is fixed at 10, as the number of

concrete services increases from 100 to 1000, the

mean of OptIT values obtained by PSO, ACS and

GA are 2, 1 and 5 in all scenarios, respectively. That

is to say, the three bio-inspired algorithms found the

best fitness value in the fixed iteration, and it does

not change as the number of concrete services in-

creases. When the number of concrete services is

fixed at 100, as the number of abstract services in-

creases from 10 to 50, the mean of OptIT values

obtained by PSO is 2 for all scenarios, the mean of

OptIT values obtained by ACS is 1, 1, 1, 1, 3 for

each scenario, and the mean of OptIT values ob-

tained by GA is 5, 8, 10, 11, 12 for each scenario.

The results show that ACS and GA need more itera-

tions to get the best fitness value.

5. Conclusion

In this paper, we present and evaluate a discrete par-

ticle swarm optimization algorithm to support the

data-intensive service composition. The composi-

tion problem is modeled as a directed graph. Replac-

ing the classical operators in the standard particle

swarm optimization algorithm, we proposed equa-

tions analogous to them. In our discrete version of

particle swarm optimization, the representation of

the position and velocity of the particle is integer

vector, by which we accomplished the mapping be-

tween the concrete service selection and the particle.

The algorithm adopts a local selection method and a

two-point crossover operation to find the optimal so-

lution. Comparisons with the ant colony optimiza-

tion algorithm, the genetic algorithm, and the mixed

integer programming approach show the scalability

and effectiveness of our proposed algorithm. For fu-

ture work, extension of the proposed approach will

apply for solving multi-objective and dynamic data-

intensive service composition problem.

Acknowledgments

This work has been supported by National Natu-

ral Science Foundation of China under Grant No.

61702398 and No. 61502370, Natural Science Ba-

sic Research Plan in Shaanxi Province of China

(Program No.2016JQ6003), China 111 Project un-

der Grant No.B16037, and the Fundamental Re-

search Funds for the Central Universities under

Grant No.XJS15045.

References

1. G. Bell, T. Hey, A. Szalay, Beyond the data deluge,
Science 323 (5919) (2009) 1297–1298.

2. W. Huang, Z. Chen, W. Dong, H. Li, B. Cao, J. Cao,
Mobile internet big data platform in china unicom, Ts-
inghua Science and Technology 19 (1) (2014) 95–101.

3. Y. Tian, C. Liu, Z. Chen, J. Wan, X. Peng, Perfor-
mance evaluation and dynamic optimization of speed
scaling on web servers in cloud computing, Tsinghua
Science and Technology 18 (3) (2014) 298–307.

4. C. Philip Chen, C. Zhang, Data-intensive applications,
challenges, techniques and technologies: A survey on
big data, Information Sciences 275 (2014) 314–347.

5. S. Balasubramaniam, D. Botvich, R. Carroll, J. Min-
eraud, T. Nakano, T. Suda, W. Donnelly, Biologically
inspired future service environment, Computer Net-
works 55 (15) (2011) 3423–3440.

6. L. Wang, J. Shen, J. Luo, Bio-inspired cost-aware op-
timization for data-intensive service provision, Con-
currency and Computation: Practice and Experience
27 (18) (2015) 5662–5685.

7. S. Dustdar, M. P. Papazoglou, Services and service
composition - an introduction, Information Technol-
ogy 50 (2) (2008) 86–92.

8. F. Dong, J. Luo, J. Jin, J. Shi, Y. Yang, J. Shen, Accel-
erating skycube computation with partial and parallel
processing for service selection, IEEE Transactions
on Services Computing, Online Available (99),
http://dx.doi.org/10.1109/TSC.2017.
2762681.

9. Y. Xia, J. Chen, X. Meng, On the dynamic ant colony
algorithm optimization based on multi-pheromones,
in: Proceedings of 7th IEEE/ACIS International Con-
ference on Computer and Information Science (ICIS
’08), IEEE Computer Society, Washington, DC, USA,
2008, pp. 630–635.

10. L. Wang, Y. He, A web service composition algo-
rithm based on global qos optimizing with mocaco,
in: L. Jiang (Ed.), Proceedings of the 2011 Interna-
tional Conference on Informatics, Cybernetics, and
Computer Engineering (ICCE 2011), Vol. 111 of Ad-
vances in Intelligent and Soft Computing, Springer-
Verlag, Berlin, Heidelberg, 2010, pp. 79–86.

11. Z. J. Wang, Z. Z. Liu, X. F. Zhou, Y. S. Lou, An ap-
proach for composite web service selection based on
dgqos, The International Journal of Advanced Manu-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

338

facturing Technology 56 (9-12) (2011) 1167–1179.
12. G. Canfora, M. Penta, R. Espositio, M. L. Villani,

An approach for qos-aware service composition based
on genetic algorithms, in: Proceedings of the 2005
Conference on Genetic and Evolutionary Computa-
tion (GECCO ’05), ACM, New York, NY, USA, 2005,
pp. 1069–1075.

13. L. Ai, M. Tang, Qos-based web service composi-
tion accommodating inter-service dependencies us-
ing minimal-conflict hill-climbing repair genetic algo-
rithm, in: Proceedings of IEEE 4th International Con-
ference on eScience (eScience ’08), IEEE Computer
Society, Washington, DC, USA, 2008, pp. 119–126.

14. H. Wang, P. Ma, X. Zhou, A quantitative and qualita-
tive approach for nfp-aware web service composition,
in: Proceedings of IEEE 9th International Conference
on Services Computing (SCC), IEEE Computer Soci-
ety, Washington, DC, USA, 2012, pp. 202–209.

15. T. Zhang, Qos-aware web service selection based
on particle swarm optimization, Journal of Networks
9 (3) (2014) 565–570.

16. G. Kang, J. Liu, M. Tang, Y. Xu, An effective dynamic
web service selection strategy with global optimal qos
based on particle swarm optimization algorithm, in:
IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum, 2012,
pp. 2274–2279.

17. S. A. Ludwig, Applying particle swarm optimization
to quality of service driven web service composition,
in: IEEE 26th International Conference on Advanced
Information Networking and Applications, Fukuoka,
Japan, 2012, pp. 613–620.

18. L. Wang, J. Shen, J. Yong, A survey on bio-inspired al-
gorithms for web service composition, in: IEEE 16th
International Conference on Computer Supported Co-
operative Work in Design (CSCWD), IEEE Computer
Society, Washington, DC, USA, 2012, pp. 569–574.

19. L. Wang, J. Shen, A systematic review of bio-inspired
service concretization, IEEE Transactions on Services
Computing 10 (4) (2017) 493–505.

20. H. H. E. Al-Mistarihi, C. H. Yong, Response time op-
timization for replica selection service in data grids,
Journal of Computer Science 4 (6) (2008) 487–493.

21. K. P. Yoon, H. C. Land, Multiple Attribute Decision
Making: An Introduction, Vol. 104 of Quantitative
Applications in the Social Sciences, SAGE Publica-
tions, Inc., CA, Thousand Oaks, 1995.

22. M. Alrifai, T. Risse, W. Nejdl, A hybrid approach
for efficient web service composition with end-to-end
qos constraints, ACM Transactions on the Web 6 (2)
(2012) 7:1–7:31.

23. S. X. Sun, J. Zhao, A decomposition-based approach
for service composition with global qos guarantees,
Information Sciences 199 (0) (2012) 138–153.

24. Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi,
R. G. Harley, Particle swarm optimization: Basic
concepts, variants and applications in power sys-
tems, IEEE Transactions on Evolutionary Computa-
tion 12 (2) (2008) 171–195.

25. K. Parsopoulos, M. Vrahatis, Recent approaches to
global optimization problems through particle swarm
optimization, Natural Compuing 1 (2002) 235–306.

26. A. H. Kashan, B. Karimi, A discrete particle swarm
optimization algorithm for scheduling parallel ma-
chines, Computers & Industrial Engineering 56 (1)
(2009) 216–223.

27. L. Wang, J. Shen, G. Beydoun, Enhanced ant colony
algorithm for cost-aware data-intensive service provi-
sion, in: IEEE 9th World Congress on Services, IEEE
Computer Society, Washington, DC, USA, 2013, pp.
227–234.

28. L. Wang, J. Shen, J. Luo, F. Dong, An improved ge-
netic algorithm for cost-effective data-intensive ser-
vice composition, in: Proceedings of The 9th Interna-
tional Conference on Semantics, Knowledge & Grids
(SKG), IEEE Computer Society, Washington, DC,
USA, 2013, pp. 105–112.

29. R. Ramacher, L. Monch, Cost-minimizing service se-
lection in the presence of end-to-end qos constraints
and complex charging models, in: Proceedings of
IEEE 9th International Conference on Services Com-
puting (SCC), IEEE Computer Society, Washington,
DC, USA, 2012, pp. 154–161.

30. M. Berkelaar, K. Eikland, P. Notebaert, lpsolve:
Mixed-integer linear programming solver, http://
lpsolve.sourceforge.net/ (2004).

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 330–339

339

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

