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Abstract 

Scheduling of mixed-criticality systems (MCS) on a common computational platform is challenging because 
conventional scheduling approaches may cause inefficient utilization of shared computing resources. In this paper, 
we propose an approach called Clustering-based Partitioned Earliest Deadline First (C-PEDF) algorithm to 
schedule dual-criticality implicit-deadline sporadic tasks on a homogeneous multicore system. Our C-PEDF 
scheduling approach exploits (i) a Clustering-based bin-packing algorithm that explicitly accounts the demands of 
tasks based on their levels of confidence; and (ii) an Enhanced dual-mode scheduling policy to schedule tasks 
within a core. The proposed C-PEDF integrates every single high-level workload with a group of low-level 
workloads and coalesces them into a cluster. Within each cluster, tasks are scheduled under our Enhanced dual-
mode scheduling policy to improve the service level of high-level tasks without jeopardizing the schedulability of 
low-level tasks. Clusters are scheduled under Earliest Deadline First (EDF) scheduling approach. We conduct a 
schedulability test for the proposed technique, and we demonstrate how workloads can be clustered by means of 
Mixed Integer Nonlinear Programming (MINLP) model. Extensive simulation results reveal that our algorithm 
significantly outperforms other existing approaches both in acceptance ratio and the impact factor of low-level 
tasks.  

Keywords: clustering; mixed-criticality; multicore processor; task scheduling; schedulability; sporadic task; UAV. 

1. Introduction 

The relentless developments in microelectronic 
technology enable processor manufacturers to fabricate 
more computational elements (cores) on a single chip to 
realize high performance and better reliability at low-
cost. Such integrated systems are efficiently used in 
numerous safety-related industrial sectors (e.g., 
automotive, medical, aerospace, home electronics 

market, nuclear power station, etc.,) to fulfil the 
radically increased computing demands of safety-
critical applications. A system is said to be safety-
critical whose malfunction might lead to loss of 
human life or serious damage to property/environment. 
Most of the safety-critical domains are mixed-critical 
which consolidate various functionalities with different 
criticality levels (i.e., importance) on a common 
computational platform. The adoption of multicore 
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processors for MCS will be driven by the increasing 
demand of computational power, development cost, and 
by SWaP (Space, Weight, and Power consumption) 
concerns. 

An excellent example of MCS is the Unmanned 
Aerial Vehicles (UAV), generally known as pilotless 
aircrafts or drones [1]. Drone is a remotely operated 
airborne vehicle and finding applications in different 
private and public sectors ranging from military 
operations to traffic monitoring. It will have combat and 
surveillance abilities surpassing those of today’s piloted 
airplanes. UAV combines tasks of different criticalities 
and executes them on a common embedded platform. 
The workloads (i.e., tasks) of UAV can be characterized 
into three categories:  

1. Flight-critical tasks: High-level workloads that 
execute safety-related functionalities, such as flight 
control and trajectory computation to preserve the 
stability of aircraft, losing which a drone cannot be 
flown securely. The failures of these tasks can lead 
catastrophic consequences for the aircraft and hence 
need to be executed with the highest level of 
assurance.  

2. Mission-critical tasks: Low-level tasks, which are 
concerned with surveillance objectives such as 
tracking potential targets, navigation services, and 
parking assistance, losing which a drone is still 
considered safe. Malfunction on these tasks can 
result in minor service disruption in the system that 
is not catastrophic.  

3.  Non-critical tasks: Tasks that execute the least 
important background activities. Task associated 
with vehicular entertainment, such as music 
streaming, is a good example of non-critical 
functionality that is least important for the specified 
mission. 

Criticality is the degree of required protection 
against failure for a subsystem. It is called as Safety 
Integrity Levels (SIL) or Design Assurance Levels 
(DAL). These SILs reflect the required level of risk 
reduction in the engineering of a safety-related system 
and hence, influence all the phases of designing, 
implementing, testing, and certification processes. For 
example, in aeronautics standard DO-I78B, there are 
five SILs, characterized based on their level of 
jeopardizing produced by the failure of the task: 

catastrophic; hazardous; major; minor; no effect [2]. 
The task with higher criticality level indicates that a 
higher degree of guarantee is required for the 
correctness of system behaviour. For instance, in the 
control system of a UAV performing reconnaissance 
assignment, it is essential to assure the correctness of 
flight-critical activity such that the flight does not crash, 
than for mission-critical activities like sensing and 
transmitting images. 

MCS often essential to be certified according to their 
criticality by a standard statutory third party, called as a 
Certification Authority (CA) (e.g., Federal Aviation 
Authority (FAA) in US and the European Aviation 
Safety Agency (EASA) in Europe for aerospace 
industry) [3]. Certification (i.e., conformity of 
assessment) is about guaranteeing different levels of the 
rigorous correctness of the system. To certify the 
correctness, CA mandates extremely rigorous and 
conservative assumptions regarding the run-time 
behaviour of the system, which are very unlikely to 
befall in reality. These authorities are not concerned 
about anything else apart from the safety of the aircraft. 
It is not incumbent on them whether the mission-critical 
functionalities are performed in time or not. Conversely, 
the entire system, comprising both the flight and 
mission-critical applications, must be authenticated by 
the system designers or other standard bodies, who 
generally use a considerably less rigorous standard than 
the one used by CAs.  

Assimilating various operations on the same 
computational platform brings lots of upsides to the 
electronics market, enabling us to schedule more tasks 
hence maximizing the resource usage while reducing 
the SWaP requirements of the system. One of the major 
technical challenges in scheming MCS is formulating a 
scheduling criterion that exacerbates both the criticality 
and deadline (i.e., urgency) problems of the tasks while 
enabling certification. Moreover, it is essential to ensure 
sufficient separation and timeliness assurances for such 
MC workloads according to their safety and security 
levels. Any undesirable interference among these tasks 
must be prohibited to ensure the service guarantees of 
safety-related applications.  

There is an extensive literature on scheduling MC 
tasks on both single-core and multicore systems. 
Unfortunately, traditional scheduling algorithms for MC 
tasks on multicore processors have at least one of the 
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following crucial limitations that severely restrict the 
practical applicability of those algorithms:   

(i) Traditional scheduling approaches assume that if 
any high-criticality task shows its critical behaviour 
(i.e., it overruns its corresponding nominal low-
level Worst-case Execution Time (WCET)), all 
currently active and upcoming critical tasks in the 
same processor are likely to show high-criticality 
behaviour, which is often impractical. Our 
scheduling algorithm eradicates this dispute by 
taking the behaviour of every high-level workload 
into account and leads to improved performance 
and schedulability. 

(ii) Existing approaches cannot completely adapt the 
dynamic nature of the applications: the workload 
can dynamically fluctuate among high- and low-
level execution modes.  

(iii) Conventional scheduling algorithms do not deliver 
a good real-time guarantee for the low-level 
workloads: since these are performed 
opportunistically with unbounded termination to 
assure the timing guarantees for critical workloads. 
This is undesirable because low-level workloads 
also need some level of timeliness guarantees (even 
though with lower-level assurances than the high-
criticality tasks).  

Motivated by previous investigations on MC 
scheduling, we develop a new hierarchical scheduling 
framework, called Clustered-PEDF (C-PEDF) to 
schedule MC sporadic task systems that overcome the 
limitations posed by existing scheduling algorithms. 
The contributions of this paper are four-fold:  

• We propose a Clustering-based partitioned MC 
scheduling strategy for implicit-deadline sporadic 
workloads on homogeneous (i.e., identical) 
multicore system, which imposes strong temporal 
separation between high-level workloads so they 
cannot influence each other and also provides better 
timeliness assurance for low-level workloads; 

• We devise a C-PEDF scheduling approach which 
exploits a bin-packing algorithm for effective 
resource utilization that explicitly accounts the 
demands of tasks based on their levels of 
confidence and an Enhanced dual-mode scheduling 
policy to schedule tasks within a core; 

• We develop a mathematical tool for schedulability 
analysis on multicore platforms under our C-PEDF 
scheduling approach. According to the 
schedulability constraints, we develop an 
evolutionary intelligence technique, namely 
MINLP model for task clustering, that can enhance 
the schedulability of the system; 

• We evaluate our C-PEDF algorithm extensively 
against some existing partitioned scheduling 
algorithms.  

Our article is structured as follows:  The following 
Section provides considerable relevant algorithms 
aiming to schedule MC tasks on single and multicore 
platforms. The MC sporadic task model is formally 
defined in Section 3. Our Clustered partitioning MC 
scheduling strategy upon a single-core processor is 
discussed in Section 4. We formulate and solve an 
MINLP model to identify the scheduling constraints in 
Section 5. Enhanced Dual-mode Scheduling Mechanism 
is explained in Section 6. Clustering-based partitioned 
MC scheduling on a multicore processor is described in 
Section 7. We discuss experimental results in Section 8. 
We briefly describe our future work in Section 9. 
Finally, Section 10 concludes this paper. 

2. Related Work 

Scheduling tasks at different criticality levels on a 
multicore computational platform is the subject of an 
emerging research field due to the proliferation of 
safety-related real-time applications. A large body of 
MC task scheduling algorithms has already been 
proposed on single-core and multicore platforms. 
Conventionally, scheduling algorithms are categorized 
into two main paradigms: (i) global scheduling (ii) 
partitioned scheduling.  

In a partitioned approach, workloads are always 
mapped to same cores (processing elements) and task 
migration is not allowed. This type of scheduler exploits 
distinct queues for each core and each task is mapped to 
one particular core a priori, and will only be scheduled 
on that core. Partitioned algorithms are often a favorable 
choice for hard real-time applications since it delivers a 
simple and more predictable operation [4]. The major 
disadvantage of this approach is inefficient resource 
utilization owing to assignment problems that arise in 
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the modeling of scheduling tasks to processing 
elements.  

A global scheduler allows any task to execute on any 
core and migrates them across multiple executing cores. 
These approaches are often a better choice for soft real-
time applications because the task-to-core mapping 
disputes that arise under partitioning approaches are 
mitigated if the limited delay is acceptable [5] [6]. A 
Global scheduler is most appropriate for workloads that 
are delivered based on the average execution time [7]. 
One key disadvantage of global scheduling is the 
interference across shared resources which make the 
WCET analysis more challenging. 

The MC task scheduling problem was first identified 
and formalized by Vestal [8], in the scope of the static-
priority preemptive scheduling. In his work, the 
schedulability is based on the WCET estimates of 
workloads of equal or greater priority. Vestal 
demonstrated that, from the viewpoint of low-criticality 
tasks, the WCET assigned for high-criticality tasks are 
unnecessarily pessimistic. Hence, the author suggested 
that schedulability tests for low-criticality workloads be 
dynamically adjusted to adapt less pessimistic WCET 
parameters for high-criticality workloads. This approach 
has been proved to be optimal by Dorin et al. [9]. Later, 
Baruah et al. extended Vestal's algorithm [8] to allocate 
static priorities on a per-job basis (instead of task level). 
They introduced an algorithm, named OCBP (Own 
Criticality-based Priority), to address the asymmetric 
effects among various criticality levels by exploiting 
more global knowledge of the system [10]. Such a 
global knowledge is much more effective than simple 
scheduling constraints like urgency or importance, and 
OCBP significantly outperforms other policies like EDF 
and Criticality Monotonic (more critical tasks have 
greater priority). 

To explore the exact intricacy of the MC scheduling 
algorithms [10], Baruah et al. presented [11] two 
necessary schedulability conditions, the Worst-Case-
Reservations (WCR) and OCBP. This work was 
extended by Li and Baruah [12] using a static-job-
priority scheduling policy based on the OCBP 
condition, as well as in some following works [11], 
[13], [3]. All of the above approaches have focused on a 
single-core processor, but of late efforts have shifted in 
the direction of multicore platforms. 

To our knowledge, the MC task scheduling on 
multicore platforms was first proposed by Li and 

Baruah [14]. Later, Gu et al. [15] extended the work on 
uniprocessor MC scheduling [16] to multicore systems 
and presented two improvements for processor 
schedulability by exploiting criticality-cognizance 
policy. Mollison et al. developed a scheduling heuristic 
for MC tasks on multicore platforms, implementing 
various methods (i.e., Cyclic Executive, partitioned-
EDF, global-EDF and global best effort) for five 
different criticalities and enabling temporal isolation 
between tasks through a bandwidth reservation server 
[17]. In this work, the more critical tasks are executed 
with high priorities and the less critical tasks can run in 
the residual slack time.  

Pellizzoni et al. developed a reservations-based 
scheme to enable sufficient separation between tasks 
with different criticality levels. They proposed an 
architectural technique for facilitating such isolation 
despite to allow some required interferences (e.g., in the 
sharing of non-preemptible system resources) among 
applications of various criticalities [18]. Their objective 
is not on enhancing processor utilization, but on 
guaranteeing isolation. Anderson et al. introduced a 
two-level hierarchical approach with a bandwidth 
reservation server to ensure timing isolation between 
tasks [19]. They also analyzed the importance of slack 
re-distribution methods to reallocate residual computing 
capacity at higher criticality levels to lower criticality 
levels. 
 Kelly et al. studied the issues of schedulability that 
arise in the conventional partitioning approaches under 
static-priority scheduling on multicore systems. They 
proposed an SIL-based WCET for the tasks and a 
dispatching algorithm for mapping tasks to processor 
[20]. In order to explore both general and criticality 
mode change protocols, Burns surveyed the pessimistic 
assumptions of high criticality tasks in the higher 
criticality modes [21]. Petters et al. analyzed the 
significance of timing isolation of tasks for MCS and 
explored several problems in designing such systems in 
practice [22]. The disadvantage of the timing isolation 
method is that it operates on rigorously over-
provisioning system resources, which may cause an 
adverse impact on the resource allocation cost and 
power performance of the system. 

In contrast to these approaches, our scheduling 
algorithm can provide isolation between criticality 
levels from the perception of temporal correctness. The 
propagation of high-level execution behavior of a 
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particular task is prohibited by enabling strong isolation 
between various clusters. In order to maximize the total 
schedulable utilization, our algorithm allows the system 
to transit back from high- to low-level execution mode 
as soon as all critical workloads show their low-level 
execution behavior. 

3. System Model and Notation 

In this section, we formally define the MCS task model 
and describe terms and notions used in this article. Since 
our eventual interest is in the scheduling of finite 
collections of recurrent (periodic or sporadic) MC tasks, 
we will consider the scheduling instance contains a 
finite set of sporadic tasks upon a homogeneous 
multicore platform. For simplicity, we confine our 
attention to a dual-criticality system. The high-critical 
tasks must finish their execution before their next 
release time. We relax the timeliness constraints for 
low-critical tasks in that some level of deadline misses 
are tolerated. In a dual-criticality task system, each 
sporadic task is defined as τi

 = (Pi, Di, £i, Ci
1, Ci

2) with 
the following semantics: 

• i ∈ N+ is a unique index of task (i.e., 1 ≤ i ≤ n) 

• Pi ϵ R+ is the minimum inter-arrival time (period) of 
workload τi. 

• Di ∈ R+ is the completion deadline of task τi. We 
consider an implicit-deadline sporadic task system 
in which each task τi has a deadline Di equal to its 
period Pi. (i.e., Ɐ τi ∈ τ, Pi = Di), meaning that each 
task must be finished before its next release time. 

• £i ∈ {1, 2} specifies the criticality of the task τi. 
Tasks with £←1 and £←2 designating low- and 
high-criticality level respectively. 

• Ci
1 ∈ N+ specifies the WCET of τi at the low-

criticality level. 

• Ci
2 ∈ N+ specifies the WCET of τi at the high-

criticality level. 

Every high-criticality task τi
2 is represented by two 

WCET values: (i) more pessimistic, high-level WCET 
Ci

2 considered by CA; and (ii) a less pessimistic, low-
level WCET Ci

1 expected by the system engineer. This 
is because the high-level WCET is extremely more 
pessimistic than low-level WCET (to ensure timeliness 

guarantee). Therefore, for each high-criticality task Ci
2 

≥ Ci
1. Each low-level task τi

1 is characterized by a single 
low-level WCET Ci

1. We also consider that the low-
criticality tasks are enforced to suspend after Ci

1 time 
units of execution. Tasks are not permitted to migrate 
across cores after assignment as we consider partitioned 
scheduling policy. The notations used to describe the 
proposed scheduling mechanism are listed in Table 1. 

Table 1. Notations 

τi Task i 
τi

1 Low-criticality task 
τi

2 High-criticality task 
Pi Minimum inter-arrival time  of workload τi 
Di Deadline of task τi 
£i Criticality of the task τi 

Ci
1 WCET of τi at the low-criticality level 

Ci
2 WCET of τi at the high-criticality level 

Ui
1 Task utilization under low- criticality mode 

Ui
2 Task utilization under high-criticality mode 

Sj Cluster j 
PSj Base period of the cluster Sj 

LOi
j Number of cluster budget replenishments 

during P(τi
1) 

HIj  Number of cluster budget replenishments 
during P(τj

2) 
Ej Execution time budget 

 
Example 1: Consider a simple dual-criticality task set 
comprised of three sporadic implicit-deadline tasks τ1

2, 
τ1

1, and τ2
1. The task parameters are given in Table.2 

with time information in units of ms.  

Table 2. An example task set  

Task £ Ci
1 Ci

2 Pi(τi) 
τ1

2 2 3 
 

12 15 
τ1

1 1 
 

4 - 10 
τ2

1 1 3 - 15 
 
Assume the first jobs of all the tasks have arrived at 

time zero. Task τ1
2 is flight-critical which has criticality 

level 2 (higher-criticality level) and other two tasks τ1
1 

and τ2
1 are only mission-critical with criticality level 1 

(lower-criticality level). Ci
1 defines low-level WCET 

and Ci
2 defines the high-level WCET.  
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3.1.  Scheduling Assurance 

The given set of MC tasks is said to be schedulable if 
and only if the conditions associated with dynamic 
timing properties for all the tasks are satisfied: 

• Low-level assurance: If all tasks do not overrun 
their low-level WCET Ci

1, all high- and low-
criticality tasks are assured to receive enough 
execution to satisfy their deadlines. 

• High-level assurance: If all workloads do not 
overrun their high-level WCET Ci

2 and at least 
one high-level workload overruns it’s low-level 
WCET Ci

1, all high-level workloads are assured 
to satisfy their timing constraints (whereas low-
criticality tasks may be suspended).  

3.2. Utilization  

The utilization of a workload is usually defined as the 
fraction of its worst case execution time to inter-arrival 
time. Hence, the utilization of MC sporadic task τi under 
low and high-criticality modes is defined as follows: 

)1()(U 
1

1
i

P
C

i

i
i =τ

 

)2()(U 
2

2
i

P
C

i

i
i =τ  

where Ui
1(τi) and Ui

2(τi) specify the task utilization 
under low- and high-criticality mode,  respectively. For 
our example task set depicted in Table 2, Ui

1(τi) and 
Ui

2(τi) are computed for each task. The same cluster is 
given in Table 3 with an extra column for their 
utilization. 

Table 3. Task set with its utilization parameters 

Task 
Given parameters Calculated parameters 
£ Ci

1 Ci
2 Pi(τi) )(U1

ii τ
 

 

)(U2
ii τ

 

τ1
2 2 3 12 15 0.2 0.8 

τ1
1 1 4 - 10 0.4 - 

τ2
1 1 3 - 15 0.2 - 

 

The cumulative utilization of all low-level tasks 
under low-criticality mode Ui

1(τ) and the cumulative 
utilization of all high-level tasks under high-criticality 
mode Ui

2(τ) are calculated as follows: 

)3()()(U
 1£

11
i ττ

ττ
ii

i

U∑=
=Λ∈

 

)4()()(U
 2£

22
i ττ

ττ
ii

i

U∑=
=Λ∈

 

Theorem 1 [23]: A dual-criticality sporadic task set     
τi

 = {τ1
£, τ2

£,…, τn
£} is schedulable under EDF approach 

over a (core) processor if: 

)5(1)()( 21 ≤+ ττ UU ii  

We would like to point out that the condition given 
in Eq. (5) hinges only on the upper bound processing 
capacity of high-level workloads and the lower bound 
processing capacity of low-level workloads. From this 
observation, it is clear that determining the optimal 
partitioning of admitted workloads to hold the 
inequality (5) is NP-hard [24]. Now, we examine the 
schedulability of the admitted workloads depicted in 
Table 3 against the system utilization. Since the 
cumulative utilization of the tasks at their own criticality 
levels is (0.8+0.4+0.2) =1.4 ≥ 1, the task system cannot 
be schedulable on a single-core processor under high-
criticality mode.  

4. Clustering-based MC scheduling on single-
core Processor 

In order to impose strong isolation among high-level 
workloads and to decrease their service intervention 
with low-level workloads, each high-level workload τj

2 

is scheduled with a group of low-level workloads and 
coalesces both in a distinct cluster. In our scheduling 
architecture, tasks within each cluster are scheduled 
under a budget-driven scheduling mechanism, and 
clusters are scheduled using EDF strategy. 

4.1. Clusters 

We now define the task clusters. A cluster is a 
collection of tasks gathered together before each task is 
scheduled. In our scheduling mechanism, every cluster 
comprises of one executive (high-level) task and a 
group of member (low-level) tasks. The cluster is 
denoted by Sj = {τj

2
, τ1

1, τ2
1, τ3

1, τ4
1,...,τn

1} where the τj
2 

(1 ≤ j ≤ m) is the single executive task and tasks τi
1 (1 ≤ 

i ≤ n) are member tasks. The base period (PSj) of the 
cluster Sj is computed as the greatest common factor 
(gcf) of inter-arrival time of all workloads in the 
particular cluster, i.e., 

( ) ( ) ( ) ( ) )6(),....,,( 11
2

1
1

2 ττττ nj PPPPgcfPs j
=  

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237
___________________________________________________________________________________________________________

224



where P(τj
2) is the period of the executive task τj

2 and 
P(τi

1) is the period of member tasks τi
1 (1 ≤ i ≤ n). For 

simplicity, the period of the cluster specified as S-
period. The number of cluster budget replenishments 
during P(τi

1) is calculated as  

( ) )7()1(,
1

ni
P

P
LO

s j

ij
i ≤≤= τ  

Similarly, the number of budget replenishments during 
P(τj

2) is calculated as  

( ) )8()1(,
2

mjP
P

HI
s

j
j

j ≤≤= τ  

The Ej denotes the execution time budget that a cluster 
Sj must collect to guarantee all of its workloads fulfil 
the MC schedulability condition. In C-PEDF technique, 
each cluster Sj will be scheduled with other clusters as a 
normal sporadic task with period PSj and execution time 
budget Ej. As stated in the previous section, we define 
the utilization of a cluster to be Ej / PSj.  

4.2. Mode Transition Protocol 

The basic idea of the runtime mechanism used in our 
scheduling strategy is the operation of mode transition 
protocol. The scheduling process within each cluster Sj 
is achieved in cycles; each cycle corresponds to a period 
of the executive task τj

2 (i.e., P (τj
2)). Within each cycle, 

there can be three distinct behaviours. These three run-
time behaviours seem to reveal three different operating 
modes, which are shown in Fig.1. 

 

 

 

 

 

 

Fig.1. Mode transition strategy in a cluster 

(i) Low-criticality behaviour (L-Mode): The system 
starts it’s execution with this normal mode, where 
currently-active job (arrived, but not yet finished) 
of task τj

2 has not yet reached its respective Ci
1 and 

hence it is in L-Mode. The entire tasks in the cluster 
are executed to provide the low-level assurance.  

(ii) Transition or switching behaviour (S-Mode): If any 
active job of τj

2 overruns it’s low-level WCET, then 
the system switches immediately to high-level 
execution behaviour during the active S-period. All 
the member tasks in the cluster are cancelled to 
provide the high-level assurance.  

(iii) High-criticality behaviour (H-Mode): In this mode, 
an active job of τj

2 has either completed or executed 
beyond its Ci

1, so it is known whether the cluster is 
in L-Mode or H-Mode. If the executive task has 
really completed and the cluster has not yet 
depleted its reserved execution budget, any 
suspended member tasks will remain serviced; but, 
if they do not finish by the last S-period of every 
cycle (whereas another executive task arrives) or by 
their deadlines, whichever is earlier, they likely to 
be discarded. If the cluster is in H-Mode, the 
member tasks continue to be suspended. If at least 
one executive task overruns its corresponding high-
level WCET Ci

2, then the scenario is called 
erroneous. 

4.3. Three-mode Budget-driven Scheduling within 
a Cluster 

We now provide the execution semantics of our 
mechanism, describing what happens during each cycle 
of the scheduling process. Consider the allocated 
execution budget of the cluster Sj is Ej and the number 
of execution replenishments in any P(τj

2) is HIj. As 
shown in Fig.1, we assume that L-Mode lasts for aj S-
periods, that is, the active job of τj

2 either changes to the 
H-Mode or has completed in (aj +1)th S-periods. In 
every cycle, tasks are executed according to their 
predefined budget values, tj, e1i

 and e2i (i.e., i = 
1,2,3…n). The technique for estimating these 
constraints is explained in the next section.  

L-Mode ([0, aj] S-periods): In order to realize the low-
level assurance, in each [0, aj] S-periods, workloads are 
executed as: if there a``re any incomplete member tasks, 
the active job of τj

2 is performed first for a definite 
amount of time tj ≥ 0 (as a maximum). As soon as this 
job finishes, member tasks are performed in a non-
decreasing order of the task index, where all τi

1 is 
allotted with an execution budget of e1i ≥ 0. If there are 
no incomplete member tasks, the active job of τj

2 is 
performed until it finishes its execution or the reserved 
execution time of the particular cluster is exhausted. 

 

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237
___________________________________________________________________________________________________________

225



The pre-allocated budget parameters should hold the 
following conditions:  

(i) The entire execution budget assigned to all 
workloads in the cluster should not overrun the 
reserved execution budget Ej of the cluster. Hence, 

)9(1
1
∑+≥
=

n

i
ijj etE  

(ii) As the active job of the executive task exhibits its 
normal behaviour, the execution time allocated to τj

2 
in this L-Mode should not overrun its low-level 
WCET, i.e.,  

)10(1
2 taC jj
j

×≥
t

 

S-Mode ([aj, (aj+1)] S-period): In order to realize the 
high-level assurance, the active job of τj

2 is performed 
first with an allocated execution time tj. If this executive 
job finishes its execution, member tasks are executed 
until Ej is depleted (whereas some member jobs may be 
suspended). Else, the system will change from low- to 
high-level execution mode and will remain performed 
until it finishes or Ej is depleted.  

As stated above, condition (9) should hold to 
guarantee the budget of tj for executive task τj

2 and the 
budget e1i

 for each member task τi
1. Furthermore, since 

the active job of τj
2 will change to the H-Mode if it 

cannot finish with tj, the budget expected by τj
2 before 

the behaviour change should be greater than or equal to 
its corresponding low-level WCET. Hence,  

 
( ) )11(1 1

2Cta
j

jj t≥×+  

H-Mode ([(aj+1), HIj] S-periods): In order to provide 
the high-level assurance, in each of the last (HIj−aj−1) 
S-periods, tasks are executed as follows: if the active 
job of τj

2 has not finished in the (HIj−aj−1) S-period, it 
will be performed until it finishes its execution or the 
received budget Ej is depleted. Else, member tasks are 
serviced by non-decreasing task index, where each τi

1 is 
assigned an execution time of e2i ≥ 0. Since the entire 
budget Ej will be allotted to member tasks, we can 
assign more budget to each member. i.e.  
 

)12(210 e ie i ≤≤  

At the same time, the budget allotted to the entire low-
level workloads should not overrun the reserved 
execution time of the cluster:  

)13(2
1
∑≥
=

n

i
ij eE  

We now demonstrate our scheduling strategy using 
following example.  
 
Example 2: Consider the cluster comprised of three 
tasks in the Table 3. The base period of the cluster can 
be calculated as PS1 = gcf (15, 10, 15) = 5. Assume the 
execution time allotted to S1 is E1 = 4.25 and other 
scheduling constraints are a1 = 0, t1 = 3, e11 = 1.25, e21 
= 2.75, e12 = 0 and e22 = 1.5. Fig.2 exemplifies the L-
Mode behaviour of the executive task, whereas in Fig.3 
it shows its H-Mode behaviour. Each cycle covers HIj = 
P(τ1

2) / PS1 = 15 / 5 = 3 S-periods (i.e., 15ms) and 
involves only L-Mode and H-Mode (since a1 = 0).  

 

 

 

 

 

 

 

Fig.2. Scheduling of the task set under L-Mode. 

In figure 2, for the first S-period (i.e., [0, 5]), we can 
see the executive task τ1

2 is first performed for t1 = 3 and 
finishes its execution; then, the member task τ1

1 is 
performed for the execution budget e11 = 1.25 (τ2

1 is not 
performed at this interval since e12 = 0).  

 

 

 

 

 

 

 

Fig.3. Scheduling of the task set under H-Mode. 

Since the cluster is in L-Mode, both member tasks 
τ1

1 and τ2
1 are performed in the second S-period ([5, 

10]) and third S-period ([10, 15]) for e21 = 2.75 and e22 
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= 1.5 correspondingly. The second scheduling cycle 
([15, 30]) works in the same way, but τ1

1 completes 
before depleting its entire allotted budget in the time 
interval [25, 30].  

In Fig.3, τ1
2 overruns its low-level WCET in the first 

cycle ([0, 15]), so the cluster is changed immediately to 
high-level execution behaviour, and all member tasks 
are cancelled (till τ1

2 finishes). In the interval ([15, 30]), 
τ1

2 continues in L-Mode, therefore τ1
1 and τ2

1 are 
performed normally, according to their allotted xecution 
time. In the first S-period of this second cycle, (i.e., [15, 
20]), neither τ1

1 nor τ2
1 is performed. The reason is, the 

currently-active task τ1
1 has been suspended at time 

15ms when next τ1
2 arrives, whereas the budget allotted 

to τ2
1 is e12 = 0.  It is important to note that only few 

member tasks violate their timing constraints: member 
tasks arrived in [0, 15] are discarded, but the entire 
member tasks arrived in [0, 15] are schedulable. 

Let us consider a cluster Sj = {τj
2

, τ1
1, τ2

1,..., τn
1}. 

Here, we first develop the MC schedulability constraints 
for Sj under our mode transition protocol with a pre-
allocated execution time  Ej and other constraints aj, tj, 
e1i, e2i (1 ≤ i ≤ n), where tj ≥ 0, e1i ≥ 0, e2i ≥ 0 and  aj > 
0. We then identify the sufficient schedulability 
condition for a cluster upon a single-core system. 
Lemma 1 gives the schedulability conditions for every 
member task τi

1.  
 

Lemma 1: All the member tasks τi
1 (1 ≤ i ≤ n) are 

guaranteed to be schedulable if and only if all the 
conditions (9) – (14) satisfy, where the condition (14) is 
given below:  
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where N OL
i is the upper bound of S-periods in P(τi

1) that 
overlap with L-Mode and S-Mode of a scheduling 
cycle. It is calculated as follows: 
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Example 3: Let us use an example given in Table 4, 
with pre-allocated execution time E1 = 1.5, a1 = 1, e11 = 
0 and e21 = 1.5 to exemplify the lemma 1. The 
estimated value of other scheduling parameters are PS1 = 
5, LOi

j = 3, and HIj = 5. The upper bound of the number 
of overlapping S-periods during is calculated as follows: 
 

( ) { } 211,5mod3min11
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Table 4. An example cluster with task parameters 

Task 
Given parameters Calculated parameters 

£ Ci
1 Ci

2 Pi(τi) )(U1
ii τ

 )(U2
ii τ

 

τ1
2 2 3 7.5 25 0.12  0.3 

τ1
1 1 1.5 - 15 0.10 - 
 

There are 2 overlapping S-periods for the first and 
fourth arrivals of τ1

1, 1 for the second and third arrivals, 
and zero for the fifth arrival as illustrated in Fig. 4. Now, 
we can certify that all jobs of τ1

1 can complete before 
their deadlines. 

 

 

 

Fig.4. The number of overlapping S-periods 

Lemma 2: Each executive task τj
2 collects an execution 

budget of at least C
j

1
2τ
 when it is in L-Mode and at least 

C
j

2
2τ
when it is in H-Mode by its deadline if the 

conditions (9), (11) and the following condition (16) 
satisfy: 

( ) )16(2
2 EaHItaC jjjjj
j

×−+×≤
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From lemma 1 and 2, we can drive theorem 2.  

Theorem 2: Suppose each cluster Sj = {τj
2
, τ1

1, τ2
1, τ3

1,..., 
τn

1} is assured to collect an execution budget of Ej in 
each of its periods. Then, the cluster is MC-schedulable 
with constraints Ej, aj, tj, e1i, e2i (1 ≤ i ≤ n) if all of the 
conditions (9) – (16) are met.  
 

 Let Gλ be the group of clusters scheduled on a core 
λ. Note that each cluster Sj ∈ Gλ is scheduled with other 
clusters in Gλ as a normal sporadic task with period PSj 
and budget Ej using EDF policy. The cumulative total 
processing capacity of the group of clusters is denoted 
by Uλ. According to the schedulable demand-bound 
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functions of EDF [24], all clusters in Gλ are able to 
schedule if:   

)17(1≤∑=
∈Gs sj

j
P
EU j

λ

λ

 

Hence, every cluster Sj is received an execution budget 
of Ej in each PSj if Uλ ≤1. From the above inequality 
(17) and Theorem 2, now we are ready to derive the 
sufficient condition and establish our main theorem for 
clusters schedulability. 
 
 Theorem 3: Let Gλ be the group of clusters scheduled 
on the core Ψλ (based on any task clustering approach). 
If for all Sj = {τj

2
, τ1

1, τ2
1, τ3

1, τ4
1,..., τn

1} in Gλ, there exist 
value Ej ∈ R+ and constraints aj ∈ N (aj < HIj) and tj, 
e1i, e2i ∈ R+  where 1 ≤ i ≤ n such that Uλ ≤1 and the 
conditions (9) – (16) are met, then every cluster mapped 
to the core λ are MC schedulable. 

5. Mixed Integer Nonlinear Programming 
Model for Task Clustering 

Fig.5 illustrates a unified overview of our proposed 
mechanism. Consider a core Ψλ in which the set of tasks 
τ(Ψλ) = (τ1

2
,…… τm

2 ,τ1
1,…., τn

1) are scheduled. Each task 
has its own parameters Pi, Di, £i, Ci

1 and Ci
2. Our 

objective of the task clustering is to find (i) a group of 
the member tasks that will be clustered with executive 
task τj

2 (1 ≤ j ≤ m) into the cluster Sj; and (ii) for every 
cluster Sj, the values of the execution budget Ej and the 
other constraints aj, tj, e1i, e2i, PSj, LOi

j and HIj.  

 

 

 

 

 

Fig.5 Overview of proposed mechanism 

Here, we develop an MINLP model for clustering 
according to the schedulability constraints. Since the 
clusters are executed using EDF policy with periods PSj 

and a pre-allocated execution time Ej, the smaller 
utilization indicates better schedulability. Hence, the 
objective function of the MINLP problem is to 
minimize the overall utilization of the clusters so as to 
enhance their percentage of schedulable tasks. The 
parameters of the MINLP are identified from the MC 
schedulability constraints of the clusters. However, the 
MINLP is of NP-hard complexity and therefore 
computationally expensive to be solved every time in 
order to determine the optimal solution.  

In order to allow a member task to exploit the 
overprovisioning of more than one executive task, we 
enable each τi

1 to present in multiple clusters – that is, 
every τi

1 can obtain pre-allocated execution time from 
multiple clusters and the τi

1 is performed whenever it is 
organized in a cluster. In the meantime, all the clusters 
are serviced serially on a common computing platform; 
τi

1 is not ever performed concurrently by more than one 
cluster. Therefore, if the reserved execution time that 
the low-level task is assured to collect from all of its 
clusters is at least Ci

1, then τi
1 is schedulable.  

According to the above tenet, new variables (ej1i, 
ej2i) are used to specify the predefined execution times 
that τi

1 can collect from cluster Sj in each scheduling 
modes of Sj (rather than using an only one set of values 
(e1i, e2i)). These variables are also used to specify 
whether the member task has its place in the cluster Sj: 
if ej1i = ej2i = 0, then τi

1 does not belong to Sj, or else it 
does. According to the Theorem 3, the task set τ(Ψλ) is 
MC schedulable if all of the conditions (9) – (16) are 
satisfied for each cluster Sj. Hence, the scheduling 
parameters for each cluster Sj can be calculated by 
replacing e1i with ej1i, e2i with ej2i, Ni

OL with Ni,j
OL in 

the conditions and rewriting the condition (14) as  
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In order to decrease the processing intractability, 
rather than using the condition (9), we use ∑+=

=

n

i
ij

ejtE j
1

1 .  

Now, we can summarize a complete MINLP 
formulation for our utilization minimization problem in 
Fig.6. Putting together the objective function with the 
constraints, we define the MINLP model for our 
scheduling mechanism. According to the schedulability 
restraints, the MINLP model finds which tasks can be 
clustered to minimize the utilization. Given a set of 
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mixed-critical workloads, if the overall cluster 
utilization derived from the formulated mathematical 
model is greater than 1, then this task set is considered 
to be not schedulable by the algorithm and will be 
precluded by the scheduler. 

Aiming to optimize the solution of the assignment, 
the MINLP problem is solved by a branch-and-bound 
solver, MINOTAUR (Mixed-Integer Nonconvex 
Optimization Toolbox: Algorithms, Underestimators, 
and Relaxations) [25, 26]. It is one of the best open-
source solver toolkits which offer methods and data 
structures to study and solve complex MINLPs directly. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Scheduling constraints for MINLP formulation 

MINOTAUR provides a number of algorithms and 
advanced routines/libraries to find the solution of the 
complex MINLPs and can be directly called from 
several other codes like AMPL (A Mathematical 
Programming Language) scripts [27], FORTRAN or 
C++. In order to solve MINLP mathematical model, 
MINOTAUR exploits LP/NLP-based branch-and-bound 
(LP/NLP-BB) algorithm [28]. The non-negative 
parameters aj, tj, ej1i, ej2i and tj indicates that the 
MINLP problem is convex, which guarantees that the 
solver provides an optimal result of the given 
mathematical model. The LP/NLP-BB solver is started 

by relaxing the linearization of the original MINLP 
problem and building a relaxed mixed-integer linear 
programming (MILP). The nonlinear constraint of an 
MINLP problem is represented by the following 
equation. 

)19(0)( ≤zg  
 

where g(·) is a convex function and z is the continuous 
variable. The integrality restriction can be relaxed by 
finding the linear approximation of the function about 
any point zk as follows:  
 

)20(0)()()( ≤+−∇ kzgkzzTzkg  

The MILP relaxation provides a close approximation 
to the original MINLP problem if we find the linear 
approximation about more points. On the other hand, 
the number of integrality constraints in the MILP 
problem increases with the number of linearization 
points and obviously reduces the speed of operation of 
MINOTAUR. To circumvent this issue, linearization 
limits obtained from a single point are included in the 
initial iteration. This initial estimate is considered as the 
initial solution of the relaxed nonlinear programming 
(NLP) [28]. Then, we take linearization for more points 
at which the constraints violated significantly. The 
LP/NLP-BB solver initiates by finding the solution for a 
linear programming (LP) relaxation and sets the 
incumbent value INC_V = ∞ [28]. The solver then 
generates a search tree to resolve very tight MILP 
relaxations. In each iteration, we exclude an LP subset 
from the list and resolve it. If the obtained result is more 
than the current INC_V, we reject this subset since it 
does not encompass any value superior than the INC_V. 
If the result ẑ obtained from the linear programming 
subset has a fractional value, two additional subsets are 
created by subdividing (branching) the noninteger 
variable. Afterwards, these two newly created subsets 
are included in the list of unresolved subsets. If ẑ holds 
every integer constraints, then we inspect whether it 
holds the nonlinear constraints or not. If it is feasible, 
we have a new INC_V. Otherwise, we successively 
linearize one or more perturbed constraints about ẑ and 
continue. When there are no more remaining subsets left 
to resolve the algorithm will terminate. 

In our problem formulation, the MINLP has m 
integer variables, 2mn+6m constraints, and m+2mn real 
variables, where m and n are the number of member and 
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executive tasks, correspondingly. Note that depending 
upon the size of the input (the size of task set), the 
amount of variables and constraints associated with the 
problem is varied. In the worst case, the solver needs to 
solve an exponential amount of linear and nonlinear 
subsets. Nevertheless, in reality, MINOTAUR produces 
significantly higher quality solutions in much less time. 
The mathematical model shown in Fig.6 can easily be 
reformed by accounting other kinds of constraints also – 
e.g., restrictions on cluster count that each member can 
fit, restrictions on the number of member tasks in each 
cluster, etc.  

6. Enhanced Dual-mode Scheduling Algorithm 

Unfortunately, the Three-mode budget-driven 
scheduling strategy introduces excessive overhead and 
unnecessary context switching when there are more 
member tasks in a cluster (refer Fig. 7). In order to 
evade this problem, we develop an Enhanced dual-mode 
(E-Mode) algorithm that schedules the member tasks 
using EDF policy with reduced switching overhead. 
Given a cluster Sj with allocated execution time Ej, aj 
and tj, the E-Mode mechanism operates as follows:  

Mode I ([0, (HIj−1)] S-periods): For every S-period, if 
there are some incomplete member tasks in the cluster, 
the active job of τj

2 is performed first for a certain 
amount of time  (up to tj), and then the member tasks in 
the cluster are performed using EDF approach. Else, the 
active job of τj

2 is performed until it finishes or Ej 
exhausts.  

Mode II (the last (HIj − aj) S-period): For every S-
period, the job of τj

2 is performed first until it completes 
and then the incomplete member tasks in the cluster are 
performed using EDF strategy. If the active job of τj

2 is 
in H-Mode, the member tasks that cannot complete 
when their deadlines are met or another τj

2 arrives are 
discarded. In contrast to the Three-mode scheduling 
mechanism, our E-Mode strategy considers (aj +1)th S-
period and the last (HIj − aj) S-periods as a single mode. 
The rationale behind this is that under the Three-mode 
mechanism, different execution budgets (e1i and e2i) 
may be applied to each τi

1 in (aj +1)th S-period and in 
(HIj − aj −1) S-periods, whereas under the E-Mode 
policy, member tasks are always executed using EDF 
approach.  

Theorem 4: If a cluster Sj = {τj
2
, τ1

1, τ2
1, τ3

1, τ4
1,..., τn

1} is 
MC schedulable under the Three-mode policy with an 
execution budget Ej and the constraints aj, tj, e1i, e2i, 
then Sj is also MC-schedulable under the E-Mode 
scheduling policy with the same budget Ej and 
scheduling constraints aj and tj. 
 
Example 3: Consider the cluster given in Table 5, with 
the parameters E1 = 4.5, a1 = 0 and t1 = 3. Each member 
task is scheduled under the Three-mode scheduling 
mechanism with execution budgets e11 =1.25, e21 
=2.75, e12 = 0.25 and e22 = 1.75 as depicted in Fig.7. 
The same task set is scheduled under E-Mode 
scheduling strategy as shown in Fig.8. E-Mode reduces 
the number of mode transitions, and thus decreases the 
context overheads. 

Table 5. An example cluster with task parameters 

Task 
Given parameters Calculated parameters 

£ Ci
1 Ci

2 Pi(τi)   

τ1
2 2 3 13.5 15 0.2 0.9 

τ1
1 1 4 - 10 0.4 - 

τ2
1 1 3.75 - 15 0.25 - 

  
 

 

 

 

 

Fig.7. Three -mode Budget-driven schedule 

  

 

 

 

 

Fig.8. Schedule using enhanced dual-mode 
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 From Theorem 4, we can estimate the constraints for 
E-Mode mechanism by resolving the MINLP model 
formulated in Section 5. E-Mode can alleviate the 
switching overhead by dividing the number of low-level 
workloads as a main constraint. Furthermore, we can 
also provide a timing assurance for each τi

1 providing a 
restriction on the number of clusters in the system. 

7. Clustering-based Partitioned MC scheduling 
on a Multicore Processor 

We now briefly discuss our Clustering-based 
partitioning EDF algorithm for dispatching admitted 
workloads to multiple cores. Let us denote a processor 
Ψ with λ homogeneous cores as Ψ = {Ψ1,….Ψj….,Ψλ}. 
Consider the group of tasks assigned to each core Ψj is 
represented by τ(Ψj). When the number of on-chip core 
increases, C-PEDF can satisfy the new requirements.  

Our proposed approach targets to distribute the tasks 
among all cores while choosing an executive (member) 
task to allocate based on decreasing executive (member) 
task utilization. Consider τ2 = {τ1

2,...,τn1
2} be the group 

of executive tasks and τ1 ={ τ1
n1+1……, τ1

n} be the 
group of member tasks. The formal steps of C-PEDF for 
scheduling tasks with dual criticality levels are given in 
Algorithm 1.  

C-PEDF starts by assigning τ(Ψj) to null and by 
ordering the given set of workloads. Executive tasks are 
arranged in descending order of their Ui

2(τ), and tasks 
with equal  Ui

2(τ) are again arranged in decreasing order 
of Ui

1(τ). Member tasks are arranged in descending 
order of Ui

1(τ), and workloads with equal Ui
1(τ) are 

again arranged in ascending order of their inter-arrival 
time. The motivation behind this ordering is: for 
executive tasks with equal Ui

2(τ), a task with a higher 
value of Ui

1(τ) typically has less overprovisioning; and 
for member tasks with equal Ui

1(τ), the workload with a 
lesser value of inter-arrival time will likely have a 
minimum utilization rate of overprovisioning, since PSj 
is selected as the gcf of the inter-arrival time of all the 
workloads. 

Our C-PEDF then chooses the task (τ s ) with the 
highest utilization. Then, the algorithm selects an 
appropriate core Ψj for this workload, such that the 
cumulative utilization for selected workload in 
conjunction with the active workloads on this core is 
minimal; hence, it distributes the tasks across cores. If 
the cumulative cluster utilization on the chosen core Ψj 

does not go beyond one, τ s  is allocated to Ψj. Or else, 
the C-PEDF terminates with a failure report. If the 
workload is fruitfully assigned to a core, the C-PEDF 
reports “success”. According to the Theorem 4, the 
scheduling achieved by our C-PEDF always guarantees 
the real-time performance of the admitted tasks. The 
equally critical workloads on a core are directly 
scheduled under EDF policy. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1:  Pseudo code for Clustered-PEDF  
 
Input: An MC task system with a group of executive 
tasks τ2 = {τ1

2,..., τn1
2} and group of member tasks τ1 

={τ1
n1+1 ……, τ1

n} to be scheduled on a processor  Ψ with λ 
homogeneous cores. 

 
Output: Real-time MC schedule 
 
1: τ(Ψj)←0, for all j = 1,..., λ.  
2: for i ← 1 to n1  ►for executive tasks 

a) Calculate the utilization Ui
2(τ)   

b) Order task set in descending order of Ui
2(τ)   

c) Order tasks with same Ui
2(τ) value in  

      descending order of Ui
1(τ)  

3: for i ← n1 to n   ►for member tasks 
a) Calculate the utilization Ui

1(τ) 
b) Order tasks in descending order of Ui

1(τ)   
c) Order tasks with same Ui

1(τ) value in ascending 
order of its inter-arrival time (Pi)   

4: while τ2 != 0 and τ1 != 0 do ► Clustering 
5:      τ s  ←NIL 
6:      if τ1 != 0 then  
7:          τ s ← The first member task from τ1 
8:      if τ2 !=0  then  

9:         τ *
s ←The first executive task from τ2 

10:          if τ s  = NIL ||  

      τ s != NIL && U1 (τ s ) < U2 (τ *
s ) then 

11:               τ s  ← τ *
s   

12:      Remove τ s  from its group ► Bin-packing 

13:      Select a core Ψj ∈ Ψ that has a minimum 
     cluster utilization for  τ(Ψj)∪{τ s } 

14:       if the cluster utilization for tasks  
      τ(Ψj)∪{ τ s } ≤ 1  then  

15:               τ(Ψj)←τ(Ψj)∪{τ s } 
16:       else  
17:             return FAILURE  
18:  return SUCCESS   
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8. Experiments and Results  

We investigate and empirically assess the schedulability 
of C-PEDF by conducting extensive simulation 
experiments. To evaluate the effectiveness of our 
suggested scheme, we experimentally compare the 
performance of C-PEDF against the following 
partitioned MC scheduling approaches: 

• DC-RMS: a scheduling algorithm from [20] in 
which the workloads are ordered in descending 
order based on their level of importance and higher 
priorities are allocated to workloads with lower 
inter-arrival time (i.e., Decreasing Criticality-Rate 
Monotonic Scheduling); 

• DU-RMS: a scheduling algorithm from [20] in 
which the workloads are arranged in descending 
order based on their utilization and higher priorities 
are allocated to workloads with lower inter-arrival 
time (i.e., Decreasing Utilization-Rate Monotonic 
Scheduling); 

• DC-AOPA (Decreasing Criticality-Audsley's 
Optimal Priority Assignment): an approach from 
[20] in which priorities are allocated in order, from 
lowest to highest. In each cycle, the algorithm finds 
an appropriate workload for the next priority level. 
If so, it gives that priority, then allocates the 
subsequent priorities to the other workloads in a 
similar way; 

• DU-AOPA (Decreasing Utilization – AOPA): an 
approach from [20] in which the tasks are 
scheduled according to their utilization and AOPA 
algorithm is used for priority allocation; 

• MC-PARTITION: EDF-based approach relies on 
Virtual Deadlines from [29]; 

• EY-FF: an enhanced Ekberg and Yi (EY) algorithm 
[13] exploiting First-Fit (FF) packing policy from 
[15];  

• MPVD (Mixed-criticality Partitioning with Virtual 
Deadlines): a further extension of EY algorithm 
with the hybrid packing model from [15]; 

• E-MPVD (Enhanced-MPVD): MPVD enhanced by 
the heavy low-criticality task cognizant assignment 
strategy in [15]; and   

• MPVD-OPT: E-MPVD further enhanced by the 
optimized virtual deadline tuning from [15].  

We evaluate our proposed algorithm with the 
following objectives: (1) to evaluate the effectiveness of 
C-PEDF in terms of acceptance ratio (i.e. the fraction of 
the number of tasks that are deemed to be MC-
schedulable by the algorithm to the total number of the 
tasks in the experiment); (2) to analyse how well C-
PEDF can defend low-level tasks when an executive 
task exhibits its critical behaviour; (3) to examine the 
impact of probability of the generated workload exhibit 
high-level execution behaviour on Deadline Miss Ratios 
(DMR) of member tasks; and (4) to analyse the impact 
of overprovisioning in terms of schedulability on a 
single-core processor by enabling a member task to 
present in more than one clusters. The impact factor of 
member tasks is considered as a metric to evaluate the 
C-PEDF performance. We specify the impact factor of 
member tasks as the ratio of such workloads for which 
at least one job is discarded or violates its timing 
constraint since an executive task exhibits its critical 
behaviour. The ratio of low-level tasks that violate their 
timing constraints is called as DMR.  

8.1. Workload 

For our experiments, we implement a UUniFast random 
task generator as used in [14]. Each data-point in the 
curves was derived by at least 2000 random tasks. Here, 
the parameter, Prob(τj

2) represents the probability of a 
task to be an executive task. Initially, we consider a 
system with an equal amount of high- and low-level 
workloads and set Prob(τj

2) = 50%. The period Pi was 
selected within the range of [1, 500] time units. The 
low-level WCET Ci

1 of τi was derived from [0.05 × Pi, 
0.5 × Pi] and, if τi was an executive task, its high-level 
WCET Ci

2 was derived from [2 × Ci
1, 4 × Ci

1]. The 
average utilization Uav(τ) is calculated as:  
 

( ) ( ) ( ) )20(2
21

λ
τττ

×
+= U iU iU av

 

where Ui
1(τ)  and Ui

2(τ),  are the sum of utilizations of 
low- and high-level workloads correspondingly. Table 3 
exemplifies the estimation of these cumulative 
utilization parameters for a different criticality level of 
tasks. Each task set is created with a normalized average 
utilization ( )τU av

*  with a tolerable range of errors. 
Based on the scheduling parameters, workloads are 
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generated uniformly until the following constraints on 
utilization bound were met: 
 

(i) ( ) ( ) ( ) λττλτ 005.0005.0 ** +≤≤− UUU avavav
  

(ii) ( ) UU i λτ ≤1 ; and  
(iii) ( ) UU i λτ ≤2   

 
where ( )τU av

* ∈{0.5, 0.55, 0.6, …, 0.95} and λ ∈{2,4,8). 
Since the estimation of DMR and the impact factor 
involve expensive simulations, we select only 50 tasks 
arbitrarily with ( )τU av

*  ∈ {0.65, 0.75, 0.85, 0.95}. We 
execute each simulation for 10000 msec. In order to 
assess the impact of overprovisioning on the 
schedulability under varying number of clusters that a 
member task can fit into, we select the value of  
Prob(τj

2)  to 90%, and Ui
1(τ)  within the range of [0.01, 

0.2] to produce more executive tasks.  

8.2. MC schedulability 

In Fig.9a - 9c, we depict the fraction of task sets 
successfully scheduled as a function of the normalized 
average utilization (load) of the various heuristics in 2-
core, 4-core, and 8-core processors correspondingly. We 
first observe that as the load increases, the acceptance 
ratio decreases for all compared schemes. This is due to 
the fact that as the average utilization rises, there are 
more tasks in the platform that needs to be serviced. 
Therefore, there is a higher load on the processor, and as 
a result, more workloads violate their timing constraints. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.9(a). MC schedulability for 2-Core systems 
 

Consequently, we observe that schemes using AOPA 
provide better performance as compared to schemes 
using RMS policies. Therefore, these results prove that 
the choice of the priority allocation method plays a vital 
role to enhance schedulability. The results for 4- and 8-

core processor reveal that the success ratio of EY-FF 
reduces as the core count increases. This is due to the 
uneven assignment of scheduling parameters in EY 
decreases the possibility of optimizing virtual deadline.  
 
 

 
 
 
 
 
 
 
 
 
 

Fig.9(b). MC schedulability for 4-Core systems 
 
The graphs in Fig. 9c show the acceptance ratio 

against the system load under different scheduling 
algorithms on an 8-core processor. We observe that the 
algorithms MPVD, E-MPVD, and MPVD-OPT provide 
better performance as compared to EY-FF by 
distributing the workloads between cores. E-MPVD 
outperforms MPVD by allocating substantial low-level 
workloads to cores before high-level workloads, but the 
success ratio of these two approaches follow the same 
trend when the system comprises limited low-level 
tasks.  

 
 

 
 
 
 
 
 
 
 
 

Fig.9(c). MC schedulability for 8-Core systems 
 
MPVD-OPT targets to increase the acceptance ratio 

by means of a virtual deadline optimizing technique, 
and its acceptance ratio is greater than MPVD and E-
MPVD; however, these optimizing technique does not 
consider the low-level workloads, so it jeopardizes the 
acceptance ratio of the system. Therefore, the 
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performance of MPVD-OPT is inferior to C-PEDF for 
all 2-core, 4-core and 8-core processor with higher 
average utilization. From the results, we can observe 
that many more tasks can be scheduled under C-PEDF 
with a given number of cores. The proposed algorithm 
constantly exhibits a substantial enhancement in the 
acceptance ratio and outperformed all state-of-art 
algorithms. Obviously, there is a wide performance gap 
among the schedulability of C-PEDF and those of other 
approaches. This is because, with an increase in the 
number of workloads, there are more opportunities for 
our C-PEDF to select suitable clusters for each member 
task.  

8.3. Effect of H-Mode behavior on member tasks 

In our study so far, we have fixed prob(τj
2) = 50%. 

Next, we evaluate the impact factor of the member tasks 
for varying fractions of executive tasks to get into H-
Mode. In Fig. 10, results are plotted for the fixed ( )τU av

*  
∈ {0.65, 0.75, 0.85, 0.95} on a 4-core platform. We 
observe that only a certain ratio of member tasks is 
influenced and that this ratio increases with the ratio of 
executive tasks that show H-Mode behaviour. The 
reason is, with C-PEDF, the H-Mode behaviour of an 
executive task has an impact only on member tasks in 
the same cluster, but not in other clusters.  

 

 

 

 

 

 

 

Fig.10. Impact factor of member tasks 

We observe some important properties: (i) The 
relationship is not exactly linear since a group of low-
level workloads are clustered with multiple executive 
tasks, and can thus be influenced by any one of these 
clusters. (ii) Once all the admitted workloads show H-
Mode behaviour (i.e., prob(τj

2) = 100%), there are still 
certain member tasks in the system that are not 
influenced. This is because the cores having only 
member tasks cannot be affected by the H-Mode 
behaviour of other clusters. (iii) As expected, the impact 
ratios are not affected by varying average utilization. 

This is due to the proportion of member tasks that are 
influenced hinges mainly on the clustering process and 
Prob(τj

2). 

8.4. Real-time performance of member tasks 

The impact of H-Mode behaviour on the DMR of 
member tasks in a 4-core processor is plotted in Fig. 11. 
As expected, there is no task misses its deadline when 
prob(τj

2) = 0: when the system is in L-Mode, the C-
PEDF can guarantee that the system is schedulable. As 
the prob(τj

2) increases, the DMR of the member task is 
also increased slowly; this is because that the H-Mode 
execution behaviour of a task can only influence other 
members within the cluster, but not tasks in other 
clusters. Furthermore, since the isolation among clusters 
allows the system to transit back to L-Mode when all 
executive tasks show L-Mode behaviour, the fraction of 
a deadline miss of the member tasks can be preserved 
small even for long-running applications.  

It is evident that the DMR plots corresponding to 
various average processing capacities cross each other, 
that is, a cluster with a greater value of ( )τU av

*  will have 
a smaller DMR than that of a cluster with a lesser value 
of ( )τU av

* . This is anticipated because the DMR can 
become lesser as we generate more member tasks, 
which can be the case when ( )τU av

*  rises. It is important 
to note that the other scheduling approaches reject the 
entire low-level workloads immediately an executive 
task shows H-Mode behaviour, so they provide no 
service assurance for member tasks in the H-Mode.  

 

 

 

 

 

 

 

Fig.11. Deadline miss ratio of member tasks. 
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8.5. Impact of resource overprovisioning on 
schedulability 

We continue to present the impact of resource 
overprovisioning on acceptance ratio. Fig. 12 shows the 
impact of allowing member tasks to exploit the 
overprovisioning of various executive tasks on the 
schedulability of the given task on a single-core system. 
Here, N clusterm _  is the upper bound on the total number 
of clusters available for each member task.  

 

 

 

 

 

 

 

 

Fig.12. Effect of overprovisioning on schedulability 

As shown in Fig. 12, the acceptance ratio increases 

with N clusterm _
. Furthermore, the success ratio gap tends 

to large as the load increases, which further specifies the 
usefulness of exploiting overprovisioning of executive 
tasks. 

9. Future work 

The additional research effort is required before our 
scheduling approach could be considered appropriate 
for real tasks. There are two potential directions of our 
future work: application studies and architecture 
improvements. 

Application studies: We plan to apply our scheduling 
approach in LITMUSRT (LInux Testbed for 
MUltiprocessor Scheduling in Real-Time systems) on 
an Intel® Xeon® Processor E7440 platform [30]. It is a 
32-bit processor consists of 4 cores on a single chip 
operating at 2.40 GHz, with 16 MB L2 cache per 
processor and 4 GB of RAM. Each core can process 4 
logical threads in parallel. The implementation of 
extensive measurements campaigns using this testbed 
will be intended for performance assessments that will 

give more constructive feedback on the pragmatism of 
our approach.  

Architecture improvements: A substantial amount 
of improvements to our approach would increase the 
range of real-time tasks that can be supported on 
multicore systems. A leading example of this is efficient 
resource sharing across applications of different safety 
criticalities. An additional active field of interest is 
facilitating adaptivity, which is deemed to be an 
essential concern in future industrial safety-critical 
systems, which themselves must adapt different run-
time operating conditions (environments) dynamically. 
For instance, in an unmanned aircraft, when previously- 
undetectable opponent radar stations are found, it might 
be beneficial to give rise to the share of computing 
resources of a pathfinding and route planning processes. 
On the other hand, if an unfriendly guided missile were 
to be spotted, in order for appropriate action or 
communication to be performed more quickly, the 
facility to enable a mode-switch (wherein a new set of 
tasks replaces those currently being scheduled) might be 
required. We would like to point out that even though 
our proposed approach considers a dual criticality 
system, it is likely to extend this approach to more than 
two levels. We intend to extend our algorithm to 
investigate the run-time overhead limitations of the 
proposed algorithm to obtain a global view of the gains 
of our approach. Finally, we plan to extend our 
scheduling strategy to execute multi-criticality tasks on 
a heterogeneous platform in a hierarchical manner. 

10. Conclusions  

We have proposed a Clustering-based partitioned EDF 
scheduling algorithm for scheduling dual-criticality 
tasks on a multicore platform. In our proposed C-PEDF 
algorithm, each high-level workload is coalesced in a 
cluster (to facilitate separation) along with a group of 
less critical tasks (to maximize schedulability of tasks 
while preserving the criticality assurance). Within each 
cluster, tasks are scheduled under Enhanced dual-mode 
scheduling policy to improve the service level of high-
level tasks without jeopardizing the schedulability of 
low-level tasks. Clusters are scheduled under Earliest 
Deadline First (EDF) scheduling approach.  

Our approach enforces strong temporal isolation 
between high-criticality tasks to alleviate all inter-task 
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interferences, and it allows more lower-criticality 
workloads to satisfy their timing requirements. This is 
due to (i) the undesirable service intervention of high-
level workloads on low-level workloads is considerably 
decreased; and (ii) low-level workloads are not 
continuously dropped, but rather received sufficient 
execution when the high-level workload in the same 
cluster exhibits its critical behaviour. We conduct a 
schedulability test for the proposed technique, and we 
demonstrate how workloads can be clustered by means 
of evolutionary intelligence technique, namely Mixed 
Integer Nonlinear Programming (MINLP) model. 
Extensive simulation results reveal that our algorithm 
significantly outperforms other approaches both in 
acceptance ratio and the impact factor of low-level 
tasks.  
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