
Criticality-cognizant Clustering-based Task Scheduling on Multicore Processors in the
Avionics Domain

K. Nagalakshmi 1, N. Gomathi 2

1 Department of Information Technology, E.G.S. Pillay Engineering College,
Nagapattinam, Tamilnadu, India
E-mail: nagulaxmi@gmail.com

2 Department of Computer Science and Engineering, Vel Tech Dr.RR & Dr.SR University,
Chennai, Tamilnadu, India

E-mail: gomathin@veltechuniv.edu.in

Abstract

Scheduling of mixed-criticality systems (MCS) on a common computational platform is challenging because
conventional scheduling approaches may cause inefficient utilization of shared computing resources. In this paper,
we propose an approach called Clustering-based Partitioned Earliest Deadline First (C-PEDF) algorithm to
schedule dual-criticality implicit-deadline sporadic tasks on a homogeneous multicore system. Our C-PEDF
scheduling approach exploits (i) a Clustering-based bin-packing algorithm that explicitly accounts the demands of
tasks based on their levels of confidence; and (ii) an Enhanced dual-mode scheduling policy to schedule tasks
within a core. The proposed C-PEDF integrates every single high-level workload with a group of low-level
workloads and coalesces them into a cluster. Within each cluster, tasks are scheduled under our Enhanced dual-
mode scheduling policy to improve the service level of high-level tasks without jeopardizing the schedulability of
low-level tasks. Clusters are scheduled under Earliest Deadline First (EDF) scheduling approach. We conduct a
schedulability test for the proposed technique, and we demonstrate how workloads can be clustered by means of
Mixed Integer Nonlinear Programming (MINLP) model. Extensive simulation results reveal that our algorithm
significantly outperforms other existing approaches both in acceptance ratio and the impact factor of low-level
tasks.

Keywords: clustering; mixed-criticality; multicore processor; task scheduling; schedulability; sporadic task; UAV.

1. Introduction

The relentless developments in microelectronic
technology enable processor manufacturers to fabricate
more computational elements (cores) on a single chip to
realize high performance and better reliability at low-
cost. Such integrated systems are efficiently used in
numerous safety-related industrial sectors (e.g.,
automotive, medical, aerospace, home electronics

market, nuclear power station, etc.,) to fulfil the
radically increased computing demands of safety-
critical applications. A system is said to be safety-
critical whose malfunction might lead to loss of
human life or serious damage to property/environment.
Most of the safety-critical domains are mixed-critical
which consolidate various functionalities with different
criticality levels (i.e., importance) on a common
computational platform. The adoption of multicore

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

219

Received 15 August 2017

Accepted 26 October 2017

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

processors for MCS will be driven by the increasing
demand of computational power, development cost, and
by SWaP (Space, Weight, and Power consumption)
concerns.

An excellent example of MCS is the Unmanned
Aerial Vehicles (UAV), generally known as pilotless
aircrafts or drones [1]. Drone is a remotely operated
airborne vehicle and finding applications in different
private and public sectors ranging from military
operations to traffic monitoring. It will have combat and
surveillance abilities surpassing those of today’s piloted
airplanes. UAV combines tasks of different criticalities
and executes them on a common embedded platform.
The workloads (i.e., tasks) of UAV can be characterized
into three categories:

1. Flight-critical tasks: High-level workloads that
execute safety-related functionalities, such as flight
control and trajectory computation to preserve the
stability of aircraft, losing which a drone cannot be
flown securely. The failures of these tasks can lead
catastrophic consequences for the aircraft and hence
need to be executed with the highest level of
assurance.

2. Mission-critical tasks: Low-level tasks, which are
concerned with surveillance objectives such as
tracking potential targets, navigation services, and
parking assistance, losing which a drone is still
considered safe. Malfunction on these tasks can
result in minor service disruption in the system that
is not catastrophic.

3. Non-critical tasks: Tasks that execute the least
important background activities. Task associated
with vehicular entertainment, such as music
streaming, is a good example of non-critical
functionality that is least important for the specified
mission.

Criticality is the degree of required protection
against failure for a subsystem. It is called as Safety
Integrity Levels (SIL) or Design Assurance Levels
(DAL). These SILs reflect the required level of risk
reduction in the engineering of a safety-related system
and hence, influence all the phases of designing,
implementing, testing, and certification processes. For
example, in aeronautics standard DO-I78B, there are
five SILs, characterized based on their level of
jeopardizing produced by the failure of the task:

catastrophic; hazardous; major; minor; no effect [2].
The task with higher criticality level indicates that a
higher degree of guarantee is required for the
correctness of system behaviour. For instance, in the
control system of a UAV performing reconnaissance
assignment, it is essential to assure the correctness of
flight-critical activity such that the flight does not crash,
than for mission-critical activities like sensing and
transmitting images.

MCS often essential to be certified according to their
criticality by a standard statutory third party, called as a
Certification Authority (CA) (e.g., Federal Aviation
Authority (FAA) in US and the European Aviation
Safety Agency (EASA) in Europe for aerospace
industry) [3]. Certification (i.e., conformity of
assessment) is about guaranteeing different levels of the
rigorous correctness of the system. To certify the
correctness, CA mandates extremely rigorous and
conservative assumptions regarding the run-time
behaviour of the system, which are very unlikely to
befall in reality. These authorities are not concerned
about anything else apart from the safety of the aircraft.
It is not incumbent on them whether the mission-critical
functionalities are performed in time or not. Conversely,
the entire system, comprising both the flight and
mission-critical applications, must be authenticated by
the system designers or other standard bodies, who
generally use a considerably less rigorous standard than
the one used by CAs.

Assimilating various operations on the same
computational platform brings lots of upsides to the
electronics market, enabling us to schedule more tasks
hence maximizing the resource usage while reducing
the SWaP requirements of the system. One of the major
technical challenges in scheming MCS is formulating a
scheduling criterion that exacerbates both the criticality
and deadline (i.e., urgency) problems of the tasks while
enabling certification. Moreover, it is essential to ensure
sufficient separation and timeliness assurances for such
MC workloads according to their safety and security
levels. Any undesirable interference among these tasks
must be prohibited to ensure the service guarantees of
safety-related applications.

There is an extensive literature on scheduling MC
tasks on both single-core and multicore systems.
Unfortunately, traditional scheduling algorithms for MC
tasks on multicore processors have at least one of the

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

220

following crucial limitations that severely restrict the
practical applicability of those algorithms:

(i) Traditional scheduling approaches assume that if
any high-criticality task shows its critical behaviour
(i.e., it overruns its corresponding nominal low-
level Worst-case Execution Time (WCET)), all
currently active and upcoming critical tasks in the
same processor are likely to show high-criticality
behaviour, which is often impractical. Our
scheduling algorithm eradicates this dispute by
taking the behaviour of every high-level workload
into account and leads to improved performance
and schedulability.

(ii) Existing approaches cannot completely adapt the
dynamic nature of the applications: the workload
can dynamically fluctuate among high- and low-
level execution modes.

(iii) Conventional scheduling algorithms do not deliver
a good real-time guarantee for the low-level
workloads: since these are performed
opportunistically with unbounded termination to
assure the timing guarantees for critical workloads.
This is undesirable because low-level workloads
also need some level of timeliness guarantees (even
though with lower-level assurances than the high-
criticality tasks).

Motivated by previous investigations on MC
scheduling, we develop a new hierarchical scheduling
framework, called Clustered-PEDF (C-PEDF) to
schedule MC sporadic task systems that overcome the
limitations posed by existing scheduling algorithms.
The contributions of this paper are four-fold:

• We propose a Clustering-based partitioned MC
scheduling strategy for implicit-deadline sporadic
workloads on homogeneous (i.e., identical)
multicore system, which imposes strong temporal
separation between high-level workloads so they
cannot influence each other and also provides better
timeliness assurance for low-level workloads;

• We devise a C-PEDF scheduling approach which
exploits a bin-packing algorithm for effective
resource utilization that explicitly accounts the
demands of tasks based on their levels of
confidence and an Enhanced dual-mode scheduling
policy to schedule tasks within a core;

• We develop a mathematical tool for schedulability
analysis on multicore platforms under our C-PEDF
scheduling approach. According to the
schedulability constraints, we develop an
evolutionary intelligence technique, namely
MINLP model for task clustering, that can enhance
the schedulability of the system;

• We evaluate our C-PEDF algorithm extensively
against some existing partitioned scheduling
algorithms.

Our article is structured as follows: The following
Section provides considerable relevant algorithms
aiming to schedule MC tasks on single and multicore
platforms. The MC sporadic task model is formally
defined in Section 3. Our Clustered partitioning MC
scheduling strategy upon a single-core processor is
discussed in Section 4. We formulate and solve an
MINLP model to identify the scheduling constraints in
Section 5. Enhanced Dual-mode Scheduling Mechanism
is explained in Section 6. Clustering-based partitioned
MC scheduling on a multicore processor is described in
Section 7. We discuss experimental results in Section 8.
We briefly describe our future work in Section 9.
Finally, Section 10 concludes this paper.

2. Related Work

Scheduling tasks at different criticality levels on a
multicore computational platform is the subject of an
emerging research field due to the proliferation of
safety-related real-time applications. A large body of
MC task scheduling algorithms has already been
proposed on single-core and multicore platforms.
Conventionally, scheduling algorithms are categorized
into two main paradigms: (i) global scheduling (ii)
partitioned scheduling.

In a partitioned approach, workloads are always
mapped to same cores (processing elements) and task
migration is not allowed. This type of scheduler exploits
distinct queues for each core and each task is mapped to
one particular core a priori, and will only be scheduled
on that core. Partitioned algorithms are often a favorable
choice for hard real-time applications since it delivers a
simple and more predictable operation [4]. The major
disadvantage of this approach is inefficient resource
utilization owing to assignment problems that arise in

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

221

the modeling of scheduling tasks to processing
elements.

A global scheduler allows any task to execute on any
core and migrates them across multiple executing cores.
These approaches are often a better choice for soft real-
time applications because the task-to-core mapping
disputes that arise under partitioning approaches are
mitigated if the limited delay is acceptable [5] [6]. A
Global scheduler is most appropriate for workloads that
are delivered based on the average execution time [7].
One key disadvantage of global scheduling is the
interference across shared resources which make the
WCET analysis more challenging.

The MC task scheduling problem was first identified
and formalized by Vestal [8], in the scope of the static-
priority preemptive scheduling. In his work, the
schedulability is based on the WCET estimates of
workloads of equal or greater priority. Vestal
demonstrated that, from the viewpoint of low-criticality
tasks, the WCET assigned for high-criticality tasks are
unnecessarily pessimistic. Hence, the author suggested
that schedulability tests for low-criticality workloads be
dynamically adjusted to adapt less pessimistic WCET
parameters for high-criticality workloads. This approach
has been proved to be optimal by Dorin et al. [9]. Later,
Baruah et al. extended Vestal's algorithm [8] to allocate
static priorities on a per-job basis (instead of task level).
They introduced an algorithm, named OCBP (Own
Criticality-based Priority), to address the asymmetric
effects among various criticality levels by exploiting
more global knowledge of the system [10]. Such a
global knowledge is much more effective than simple
scheduling constraints like urgency or importance, and
OCBP significantly outperforms other policies like EDF
and Criticality Monotonic (more critical tasks have
greater priority).

To explore the exact intricacy of the MC scheduling
algorithms [10], Baruah et al. presented [11] two
necessary schedulability conditions, the Worst-Case-
Reservations (WCR) and OCBP. This work was
extended by Li and Baruah [12] using a static-job-
priority scheduling policy based on the OCBP
condition, as well as in some following works [11],
[13], [3]. All of the above approaches have focused on a
single-core processor, but of late efforts have shifted in
the direction of multicore platforms.

To our knowledge, the MC task scheduling on
multicore platforms was first proposed by Li and

Baruah [14]. Later, Gu et al. [15] extended the work on
uniprocessor MC scheduling [16] to multicore systems
and presented two improvements for processor
schedulability by exploiting criticality-cognizance
policy. Mollison et al. developed a scheduling heuristic
for MC tasks on multicore platforms, implementing
various methods (i.e., Cyclic Executive, partitioned-
EDF, global-EDF and global best effort) for five
different criticalities and enabling temporal isolation
between tasks through a bandwidth reservation server
[17]. In this work, the more critical tasks are executed
with high priorities and the less critical tasks can run in
the residual slack time.

Pellizzoni et al. developed a reservations-based
scheme to enable sufficient separation between tasks
with different criticality levels. They proposed an
architectural technique for facilitating such isolation
despite to allow some required interferences (e.g., in the
sharing of non-preemptible system resources) among
applications of various criticalities [18]. Their objective
is not on enhancing processor utilization, but on
guaranteeing isolation. Anderson et al. introduced a
two-level hierarchical approach with a bandwidth
reservation server to ensure timing isolation between
tasks [19]. They also analyzed the importance of slack
re-distribution methods to reallocate residual computing
capacity at higher criticality levels to lower criticality
levels.
 Kelly et al. studied the issues of schedulability that
arise in the conventional partitioning approaches under
static-priority scheduling on multicore systems. They
proposed an SIL-based WCET for the tasks and a
dispatching algorithm for mapping tasks to processor
[20]. In order to explore both general and criticality
mode change protocols, Burns surveyed the pessimistic
assumptions of high criticality tasks in the higher
criticality modes [21]. Petters et al. analyzed the
significance of timing isolation of tasks for MCS and
explored several problems in designing such systems in
practice [22]. The disadvantage of the timing isolation
method is that it operates on rigorously over-
provisioning system resources, which may cause an
adverse impact on the resource allocation cost and
power performance of the system.

In contrast to these approaches, our scheduling
algorithm can provide isolation between criticality
levels from the perception of temporal correctness. The
propagation of high-level execution behavior of a

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

222

particular task is prohibited by enabling strong isolation
between various clusters. In order to maximize the total
schedulable utilization, our algorithm allows the system
to transit back from high- to low-level execution mode
as soon as all critical workloads show their low-level
execution behavior.

3. System Model and Notation

In this section, we formally define the MCS task model
and describe terms and notions used in this article. Since
our eventual interest is in the scheduling of finite
collections of recurrent (periodic or sporadic) MC tasks,
we will consider the scheduling instance contains a
finite set of sporadic tasks upon a homogeneous
multicore platform. For simplicity, we confine our
attention to a dual-criticality system. The high-critical
tasks must finish their execution before their next
release time. We relax the timeliness constraints for
low-critical tasks in that some level of deadline misses
are tolerated. In a dual-criticality task system, each
sporadic task is defined as τi

 = (Pi, Di, £i, Ci
1, Ci

2) with
the following semantics:

• i ∈ N+ is a unique index of task (i.e., 1 ≤ i ≤ n)

• Pi ϵ R+ is the minimum inter-arrival time (period) of
workload τi.

• Di ∈ R+ is the completion deadline of task τi. We
consider an implicit-deadline sporadic task system
in which each task τi has a deadline Di equal to its
period Pi. (i.e., Ɐ τi ∈ τ, Pi = Di), meaning that each
task must be finished before its next release time.

• £i ∈ {1, 2} specifies the criticality of the task τi.
Tasks with £←1 and £←2 designating low- and
high-criticality level respectively.

• Ci
1 ∈ N+ specifies the WCET of τi at the low-

criticality level.

• Ci
2 ∈ N+ specifies the WCET of τi at the high-

criticality level.

Every high-criticality task τi
2 is represented by two

WCET values: (i) more pessimistic, high-level WCET
Ci

2 considered by CA; and (ii) a less pessimistic, low-
level WCET Ci

1 expected by the system engineer. This
is because the high-level WCET is extremely more
pessimistic than low-level WCET (to ensure timeliness

guarantee). Therefore, for each high-criticality task Ci
2

≥ Ci
1. Each low-level task τi

1 is characterized by a single
low-level WCET Ci

1. We also consider that the low-
criticality tasks are enforced to suspend after Ci

1 time
units of execution. Tasks are not permitted to migrate
across cores after assignment as we consider partitioned
scheduling policy. The notations used to describe the
proposed scheduling mechanism are listed in Table 1.

Table 1. Notations

τi Task i
τi

1 Low-criticality task
τi

2 High-criticality task
Pi Minimum inter-arrival time of workload τi
Di Deadline of task τi
£i Criticality of the task τi

Ci
1 WCET of τi at the low-criticality level

Ci
2 WCET of τi at the high-criticality level

Ui
1 Task utilization under low- criticality mode

Ui
2 Task utilization under high-criticality mode

Sj Cluster j
PSj Base period of the cluster Sj

LOi
j Number of cluster budget replenishments

during P(τi
1)

HIj Number of cluster budget replenishments
during P(τj

2)
Ej Execution time budget

Example 1: Consider a simple dual-criticality task set
comprised of three sporadic implicit-deadline tasks τ1

2,
τ1

1, and τ2
1. The task parameters are given in Table.2

with time information in units of ms.

Table 2. An example task set

Task £ Ci
1 Ci

2 Pi(τi)
τ1

2 2 3

12 15
τ1

1 1

4 - 10
τ2

1 1 3 - 15

Assume the first jobs of all the tasks have arrived at

time zero. Task τ1
2 is flight-critical which has criticality

level 2 (higher-criticality level) and other two tasks τ1
1

and τ2
1 are only mission-critical with criticality level 1

(lower-criticality level). Ci
1 defines low-level WCET

and Ci
2 defines the high-level WCET.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

223

3.1. Scheduling Assurance

The given set of MC tasks is said to be schedulable if
and only if the conditions associated with dynamic
timing properties for all the tasks are satisfied:

• Low-level assurance: If all tasks do not overrun
their low-level WCET Ci

1, all high- and low-
criticality tasks are assured to receive enough
execution to satisfy their deadlines.

• High-level assurance: If all workloads do not
overrun their high-level WCET Ci

2 and at least
one high-level workload overruns it’s low-level
WCET Ci

1, all high-level workloads are assured
to satisfy their timing constraints (whereas low-
criticality tasks may be suspended).

3.2. Utilization

The utilization of a workload is usually defined as the
fraction of its worst case execution time to inter-arrival
time. Hence, the utilization of MC sporadic task τi under
low and high-criticality modes is defined as follows:

)1()(U
1

1
i

P
C

i

i
i =τ

)2()(U
2

2
i

P
C

i

i
i =τ

where Ui
1(τi) and Ui

2(τi) specify the task utilization
under low- and high-criticality mode, respectively. For
our example task set depicted in Table 2, Ui

1(τi) and
Ui

2(τi) are computed for each task. The same cluster is
given in Table 3 with an extra column for their
utilization.

Table 3. Task set with its utilization parameters

Task
Given parameters Calculated parameters
£ Ci

1 Ci
2 Pi(τi))(U1

ii τ

)(U2
ii τ

τ1
2 2 3 12 15 0.2 0.8

τ1
1 1 4 - 10 0.4 -

τ2
1 1 3 - 15 0.2 -

The cumulative utilization of all low-level tasks
under low-criticality mode Ui

1(τ) and the cumulative
utilization of all high-level tasks under high-criticality
mode Ui

2(τ) are calculated as follows:

)3()()(U
 1£

11
i ττ

ττ
ii

i

U∑=
=Λ∈

)4()()(U
 2£

22
i ττ

ττ
ii

i

U∑=
=Λ∈

Theorem 1 [23]: A dual-criticality sporadic task set
τi

 = {τ1
£, τ2

£,…, τn
£} is schedulable under EDF approach

over a (core) processor if:

)5(1)()(21 ≤+ ττ UU ii

We would like to point out that the condition given
in Eq. (5) hinges only on the upper bound processing
capacity of high-level workloads and the lower bound
processing capacity of low-level workloads. From this
observation, it is clear that determining the optimal
partitioning of admitted workloads to hold the
inequality (5) is NP-hard [24]. Now, we examine the
schedulability of the admitted workloads depicted in
Table 3 against the system utilization. Since the
cumulative utilization of the tasks at their own criticality
levels is (0.8+0.4+0.2) =1.4 ≥ 1, the task system cannot
be schedulable on a single-core processor under high-
criticality mode.

4. Clustering-based MC scheduling on single-
core Processor

In order to impose strong isolation among high-level
workloads and to decrease their service intervention
with low-level workloads, each high-level workload τj

2

is scheduled with a group of low-level workloads and
coalesces both in a distinct cluster. In our scheduling
architecture, tasks within each cluster are scheduled
under a budget-driven scheduling mechanism, and
clusters are scheduled using EDF strategy.

4.1. Clusters

We now define the task clusters. A cluster is a
collection of tasks gathered together before each task is
scheduled. In our scheduling mechanism, every cluster
comprises of one executive (high-level) task and a
group of member (low-level) tasks. The cluster is
denoted by Sj = {τj

2
, τ1

1, τ2
1, τ3

1, τ4
1,...,τn

1} where the τj
2

(1 ≤ j ≤ m) is the single executive task and tasks τi
1 (1 ≤

i ≤ n) are member tasks. The base period (PSj) of the
cluster Sj is computed as the greatest common factor
(gcf) of inter-arrival time of all workloads in the
particular cluster, i.e.,

() () () ())6(),....,,(11
2

1
1

2 ττττ nj PPPPgcfPs j
=

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

224

where P(τj
2) is the period of the executive task τj

2 and
P(τi

1) is the period of member tasks τi
1 (1 ≤ i ≤ n). For

simplicity, the period of the cluster specified as S-
period. The number of cluster budget replenishments
during P(τi

1) is calculated as

())7()1(,
1

ni
P

P
LO

s j

ij
i ≤≤= τ

Similarly, the number of budget replenishments during
P(τj

2) is calculated as

())8()1(,
2

mjP
P

HI
s

j
j

j ≤≤= τ

The Ej denotes the execution time budget that a cluster
Sj must collect to guarantee all of its workloads fulfil
the MC schedulability condition. In C-PEDF technique,
each cluster Sj will be scheduled with other clusters as a
normal sporadic task with period PSj and execution time
budget Ej. As stated in the previous section, we define
the utilization of a cluster to be Ej / PSj.

4.2. Mode Transition Protocol

The basic idea of the runtime mechanism used in our
scheduling strategy is the operation of mode transition
protocol. The scheduling process within each cluster Sj
is achieved in cycles; each cycle corresponds to a period
of the executive task τj

2 (i.e., P (τj
2)). Within each cycle,

there can be three distinct behaviours. These three run-
time behaviours seem to reveal three different operating
modes, which are shown in Fig.1.

Fig.1. Mode transition strategy in a cluster

(i) Low-criticality behaviour (L-Mode): The system
starts it’s execution with this normal mode, where
currently-active job (arrived, but not yet finished)
of task τj

2 has not yet reached its respective Ci
1 and

hence it is in L-Mode. The entire tasks in the cluster
are executed to provide the low-level assurance.

(ii) Transition or switching behaviour (S-Mode): If any
active job of τj

2 overruns it’s low-level WCET, then
the system switches immediately to high-level
execution behaviour during the active S-period. All
the member tasks in the cluster are cancelled to
provide the high-level assurance.

(iii) High-criticality behaviour (H-Mode): In this mode,
an active job of τj

2 has either completed or executed
beyond its Ci

1, so it is known whether the cluster is
in L-Mode or H-Mode. If the executive task has
really completed and the cluster has not yet
depleted its reserved execution budget, any
suspended member tasks will remain serviced; but,
if they do not finish by the last S-period of every
cycle (whereas another executive task arrives) or by
their deadlines, whichever is earlier, they likely to
be discarded. If the cluster is in H-Mode, the
member tasks continue to be suspended. If at least
one executive task overruns its corresponding high-
level WCET Ci

2, then the scenario is called
erroneous.

4.3. Three-mode Budget-driven Scheduling within
a Cluster

We now provide the execution semantics of our
mechanism, describing what happens during each cycle
of the scheduling process. Consider the allocated
execution budget of the cluster Sj is Ej and the number
of execution replenishments in any P(τj

2) is HIj. As
shown in Fig.1, we assume that L-Mode lasts for aj S-
periods, that is, the active job of τj

2 either changes to the
H-Mode or has completed in (aj +1)th S-periods. In
every cycle, tasks are executed according to their
predefined budget values, tj, e1i

 and e2i (i.e., i =
1,2,3…n). The technique for estimating these
constraints is explained in the next section.

L-Mode ([0, aj] S-periods): In order to realize the low-
level assurance, in each [0, aj] S-periods, workloads are
executed as: if there a``re any incomplete member tasks,
the active job of τj

2 is performed first for a definite
amount of time tj ≥ 0 (as a maximum). As soon as this
job finishes, member tasks are performed in a non-
decreasing order of the task index, where all τi

1 is
allotted with an execution budget of e1i ≥ 0. If there are
no incomplete member tasks, the active job of τj

2 is
performed until it finishes its execution or the reserved
execution time of the particular cluster is exhausted.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

225

The pre-allocated budget parameters should hold the
following conditions:

(i) The entire execution budget assigned to all
workloads in the cluster should not overrun the
reserved execution budget Ej of the cluster. Hence,

)9(1
1
∑+≥
=

n

i
ijj etE

(ii) As the active job of the executive task exhibits its
normal behaviour, the execution time allocated to τj

2
in this L-Mode should not overrun its low-level
WCET, i.e.,

)10(1
2 taC jj
j

×≥
t

S-Mode ([aj, (aj+1)] S-period): In order to realize the
high-level assurance, the active job of τj

2 is performed
first with an allocated execution time tj. If this executive
job finishes its execution, member tasks are executed
until Ej is depleted (whereas some member jobs may be
suspended). Else, the system will change from low- to
high-level execution mode and will remain performed
until it finishes or Ej is depleted.

As stated above, condition (9) should hold to
guarantee the budget of tj for executive task τj

2 and the
budget e1i

 for each member task τi
1. Furthermore, since

the active job of τj
2 will change to the H-Mode if it

cannot finish with tj, the budget expected by τj
2 before

the behaviour change should be greater than or equal to
its corresponding low-level WCET. Hence,

())11(1 1

2Cta
j

jj t≥×+

H-Mode ([(aj+1), HIj] S-periods): In order to provide
the high-level assurance, in each of the last (HIj−aj−1)
S-periods, tasks are executed as follows: if the active
job of τj

2 has not finished in the (HIj−aj−1) S-period, it
will be performed until it finishes its execution or the
received budget Ej is depleted. Else, member tasks are
serviced by non-decreasing task index, where each τi

1 is
assigned an execution time of e2i ≥ 0. Since the entire
budget Ej will be allotted to member tasks, we can
assign more budget to each member. i.e.

)12(210 e ie i ≤≤

At the same time, the budget allotted to the entire low-
level workloads should not overrun the reserved
execution time of the cluster:

)13(2
1
∑≥
=

n

i
ij eE

We now demonstrate our scheduling strategy using
following example.

Example 2: Consider the cluster comprised of three
tasks in the Table 3. The base period of the cluster can
be calculated as PS1 = gcf (15, 10, 15) = 5. Assume the
execution time allotted to S1 is E1 = 4.25 and other
scheduling constraints are a1 = 0, t1 = 3, e11 = 1.25, e21
= 2.75, e12 = 0 and e22 = 1.5. Fig.2 exemplifies the L-
Mode behaviour of the executive task, whereas in Fig.3
it shows its H-Mode behaviour. Each cycle covers HIj =
P(τ1

2) / PS1 = 15 / 5 = 3 S-periods (i.e., 15ms) and
involves only L-Mode and H-Mode (since a1 = 0).

Fig.2. Scheduling of the task set under L-Mode.

In figure 2, for the first S-period (i.e., [0, 5]), we can
see the executive task τ1

2 is first performed for t1 = 3 and
finishes its execution; then, the member task τ1

1 is
performed for the execution budget e11 = 1.25 (τ2

1 is not
performed at this interval since e12 = 0).

Fig.3. Scheduling of the task set under H-Mode.

Since the cluster is in L-Mode, both member tasks
τ1

1 and τ2
1 are performed in the second S-period ([5,

10]) and third S-period ([10, 15]) for e21 = 2.75 and e22

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

226

= 1.5 correspondingly. The second scheduling cycle
([15, 30]) works in the same way, but τ1

1 completes
before depleting its entire allotted budget in the time
interval [25, 30].

In Fig.3, τ1
2 overruns its low-level WCET in the first

cycle ([0, 15]), so the cluster is changed immediately to
high-level execution behaviour, and all member tasks
are cancelled (till τ1

2 finishes). In the interval ([15, 30]),
τ1

2 continues in L-Mode, therefore τ1
1 and τ2

1 are
performed normally, according to their allotted xecution
time. In the first S-period of this second cycle, (i.e., [15,
20]), neither τ1

1 nor τ2
1 is performed. The reason is, the

currently-active task τ1
1 has been suspended at time

15ms when next τ1
2 arrives, whereas the budget allotted

to τ2
1 is e12 = 0. It is important to note that only few

member tasks violate their timing constraints: member
tasks arrived in [0, 15] are discarded, but the entire
member tasks arrived in [0, 15] are schedulable.

Let us consider a cluster Sj = {τj
2

, τ1
1, τ2

1,..., τn
1}.

Here, we first develop the MC schedulability constraints
for Sj under our mode transition protocol with a pre-
allocated execution time Ej and other constraints aj, tj,
e1i, e2i (1 ≤ i ≤ n), where tj ≥ 0, e1i ≥ 0, e2i ≥ 0 and aj >
0. We then identify the sufficient schedulability
condition for a cluster upon a single-core system.
Lemma 1 gives the schedulability conditions for every
member task τi

1.

Lemma 1: All the member tasks τi
1 (1 ≤ i ≤ n) are

guaranteed to be schedulable if and only if all the
conditions (9) – (14) satisfy, where the condition (14) is
given below:

())14(21 1
1CeNLOeN
i

i
OL
i

j
ii

OL
i τ

≥×−+×

where N OL
i is the upper bound of S-periods in P(τi

1) that
overlap with L-Mode and S-Mode of a scheduling
cycle. It is calculated as follows:

() { })15(1,modmin1 +++×







= aHILOa

HI
LON jj

j
ij

j

j
iOL

i

Example 3: Let us use an example given in Table 4,
with pre-allocated execution time E1 = 1.5, a1 = 1, e11 =
0 and e21 = 1.5 to exemplify the lemma 1. The
estimated value of other scheduling parameters are PS1 =
5, LOi

j = 3, and HIj = 5. The upper bound of the number
of overlapping S-periods during is calculated as follows:

() { } 211,5mod3min11
5
3

=+++×



=NOL

i

Table 4. An example cluster with task parameters

Task
Given parameters Calculated parameters

£ Ci
1 Ci

2 Pi(τi))(U1
ii τ

)(U2
ii τ

τ1
2 2 3 7.5 25 0.12 0.3

τ1
1 1 1.5 - 15 0.10 -

There are 2 overlapping S-periods for the first and
fourth arrivals of τ1

1, 1 for the second and third arrivals,
and zero for the fifth arrival as illustrated in Fig. 4. Now,
we can certify that all jobs of τ1

1 can complete before
their deadlines.

Fig.4. The number of overlapping S-periods

Lemma 2: Each executive task τj
2 collects an execution

budget of at least C
j

1
2τ
 when it is in L-Mode and at least

C
j

2
2τ
when it is in H-Mode by its deadline if the

conditions (9), (11) and the following condition (16)
satisfy:

())16(2
2 EaHItaC jjjjj
j

×−+×≤
t

From lemma 1 and 2, we can drive theorem 2.

Theorem 2: Suppose each cluster Sj = {τj
2
, τ1

1, τ2
1, τ3

1,...,
τn

1} is assured to collect an execution budget of Ej in
each of its periods. Then, the cluster is MC-schedulable
with constraints Ej, aj, tj, e1i, e2i (1 ≤ i ≤ n) if all of the
conditions (9) – (16) are met.

 Let Gλ be the group of clusters scheduled on a core
λ. Note that each cluster Sj ∈ Gλ is scheduled with other
clusters in Gλ as a normal sporadic task with period PSj
and budget Ej using EDF policy. The cumulative total
processing capacity of the group of clusters is denoted
by Uλ. According to the schedulable demand-bound

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

227

functions of EDF [24], all clusters in Gλ are able to
schedule if:

)17(1≤∑=
∈Gs sj

j
P
EU j

λ

λ

Hence, every cluster Sj is received an execution budget
of Ej in each PSj if Uλ ≤1. From the above inequality
(17) and Theorem 2, now we are ready to derive the
sufficient condition and establish our main theorem for
clusters schedulability.

 Theorem 3: Let Gλ be the group of clusters scheduled
on the core Ψλ (based on any task clustering approach).
If for all Sj = {τj

2
, τ1

1, τ2
1, τ3

1, τ4
1,..., τn

1} in Gλ, there exist
value Ej ∈ R+ and constraints aj ∈ N (aj < HIj) and tj,
e1i, e2i ∈ R+ where 1 ≤ i ≤ n such that Uλ ≤1 and the
conditions (9) – (16) are met, then every cluster mapped
to the core λ are MC schedulable.

5. Mixed Integer Nonlinear Programming
Model for Task Clustering

Fig.5 illustrates a unified overview of our proposed
mechanism. Consider a core Ψλ in which the set of tasks
τ(Ψλ) = (τ1

2
,…… τm

2 ,τ1
1,…., τn

1) are scheduled. Each task
has its own parameters Pi, Di, £i, Ci

1 and Ci
2. Our

objective of the task clustering is to find (i) a group of
the member tasks that will be clustered with executive
task τj

2 (1 ≤ j ≤ m) into the cluster Sj; and (ii) for every
cluster Sj, the values of the execution budget Ej and the
other constraints aj, tj, e1i, e2i, PSj, LOi

j and HIj.

Fig.5 Overview of proposed mechanism

Here, we develop an MINLP model for clustering
according to the schedulability constraints. Since the
clusters are executed using EDF policy with periods PSj

and a pre-allocated execution time Ej, the smaller
utilization indicates better schedulability. Hence, the
objective function of the MINLP problem is to
minimize the overall utilization of the clusters so as to
enhance their percentage of schedulable tasks. The
parameters of the MINLP are identified from the MC
schedulability constraints of the clusters. However, the
MINLP is of NP-hard complexity and therefore
computationally expensive to be solved every time in
order to determine the optimal solution.

In order to allow a member task to exploit the
overprovisioning of more than one executive task, we
enable each τi

1 to present in multiple clusters – that is,
every τi

1 can obtain pre-allocated execution time from
multiple clusters and the τi

1 is performed whenever it is
organized in a cluster. In the meantime, all the clusters
are serviced serially on a common computing platform;
τi

1 is not ever performed concurrently by more than one
cluster. Therefore, if the reserved execution time that
the low-level task is assured to collect from all of its
clusters is at least Ci

1, then τi
1 is schedulable.

According to the above tenet, new variables (ej1i,
ej2i) are used to specify the predefined execution times
that τi

1 can collect from cluster Sj in each scheduling
modes of Sj (rather than using an only one set of values
(e1i, e2i)). These variables are also used to specify
whether the member task has its place in the cluster Sj:
if ej1i = ej2i = 0, then τi

1 does not belong to Sj, or else it
does. According to the Theorem 3, the task set τ(Ψλ) is
MC schedulable if all of the conditions (9) – (16) are
satisfied for each cluster Sj. Hence, the scheduling
parameters for each cluster Sj can be calculated by
replacing e1i with ej1i, e2i with ej2i, Ni

OL with Ni,j
OL in

the conditions and rewriting the condition (14) as

()())18(1
11

,2,1 C
i

m

j
NOL

jiLOi
jej iNOL

jiej i τ
≥∑

=
−×+×

In order to decrease the processing intractability,
rather than using the condition (9), we use ∑+=

=

n

i
ij

ejtE j
1

1 .

Now, we can summarize a complete MINLP
formulation for our utilization minimization problem in
Fig.6. Putting together the objective function with the
constraints, we define the MINLP model for our
scheduling mechanism. According to the schedulability
restraints, the MINLP model finds which tasks can be
clustered to minimize the utilization. Given a set of

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

228

mixed-critical workloads, if the overall cluster
utilization derived from the formulated mathematical
model is greater than 1, then this task set is considered
to be not schedulable by the algorithm and will be
precluded by the scheduler.

Aiming to optimize the solution of the assignment,
the MINLP problem is solved by a branch-and-bound
solver, MINOTAUR (Mixed-Integer Nonconvex
Optimization Toolbox: Algorithms, Underestimators,
and Relaxations) [25, 26]. It is one of the best open-
source solver toolkits which offer methods and data
structures to study and solve complex MINLPs directly.

Fig.6. Scheduling constraints for MINLP formulation

MINOTAUR provides a number of algorithms and
advanced routines/libraries to find the solution of the
complex MINLPs and can be directly called from
several other codes like AMPL (A Mathematical
Programming Language) scripts [27], FORTRAN or
C++. In order to solve MINLP mathematical model,
MINOTAUR exploits LP/NLP-based branch-and-bound
(LP/NLP-BB) algorithm [28]. The non-negative
parameters aj, tj, ej1i, ej2i and tj indicates that the
MINLP problem is convex, which guarantees that the
solver provides an optimal result of the given
mathematical model. The LP/NLP-BB solver is started

by relaxing the linearization of the original MINLP
problem and building a relaxed mixed-integer linear
programming (MILP). The nonlinear constraint of an
MINLP problem is represented by the following
equation.

)19(0)(≤zg

where g(·) is a convex function and z is the continuous
variable. The integrality restriction can be relaxed by
finding the linear approximation of the function about
any point zk as follows:

)20(0)()()(≤+−∇ kzgkzzTzkg

The MILP relaxation provides a close approximation
to the original MINLP problem if we find the linear
approximation about more points. On the other hand,
the number of integrality constraints in the MILP
problem increases with the number of linearization
points and obviously reduces the speed of operation of
MINOTAUR. To circumvent this issue, linearization
limits obtained from a single point are included in the
initial iteration. This initial estimate is considered as the
initial solution of the relaxed nonlinear programming
(NLP) [28]. Then, we take linearization for more points
at which the constraints violated significantly. The
LP/NLP-BB solver initiates by finding the solution for a
linear programming (LP) relaxation and sets the
incumbent value INC_V = ∞ [28]. The solver then
generates a search tree to resolve very tight MILP
relaxations. In each iteration, we exclude an LP subset
from the list and resolve it. If the obtained result is more
than the current INC_V, we reject this subset since it
does not encompass any value superior than the INC_V.
If the result ẑ obtained from the linear programming
subset has a fractional value, two additional subsets are
created by subdividing (branching) the noninteger
variable. Afterwards, these two newly created subsets
are included in the list of unresolved subsets. If ẑ holds
every integer constraints, then we inspect whether it
holds the nonlinear constraints or not. If it is feasible,
we have a new INC_V. Otherwise, we successively
linearize one or more perturbed constraints about ẑ and
continue. When there are no more remaining subsets left
to resolve the algorithm will terminate.

In our problem formulation, the MINLP has m
integer variables, 2mn+6m constraints, and m+2mn real
variables, where m and n are the number of member and

Minimize)/)1((
1 1

Ptej s j
j

m

j

n

i
i +∑ ∑

= =

Subjected to

∑+≥
=

n

i
ij

ejtE j
1

1

taC jj
j

×≥1
2t

() Cta
j

jj
1

21 t≥×+

210 ej iej i ≤≤

∑≥
=

n

i
ij ejE

1
2

()() CNLOejNej
i

m

j
OL

ji
i
ji

OL
jii

1
11

,, 21
τ

≥−×+×∑
=

() CEaHIta
j

jjjjj
2

2t
≥×−+×

10 −≤≤ HIa jj

Ra j
+∈

Rej i
+∈1

Rej i
+∈2

Nt j ∈
Ɐ τi ∈ τ and 1 ≤ i ≤ n, Ɐ τj ∈ τ and 1 ≤ j ≤ = m)

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

229

executive tasks, correspondingly. Note that depending
upon the size of the input (the size of task set), the
amount of variables and constraints associated with the
problem is varied. In the worst case, the solver needs to
solve an exponential amount of linear and nonlinear
subsets. Nevertheless, in reality, MINOTAUR produces
significantly higher quality solutions in much less time.
The mathematical model shown in Fig.6 can easily be
reformed by accounting other kinds of constraints also –
e.g., restrictions on cluster count that each member can
fit, restrictions on the number of member tasks in each
cluster, etc.

6. Enhanced Dual-mode Scheduling Algorithm

Unfortunately, the Three-mode budget-driven
scheduling strategy introduces excessive overhead and
unnecessary context switching when there are more
member tasks in a cluster (refer Fig. 7). In order to
evade this problem, we develop an Enhanced dual-mode
(E-Mode) algorithm that schedules the member tasks
using EDF policy with reduced switching overhead.
Given a cluster Sj with allocated execution time Ej, aj
and tj, the E-Mode mechanism operates as follows:

Mode I ([0, (HIj−1)] S-periods): For every S-period, if
there are some incomplete member tasks in the cluster,
the active job of τj

2 is performed first for a certain
amount of time (up to tj), and then the member tasks in
the cluster are performed using EDF approach. Else, the
active job of τj

2 is performed until it finishes or Ej
exhausts.

Mode II (the last (HIj − aj) S-period): For every S-
period, the job of τj

2 is performed first until it completes
and then the incomplete member tasks in the cluster are
performed using EDF strategy. If the active job of τj

2 is
in H-Mode, the member tasks that cannot complete
when their deadlines are met or another τj

2 arrives are
discarded. In contrast to the Three-mode scheduling
mechanism, our E-Mode strategy considers (aj +1)th S-
period and the last (HIj − aj) S-periods as a single mode.
The rationale behind this is that under the Three-mode
mechanism, different execution budgets (e1i and e2i)
may be applied to each τi

1 in (aj +1)th S-period and in
(HIj − aj −1) S-periods, whereas under the E-Mode
policy, member tasks are always executed using EDF
approach.

Theorem 4: If a cluster Sj = {τj
2
, τ1

1, τ2
1, τ3

1, τ4
1,..., τn

1} is
MC schedulable under the Three-mode policy with an
execution budget Ej and the constraints aj, tj, e1i, e2i,
then Sj is also MC-schedulable under the E-Mode
scheduling policy with the same budget Ej and
scheduling constraints aj and tj.

Example 3: Consider the cluster given in Table 5, with
the parameters E1 = 4.5, a1 = 0 and t1 = 3. Each member
task is scheduled under the Three-mode scheduling
mechanism with execution budgets e11 =1.25, e21
=2.75, e12 = 0.25 and e22 = 1.75 as depicted in Fig.7.
The same task set is scheduled under E-Mode
scheduling strategy as shown in Fig.8. E-Mode reduces
the number of mode transitions, and thus decreases the
context overheads.

Table 5. An example cluster with task parameters

Task
Given parameters Calculated parameters

£ Ci
1 Ci

2 Pi(τi)

τ1
2 2 3 13.5 15 0.2 0.9

τ1
1 1 4 - 10 0.4 -

τ2
1 1 3.75 - 15 0.25 -

Fig.7. Three -mode Budget-driven schedule

Fig.8. Schedule using enhanced dual-mode

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

230

 From Theorem 4, we can estimate the constraints for
E-Mode mechanism by resolving the MINLP model
formulated in Section 5. E-Mode can alleviate the
switching overhead by dividing the number of low-level
workloads as a main constraint. Furthermore, we can
also provide a timing assurance for each τi

1 providing a
restriction on the number of clusters in the system.

7. Clustering-based Partitioned MC scheduling
on a Multicore Processor

We now briefly discuss our Clustering-based
partitioning EDF algorithm for dispatching admitted
workloads to multiple cores. Let us denote a processor
Ψ with λ homogeneous cores as Ψ = {Ψ1,….Ψj….,Ψλ}.
Consider the group of tasks assigned to each core Ψj is
represented by τ(Ψj). When the number of on-chip core
increases, C-PEDF can satisfy the new requirements.

Our proposed approach targets to distribute the tasks
among all cores while choosing an executive (member)
task to allocate based on decreasing executive (member)
task utilization. Consider τ2 = {τ1

2,...,τn1
2} be the group

of executive tasks and τ1 ={ τ1
n1+1……, τ1

n} be the
group of member tasks. The formal steps of C-PEDF for
scheduling tasks with dual criticality levels are given in
Algorithm 1.

C-PEDF starts by assigning τ(Ψj) to null and by
ordering the given set of workloads. Executive tasks are
arranged in descending order of their Ui

2(τ), and tasks
with equal Ui

2(τ) are again arranged in decreasing order
of Ui

1(τ). Member tasks are arranged in descending
order of Ui

1(τ), and workloads with equal Ui
1(τ) are

again arranged in ascending order of their inter-arrival
time. The motivation behind this ordering is: for
executive tasks with equal Ui

2(τ), a task with a higher
value of Ui

1(τ) typically has less overprovisioning; and
for member tasks with equal Ui

1(τ), the workload with a
lesser value of inter-arrival time will likely have a
minimum utilization rate of overprovisioning, since PSj
is selected as the gcf of the inter-arrival time of all the
workloads.

Our C-PEDF then chooses the task (τ s) with the
highest utilization. Then, the algorithm selects an
appropriate core Ψj for this workload, such that the
cumulative utilization for selected workload in
conjunction with the active workloads on this core is
minimal; hence, it distributes the tasks across cores. If
the cumulative cluster utilization on the chosen core Ψj

does not go beyond one, τ s is allocated to Ψj. Or else,
the C-PEDF terminates with a failure report. If the
workload is fruitfully assigned to a core, the C-PEDF
reports “success”. According to the Theorem 4, the
scheduling achieved by our C-PEDF always guarantees
the real-time performance of the admitted tasks. The
equally critical workloads on a core are directly
scheduled under EDF policy.

Algorithm 1: Pseudo code for Clustered-PEDF

Input: An MC task system with a group of executive
tasks τ2 = {τ1

2,..., τn1
2} and group of member tasks τ1

={τ1
n1+1 ……, τ1

n} to be scheduled on a processor Ψ with λ
homogeneous cores.

Output: Real-time MC schedule

1: τ(Ψj)←0, for all j = 1,..., λ.
2: for i ← 1 to n1 ►for executive tasks

a) Calculate the utilization Ui
2(τ)

b) Order task set in descending order of Ui
2(τ)

c) Order tasks with same Ui
2(τ) value in

 descending order of Ui
1(τ)

3: for i ← n1 to n ►for member tasks
a) Calculate the utilization Ui

1(τ)
b) Order tasks in descending order of Ui

1(τ)
c) Order tasks with same Ui

1(τ) value in ascending
order of its inter-arrival time (Pi)

4: while τ2 != 0 and τ1 != 0 do ► Clustering
5: τ s ←NIL
6: if τ1 != 0 then
7: τ s ← The first member task from τ1
8: if τ2 !=0 then

9: τ *
s ←The first executive task from τ2

10: if τ s = NIL ||

 τ s != NIL && U1 (τ s) < U2 (τ *
s) then

11: τ s ← τ *
s

12: Remove τ s from its group ► Bin-packing

13: Select a core Ψj ∈ Ψ that has a minimum
 cluster utilization for τ(Ψj)∪{τ s }

14: if the cluster utilization for tasks
 τ(Ψj)∪{ τ s } ≤ 1 then

15: τ(Ψj)←τ(Ψj)∪{τ s }
16: else
17: return FAILURE
18: return SUCCESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

231

8. Experiments and Results

We investigate and empirically assess the schedulability
of C-PEDF by conducting extensive simulation
experiments. To evaluate the effectiveness of our
suggested scheme, we experimentally compare the
performance of C-PEDF against the following
partitioned MC scheduling approaches:

• DC-RMS: a scheduling algorithm from [20] in
which the workloads are ordered in descending
order based on their level of importance and higher
priorities are allocated to workloads with lower
inter-arrival time (i.e., Decreasing Criticality-Rate
Monotonic Scheduling);

• DU-RMS: a scheduling algorithm from [20] in
which the workloads are arranged in descending
order based on their utilization and higher priorities
are allocated to workloads with lower inter-arrival
time (i.e., Decreasing Utilization-Rate Monotonic
Scheduling);

• DC-AOPA (Decreasing Criticality-Audsley's
Optimal Priority Assignment): an approach from
[20] in which priorities are allocated in order, from
lowest to highest. In each cycle, the algorithm finds
an appropriate workload for the next priority level.
If so, it gives that priority, then allocates the
subsequent priorities to the other workloads in a
similar way;

• DU-AOPA (Decreasing Utilization – AOPA): an
approach from [20] in which the tasks are
scheduled according to their utilization and AOPA
algorithm is used for priority allocation;

• MC-PARTITION: EDF-based approach relies on
Virtual Deadlines from [29];

• EY-FF: an enhanced Ekberg and Yi (EY) algorithm
[13] exploiting First-Fit (FF) packing policy from
[15];

• MPVD (Mixed-criticality Partitioning with Virtual
Deadlines): a further extension of EY algorithm
with the hybrid packing model from [15];

• E-MPVD (Enhanced-MPVD): MPVD enhanced by
the heavy low-criticality task cognizant assignment
strategy in [15]; and

• MPVD-OPT: E-MPVD further enhanced by the
optimized virtual deadline tuning from [15].

We evaluate our proposed algorithm with the
following objectives: (1) to evaluate the effectiveness of
C-PEDF in terms of acceptance ratio (i.e. the fraction of
the number of tasks that are deemed to be MC-
schedulable by the algorithm to the total number of the
tasks in the experiment); (2) to analyse how well C-
PEDF can defend low-level tasks when an executive
task exhibits its critical behaviour; (3) to examine the
impact of probability of the generated workload exhibit
high-level execution behaviour on Deadline Miss Ratios
(DMR) of member tasks; and (4) to analyse the impact
of overprovisioning in terms of schedulability on a
single-core processor by enabling a member task to
present in more than one clusters. The impact factor of
member tasks is considered as a metric to evaluate the
C-PEDF performance. We specify the impact factor of
member tasks as the ratio of such workloads for which
at least one job is discarded or violates its timing
constraint since an executive task exhibits its critical
behaviour. The ratio of low-level tasks that violate their
timing constraints is called as DMR.

8.1. Workload

For our experiments, we implement a UUniFast random
task generator as used in [14]. Each data-point in the
curves was derived by at least 2000 random tasks. Here,
the parameter, Prob(τj

2) represents the probability of a
task to be an executive task. Initially, we consider a
system with an equal amount of high- and low-level
workloads and set Prob(τj

2) = 50%. The period Pi was
selected within the range of [1, 500] time units. The
low-level WCET Ci

1 of τi was derived from [0.05 × Pi,
0.5 × Pi] and, if τi was an executive task, its high-level
WCET Ci

2 was derived from [2 × Ci
1, 4 × Ci

1]. The
average utilization Uav(τ) is calculated as:

() () ())20(2
21

λ
τττ

×
+= U iU iU av

where Ui
1(τ) and Ui

2(τ), are the sum of utilizations of
low- and high-level workloads correspondingly. Table 3
exemplifies the estimation of these cumulative
utilization parameters for a different criticality level of
tasks. Each task set is created with a normalized average
utilization ()τU av

* with a tolerable range of errors.
Based on the scheduling parameters, workloads are

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

232

generated uniformly until the following constraints on
utilization bound were met:

(i) () () () λττλτ 005.0005.0 ** +≤≤− UUU avavav

(ii) () UU i λτ ≤1 ; and
(iii) () UU i λτ ≤2

where ()τU av

* ∈{0.5, 0.55, 0.6, …, 0.95} and λ ∈{2,4,8).
Since the estimation of DMR and the impact factor
involve expensive simulations, we select only 50 tasks
arbitrarily with ()τU av

* ∈ {0.65, 0.75, 0.85, 0.95}. We
execute each simulation for 10000 msec. In order to
assess the impact of overprovisioning on the
schedulability under varying number of clusters that a
member task can fit into, we select the value of
Prob(τj

2) to 90%, and Ui
1(τ) within the range of [0.01,

0.2] to produce more executive tasks.

8.2. MC schedulability

In Fig.9a - 9c, we depict the fraction of task sets
successfully scheduled as a function of the normalized
average utilization (load) of the various heuristics in 2-
core, 4-core, and 8-core processors correspondingly. We
first observe that as the load increases, the acceptance
ratio decreases for all compared schemes. This is due to
the fact that as the average utilization rises, there are
more tasks in the platform that needs to be serviced.
Therefore, there is a higher load on the processor, and as
a result, more workloads violate their timing constraints.

Fig.9(a). MC schedulability for 2-Core systems

Consequently, we observe that schemes using AOPA
provide better performance as compared to schemes
using RMS policies. Therefore, these results prove that
the choice of the priority allocation method plays a vital
role to enhance schedulability. The results for 4- and 8-

core processor reveal that the success ratio of EY-FF
reduces as the core count increases. This is due to the
uneven assignment of scheduling parameters in EY
decreases the possibility of optimizing virtual deadline.

Fig.9(b). MC schedulability for 4-Core systems

The graphs in Fig. 9c show the acceptance ratio

against the system load under different scheduling
algorithms on an 8-core processor. We observe that the
algorithms MPVD, E-MPVD, and MPVD-OPT provide
better performance as compared to EY-FF by
distributing the workloads between cores. E-MPVD
outperforms MPVD by allocating substantial low-level
workloads to cores before high-level workloads, but the
success ratio of these two approaches follow the same
trend when the system comprises limited low-level
tasks.

Fig.9(c). MC schedulability for 8-Core systems

MPVD-OPT targets to increase the acceptance ratio

by means of a virtual deadline optimizing technique,
and its acceptance ratio is greater than MPVD and E-
MPVD; however, these optimizing technique does not
consider the low-level workloads, so it jeopardizes the
acceptance ratio of the system. Therefore, the

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

233

performance of MPVD-OPT is inferior to C-PEDF for
all 2-core, 4-core and 8-core processor with higher
average utilization. From the results, we can observe
that many more tasks can be scheduled under C-PEDF
with a given number of cores. The proposed algorithm
constantly exhibits a substantial enhancement in the
acceptance ratio and outperformed all state-of-art
algorithms. Obviously, there is a wide performance gap
among the schedulability of C-PEDF and those of other
approaches. This is because, with an increase in the
number of workloads, there are more opportunities for
our C-PEDF to select suitable clusters for each member
task.

8.3. Effect of H-Mode behavior on member tasks

In our study so far, we have fixed prob(τj
2) = 50%.

Next, we evaluate the impact factor of the member tasks
for varying fractions of executive tasks to get into H-
Mode. In Fig. 10, results are plotted for the fixed ()τU av

*
∈ {0.65, 0.75, 0.85, 0.95} on a 4-core platform. We
observe that only a certain ratio of member tasks is
influenced and that this ratio increases with the ratio of
executive tasks that show H-Mode behaviour. The
reason is, with C-PEDF, the H-Mode behaviour of an
executive task has an impact only on member tasks in
the same cluster, but not in other clusters.

Fig.10. Impact factor of member tasks

We observe some important properties: (i) The
relationship is not exactly linear since a group of low-
level workloads are clustered with multiple executive
tasks, and can thus be influenced by any one of these
clusters. (ii) Once all the admitted workloads show H-
Mode behaviour (i.e., prob(τj

2) = 100%), there are still
certain member tasks in the system that are not
influenced. This is because the cores having only
member tasks cannot be affected by the H-Mode
behaviour of other clusters. (iii) As expected, the impact
ratios are not affected by varying average utilization.

This is due to the proportion of member tasks that are
influenced hinges mainly on the clustering process and
Prob(τj

2).

8.4. Real-time performance of member tasks

The impact of H-Mode behaviour on the DMR of
member tasks in a 4-core processor is plotted in Fig. 11.
As expected, there is no task misses its deadline when
prob(τj

2) = 0: when the system is in L-Mode, the C-
PEDF can guarantee that the system is schedulable. As
the prob(τj

2) increases, the DMR of the member task is
also increased slowly; this is because that the H-Mode
execution behaviour of a task can only influence other
members within the cluster, but not tasks in other
clusters. Furthermore, since the isolation among clusters
allows the system to transit back to L-Mode when all
executive tasks show L-Mode behaviour, the fraction of
a deadline miss of the member tasks can be preserved
small even for long-running applications.

It is evident that the DMR plots corresponding to
various average processing capacities cross each other,
that is, a cluster with a greater value of ()τU av

* will have
a smaller DMR than that of a cluster with a lesser value
of ()τU av

* . This is anticipated because the DMR can
become lesser as we generate more member tasks,
which can be the case when ()τU av

* rises. It is important
to note that the other scheduling approaches reject the
entire low-level workloads immediately an executive
task shows H-Mode behaviour, so they provide no
service assurance for member tasks in the H-Mode.

Fig.11. Deadline miss ratio of member tasks.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

234

8.5. Impact of resource overprovisioning on
schedulability

We continue to present the impact of resource
overprovisioning on acceptance ratio. Fig. 12 shows the
impact of allowing member tasks to exploit the
overprovisioning of various executive tasks on the
schedulability of the given task on a single-core system.
Here, N clusterm _ is the upper bound on the total number
of clusters available for each member task.

Fig.12. Effect of overprovisioning on schedulability

As shown in Fig. 12, the acceptance ratio increases

with N clusterm _
. Furthermore, the success ratio gap tends

to large as the load increases, which further specifies the
usefulness of exploiting overprovisioning of executive
tasks.

9. Future work

The additional research effort is required before our
scheduling approach could be considered appropriate
for real tasks. There are two potential directions of our
future work: application studies and architecture
improvements.

Application studies: We plan to apply our scheduling
approach in LITMUSRT (LInux Testbed for
MUltiprocessor Scheduling in Real-Time systems) on
an Intel® Xeon® Processor E7440 platform [30]. It is a
32-bit processor consists of 4 cores on a single chip
operating at 2.40 GHz, with 16 MB L2 cache per
processor and 4 GB of RAM. Each core can process 4
logical threads in parallel. The implementation of
extensive measurements campaigns using this testbed
will be intended for performance assessments that will

give more constructive feedback on the pragmatism of
our approach.

Architecture improvements: A substantial amount
of improvements to our approach would increase the
range of real-time tasks that can be supported on
multicore systems. A leading example of this is efficient
resource sharing across applications of different safety
criticalities. An additional active field of interest is
facilitating adaptivity, which is deemed to be an
essential concern in future industrial safety-critical
systems, which themselves must adapt different run-
time operating conditions (environments) dynamically.
For instance, in an unmanned aircraft, when previously-
undetectable opponent radar stations are found, it might
be beneficial to give rise to the share of computing
resources of a pathfinding and route planning processes.
On the other hand, if an unfriendly guided missile were
to be spotted, in order for appropriate action or
communication to be performed more quickly, the
facility to enable a mode-switch (wherein a new set of
tasks replaces those currently being scheduled) might be
required. We would like to point out that even though
our proposed approach considers a dual criticality
system, it is likely to extend this approach to more than
two levels. We intend to extend our algorithm to
investigate the run-time overhead limitations of the
proposed algorithm to obtain a global view of the gains
of our approach. Finally, we plan to extend our
scheduling strategy to execute multi-criticality tasks on
a heterogeneous platform in a hierarchical manner.

10. Conclusions

We have proposed a Clustering-based partitioned EDF
scheduling algorithm for scheduling dual-criticality
tasks on a multicore platform. In our proposed C-PEDF
algorithm, each high-level workload is coalesced in a
cluster (to facilitate separation) along with a group of
less critical tasks (to maximize schedulability of tasks
while preserving the criticality assurance). Within each
cluster, tasks are scheduled under Enhanced dual-mode
scheduling policy to improve the service level of high-
level tasks without jeopardizing the schedulability of
low-level tasks. Clusters are scheduled under Earliest
Deadline First (EDF) scheduling approach.

Our approach enforces strong temporal isolation
between high-criticality tasks to alleviate all inter-task

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

235

interferences, and it allows more lower-criticality
workloads to satisfy their timing requirements. This is
due to (i) the undesirable service intervention of high-
level workloads on low-level workloads is considerably
decreased; and (ii) low-level workloads are not
continuously dropped, but rather received sufficient
execution when the high-level workload in the same
cluster exhibits its critical behaviour. We conduct a
schedulability test for the proposed technique, and we
demonstrate how workloads can be clustered by means
of evolutionary intelligence technique, namely Mixed
Integer Nonlinear Programming (MINLP) model.
Extensive simulation results reveal that our algorithm
significantly outperforms other approaches both in
acceptance ratio and the impact factor of low-level
tasks.

Reference

1. K. P. Valavanis, Advances in Unmanned Aerial Vehicles:
State of the Art and the Road to Autonomy, (Springer
Publishing Company, Incorporated, 2007, vol.33).

2. European Organisation for Civil Aviation Equipment.
(1992). DO-178B, Software Consideration in Airborne
Systems and Equipment Certification, EUROCAE.

3. N. Guan, P. Ekberg, M. Stigge and W. Yi., Effective and
efficient scheduling of certifiable mixed-criticality
sporadic task systems, in Proc. 32nd Real-Time Systems
Symposium, IEEE, (2011) pp. 13–23.

4. B. B. Brandenburg, J. M. Calandrino and J. H. Anderson,
On the scalability of real-time scheduling algorithms on
multicore platforms: A case study, in Proc. Real-Time
Systems Symposium, IEEE, (2008) pp.157–169.

5. U. C. Devi and J. H. Anderson, Tardiness bounds under
global EDF scheduling on a multiprocessor, The Journal
of Real-Time Systems, 38(2) (2008)133–189.

6. H. J. Leontyev and H. Anderson, Generalized tardiness
bounds for global multiprocessor scheduling, The Journal
of Real-Time Systems, 44(1) (2010) 26–71.

7. A. Mills and J. H. Anderson, A stochastic framework for
multiprocessor soft real-time scheduling, in Proc.16th
IEEE Real-Time and Embedded Technology and
Applications Symposium, IEEE, (2010), pp. 311–320.

8. S. Vestal, Preemptive scheduling of multi-criticality
systems with varying degrees of execution time
assurance, in Proc. 28th IEEE International Real-Time
Systems Symposium, IEEE, (2007), pp. 239–243.

9. F. Dorin, P. Richard, M. Richard and J. Goossens,
Schedulability and sensitivity analysis of multiple
criticality tasks with fixed-priorities, Real-Time Systems,
46(3) (2010) 305–331.

10. S. Baruah, H. Li and L. Stougie, Towards the Design of
Certifiable Mixed-criticality Systems, in Proc. 16th IEEE

Real-Time and Embedded Technology and Applications
Symposium, IEEE, (2010), pp. 13–22.

11. S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A.
Marchetti-Spaccamela, N. Megow and L. Stougie,
Scheduling real-time mixed-criticality jobs, in IEEE
Trans. Computers, 61(8) (2012) 1140–1152.

12. H. Li and S. Baruah, An algorithm for scheduling
certifiable mixed-criticality sporadic task systems, in
Proc. 34th Real-Time Systems Symposium, IEEE, (2010),
pp. 183–192.

13. P. Ekberg and W. Yi, Bounding and shaping the demand
of mixed-criticality sporadic tasks, in Proc. Euromicro
Conference on Real-Time Systems, (2012) pp. 135–144.

14. H. Li and S. Baruah, Global mixed-criticality scheduling
on multiprocessors, in Proc. 24th Euromicro Conference
on Real-Time Systems, (2012), pp. 166–175.

15. C. Gu, N. Guan, Q. Deng and W. Yi, Partitioned mixed-
criticality scheduling on multiprocessor platforms, in
Proc. Design, Automation and Test in Europe Conference
and Exhibition, IEEE, (2014), pp. 1– 6.

16. P. Ekberg and W. Yi, Bounding and shaping the demand
of generalized mixed-criticality sporadic task systems,
Real-time systems, 5(1) (2014) 48–86.

17. M. Mollison, J. Erickson, J. Anderson, S. Baruah and J.
Scoredos, Mixed-criticality real-time scheduling for
multicore systems, in Proc. 10th IEEE Int. Conf.
Computer and Information Technology, (2010), pp.
1864–1871.

18. R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun, M.
Caccamo and L. Sha, Handling mixed criticality in SoC-
based real time embedded systems, in Proc. 7th ACM Int.
Conf. Embedded Software, (2009), pp. 235–244.

19. J. H. Anderson, S. K Baruah and B. B. Brandenburg,
Multicore operating-system support for mixed criticality,
in Proc. Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification, April 2009.

20. O. Kelly, H. Aydin and B. Zhao, On partitioned
scheduling of fixed-priority mixed-criticality task sets, in
Proc. 10th Int. Conf. Trust, Security and Privacy in
Computing and Communications, (2011), pp.1051–1059.

21. A. Burns, System mode changes-general and criticality-
based, in Proc. of the 2nd Workshop on Mixed Criticality
Systems, (2014), pp. 3–8.

22. S. Petters, M. Lawitzky, R. Heffernan and K.
Elphinstone, Towards real multi-criticality scheduling, in
Proc. 15th IEEE Int. Conf. Embedded and Real-Time
Computing Systems and Applications, (2009), pp. 155–
164.

23. S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A.
Marchetti-Spaccamela, S. Van der Ster and L. Stougie,
The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems, in
Proc. Euromicro Conference on Real-Time Systems,
(2012), pp. 145–154.

24. M. L. Dertouzos and A. K.Mok, Multiprocessor on-line
scheduling of hard-real-time tasks. IEEE Trans. Software
Engineering, 15(12) (1989) 1497–1505.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

236

25. A. Mahajan and T. Munson, Exploiting second-order
cone structure for global optimization, Technical Report
ANL/MCS-P1801-1010, Argonne National Laboratory,
2010.

26. A. Mahajan, S. Leyffer and C. Kirches, Solving mixed-
integer nonlinear programs by QP-diving. Preprint
ANL/MCS-P2071–0312, Argonne National Laboratory,
2012.

27. R. Fourer, D. M. Gay and B. W Kernighan, AMPL: A
Modelling Language for Mathematical Programming.
Duxbury Press, Brooks/Cole Publishing Company, 1993.

28. R. Fletcher and S. Leyffer, Solving mixed integer
nonlinear programs by outer approximation,
Mathematical Programming, 66(1) (1994) 327–349.

29. S. Baruah, B. Chattopadhyay, H. Li and I. Shin, Mixed-
criticality scheduling on multiprocessors, Real-Time
Systems, 50(1) (2014) 142–177.

30. J. Calandrino, H. Leontyev, A. Block, U. Devi and J.
Anderson, LITMUSRT: A Testbed for Empirically
Comparing Real-Time Multiprocessor Schedulers, in
Proc. 27th IEEE Real-Time Systems Symposium, (2006)
pp. 111–123.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 219–237

237

	1. Introduction
	2. Related Work
	3. System Model and Notation
	3.1. Scheduling Assurance
	3.2. Utilization

	4. Clustering-based MC scheduling on single-core Processor
	4.1. Clusters
	4.2. Mode Transition Protocol
	4.3. Three-mode Budget-driven Scheduling within a Cluster

	5. Mixed Integer Nonlinear Programming Model for Task Clustering
	6. Enhanced Dual-mode Scheduling Algorithm
	7. Clustering-based Partitioned MC scheduling on a Multicore Processor
	8. Experiments and Results
	8.1. Workload
	8.2. MC schedulability
	8.3. Effect of H-Mode behavior on member tasks
	8.4. Real-time performance of member tasks
	8.5. Impact of resource overprovisioning on schedulability

	9. Future work
	10. Conclusions
	Reference

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

