ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 86-100

Evaluation of Expert Systems Techniques for Classifying Different Stages of
Coffee Rust Infection in Hyperspectral Images

Wilson Castro !, Jimy Oblitas 2, Jorge Maicelo®, Himer Avila-George 4

! Facultad de Ingenieria, Universidad Privada del Norte,
Cajamarca, Cajamarca 06002, Peril.

E-mail: wilson.castro@upn.edu.pe

2 Centro de Investigaciones e Innovaciones de la Agroindustria Peruana (CIIAP),
Amazonas, 1061, Perii.

E-mail: j_oblitas@hotmail.com

3 Facultad de Ingenieria Zootecnista, Agronegocios y Biotecnologia, Universidad Nacional Toribio Rodriguez
de Mendoza de Amazonas, Chachapoyas, Chachapoyas 01001, Peri.

E-mail: jmaicelo@indes-ces.edu.pe

# Unidad de Transferencia Tecnolégica Tepic, CONACYT-CICESE,
Tepic, Nayarit 63173, México.

E-mail: himerag@cicese.mx

Received 30 November 2016

Accepted 17 September 2017

Abstract

In this work, the use of expert systems and hyperspectral imaging in the determination of coffee rust
infection was evaluated. Three classifiers were trained using spectral profiles from different stages of
infection, and the classifier based on a support vector machine provided the best performance. When
this classifier was compared to visual analysis, statistically significant differences were observed, and the
highest sensitivity of the selected classifier was found at early stages of infection.

Keywords: Expert systems, Hyperspectral images, Coffee rust infection, Spectral profiles.

1. Introduction

It is well known that both physiological and in-
fectious plant diseases can have critical impacts
on agricultural production and economic losses
worldwide.!>* Common sources of infection in-
clude insects and microorganisms such as bacte-
ria, fungi, and viruses. Fungi are the most di-
verse group of plant pathogens; there are more than
20,000 species of fungi that can cause diseases in
crops and plants, and these fungi are responsible for

70-80% of plant diseases.*

Crop loss due to plant diseases may cause
food insecurity and famines!; consequently, detect-
ing plant diseases and their pathogens is an op-
eration of primary importance to agricultural field
management>® and an essential research topic in
agriculture.> Given this scenario, there is a need
for research to focus on the rapid design of tools
for the early detection of symptoms of a particular
disease.®? These requirements and the recent devel-
opments in agricultural technology have led to a de-
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mand for a new era of automated, non-destructive
methods for detecting plant diseases.'>”

The traditional methods for detecting fungal
pathogens in plants involve interpreting the vi-
sual symptoms of the disease or identifying the
pathogens that cause the disease. To understand
the visual symptoms of a particular disease, persons
skilled in the disease are used.>*>% To identify the
pathogens that cause a particular disease, morpho-
logical, microbiological and biochemical techniques
may be used.*

However, visual inspection methods are subjec-
tive, occasionally inconsistent and generally slow,
and given their high cost, such methods are of-
ten prohibitive on large farms. Meanwhile, labora-
tory analyses, such as molecular, immunological or
pathogen culturing-based approaches, are often time
consuming and destructive.%8

In this context, it is compelling to develop non-
destructive, automated methods that are capable of
identifying diseases in a rapid and reliable way and
that are capable of detecting early infections;*” thus,
new techniques such as digital images that can ex-
tract information of symptoms in the visible and
near-infrared (NIR) bands are receiving attention.
In these ranges, according to Refs. 10-12, the spec-
trum of plant leaves changes in both the visible and
the near-infrared regions due to physiological stress.
Furthermore, metabolic disturbances were found to
affect the ability of chlorophyll to absorb visible
light, and with the deterioration of the metabolism,
the visible reflectance increases. It was also re-
ported that the reflectance of a leaf in the NIR region
decreases in advanced disease infestation as actual
breakdown of the leaf occurs. Thus, it is not sur-
prising that methods for automatic plant disease di-
agnosis based on visible range digital images have
received special attention.!!4

Using the spectrum variations according to the
health conditions of the plant and the assumption
that objects with the same spectral characteristics
should belong to the same class and be assigned
to one characteristic appearance in the final classi-
fication map requires a procedure that assigns each
pixel to one of other predefined classes.!? Accord-
ingly, several studies have shown the capabilities of
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red green blue (RGB), multispectral images (MSIs)
and hyperspectral images (HSIs) for detecting fun-
gal diseases in crops, as shown in table,ew.

Hyperspectral imaging is the most powerful
technique since it can capture both spectral and
imaging information for the same object covering
hundreds of wavebands, which allow determining
the physical, morphological and chemical character-
istics and molecular information of materials. HSIs
are formed by a high number of intensity images,
commonly named channels, in a three-dimensional
array called a hypercube,?® which includes some re-
gions that are not detectable by the human eye, such
as ultraviolet, near infrared, and infrared. This char-
acteristic is of considerable interest for its appli-
cation in precision agriculture’ disease evaluation.*
However, this technique requires the use of special
methods, such as those based on machine learn-
ing techniques such as artificial neural networks
(ANNSs), decision tree (DT), K-means (KM), K-
nearest neighbor (KNN), and support vector ma-
chine (SVM), for data analysis. These techniques
have been applied in agricultural research and shown
potential for automatic classification methods in
site-specific weed detection.’

Yellow coffee rust, which is caused by the
fungus Hemileia vastatrix B & B, is one of the
most economically important diseases affecting
coffee?’282%; it reduces the photosynthetic activ-
ity and causes defoliation of the plant.*® This dis-
ease causes worldwide economic losses of approxi-
mately $1 billion US dollars due to high mitigation
costs and the decrease in productivity of up to fifty
percent.?®3! Thus, to prepare mitigation actions, it
is necessary to evaluate rust damage during the early
stages of infection.’? Therefore, in the diagnosis of
plant fungal infections, it is essential to perform a
correct disease detection process,* particularly using
non-destructive and real-time techniques. !

Consequently, the main objective of this work
was to evaluate the use of expert systems tech-
niques and hyperspectral imaging to classify differ-
ent stages of coffee rust infection in coffee (Coffea
Typica) leaves.
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Table 1. Evaluation of fungal diseases using image analysis
coupled to spectroscopic technology.

State Disease/Pest Technique Model Wayelength Results Source
(nm) (accuracy %)
Eggplant leaves Botrytis cinerea HSI ANN 400 - 900 70.5 Ref. 15
Rice leaves Helminthosporium oryzae HSI RA 400 - 2,350 96 Ref. 5
Citrus Penicillium digitatum HSI NLBDA 400 - 1,800 97 Ref. 16
Maize kernel Fusarium HSI PLS-DA 1,000-2,498 85 Ref. 17
Rice panicles Phoma sorghina HSI ANN 350 - 2,500 >91 Ref. 18
Leafs Sclerotinia RGB ANN - > 96 Ref. 3
Cotton Phymatotrichum omnivorum HSI - MSI ISODATA 400 - 1,000 > 96 Ref. 19
‘Wheat leaves Fusarium HSI SAM 400 - 1,000 87 Ref. 20
Wheat leaves Blumeria graminis HSI MLR /PLSR 450 - 950 > 90 Ref. 21
Wheat Fusarium HSI PLS-DA 1,000 - 1,700 >91 Ref. 8
Wheat leaves Puccinia striiformis Spectroradiometer PLSR 350 - 2,500 >89 Ref. 22
Sugar beet Cercospora beticola RGB SVM - > 93 Ref. 23
Wheat kernels Fusarium MSI MLR 360 - 950 - Ref. 24
Tomato leaves Alternaria solani - Phytophthora infestans HSI ELM 380 - 1,023 >97 Ref. 25
Strawberry leaves Colletotrichum gloeosporioides HSI SAM/SDA /CM 460 - 930 > 80 Ref. 1

RA = Ratio Analysis; NLBDA = Non-linear Bayesian Discriminant Analysis; PLS-DA = Partial Least Squares and Discriminant Analysis; ISODATA = Iterative Self-Organizing Data Analysis;

LDA = Linear Discriminant Analysis; MLR = Multiple Linear Regression; PLSR = Partial Least Squares Regression; ELM = Extreme Learning Machine; SAM = Spectral Angle Mapper;

SDA = Stepwise Discriminant Analysis; CM = Correlation Measure.

2. Materials and Methodology

2.1. System for acquiring hyperspectral images

The system for acquiring hyperspectral images was
obtained from RESONON Inc., model PIKA XC
(see figl).

Camera and
spectrograph

Lightning
source

Power source
for lightning
system

platform

Computer

Fig. 1. Hyperspectral imaging system.
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The elements that compose the system for hyper-
spectral image acquisition are as follows:

o Camera and spectrograph. Filtering of the wave-
lengths at which to acquire the intensity images.

o Cover. To avoid the influence of exterior lighting.

o Computer. To manage the image acquisition soft-
ware.

o Power source. Provides energy for light source.

o Light source. Composed of four halogen lights ar-
ranged at variable and adjustable height.

o Sample platform. For horizontal scrolling during
speed-controlled scanning.

This system operates in a reflectance mode with
scanning line by line (pushbroom) in the range of
400 - 1,000 nm, obtaining intensity images at inter-
vals of 8 nm (76 images per scene). These images
are arranged in a three-dimensional matrix, called
a hypercube,?® whose extension is “.bil” (band in-
terleaved by line) and requires a header file whose
extension is “.hdr”.

2.2. Samples

The sample was composed of 140 coffee leaves (var.
Typica); these leaves were collected from a cof-
fee plantation located in the district of San Nicolas,
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province of Rodriguez de Mendoza in the Amazons
region [-6.40144, -77.50135 U.T.M.]. The sample
contains healthy leaves and diseased leaves at dif-
ferent levels of infection with rust. tablel shows the
sample, and in fig2, the progression of rust infection
in coffee leaves is shown as a reference.

Table 2. Distribution of the coffee leaves that composed the
sample.

Number of leaves for classifier

State

Generation Application
Healthy 5 12
Sick 15 108
Total 20 120

£
—
No signs of Progression of rust
infection damage

Fig. 2. Progression of rust infection in coffee leaves.

2.3. Methodology

The methodology proposed in this research is based
on the methods proposed by Refs. 1, 32, and 33.
This methodology focuses on the generation, vali-
dation, and comparison of classifiers, and it is de-
scribed in fig3.
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Fig. 3. Experimental methodology.

In the following subsections, the stages and steps
used are explained in detail.

2.3.1. HSI acquisition and correction
First, the system parameters for HSI acquisition
were set as follows: speed of sample platform =
0.5 cm/s, distance to sample surface = 28.3 cm,
and diaphragm aperture = 6.4 mm. Then, using
the software SpetrononPro 2.62, the hyperspec-
tral images of each leaf were obtained.
Subsequently, the HSIs were spatially corrected
according to the methods proposed by Refs. 34, 35,
and 36. For this purpose, eq01 was used, and the
values of white reference image intensity (W) were
acquired from a Teflon pattern (reflectance value of
~99.9%), and the black reference (D) was acquired
by blocking the lens (reflectance of ~0.0%).

VPiJ-GI(x,y,),):P’.—M (1)

v Wij—D;j
Here, P;; is the value of the pixel at position (ij) in
the raw image I(x,y,A) at all wavelengths (1). Pl’]
is the pixel value in the corrected image I'(x,y,A),
D;; is the value of the pixel in the black reference
image, and W;; is the value of the pixel in the white
reference.

2.3.2. Classifier generation

At this stage, three classifiers were generated using
spectral information from the different levels of dis-
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ease progression; the steps followed are detailed be-
low.

Manual selection of regions of interest (ROIs). In
each leaf, by using its image in RGB format,
ROIs were selected based on the visual appear-
ance. For this purpose, five levels of rust infec-
tion and its visual signs were pre-established; see
figd,ableand fig4.

Table 3. Visual scale for rust infection level in coffee leaves.

Level Stage Visual appearance of tissue

0 Healthy Characteristic color

1 Initial Small round chlorotic spot, diffuse
edges

Intermediate Chlorotic border spot defined

3 Advanced Chlorotic spot with initial signs of
necrosis, brown coloration

4 Necrotic Brown fabrics

LEVEL 0

Healthy LEVEL 1

Initial LEVEL 4
nitia Necrotic

LEVEL 3
Advanced

LEVEL 2
Intermediate

Fig. 4. Example of visual signs for rust infection in coffee
leaves.

Spectral profiles of each level of damage were
obtained using the ROI selection method proposed
by Ref. 20, which is summarized in fig5, and a
graphical user interface (GUI) developed and im-
plemented for this purpose in Matlab 2015a. This
GUI used the position of each pixel in manually se-
lected ROIs correlating with its levels of rust infec-
tion.
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Intensity

A (nm)
Spectral profile of point (x,y)

c) d)

Fig. 5. (a) Section containing ROI; (b) Increase of section;
(c) Manual drawing of ROI; (d) Obtaining spectral profiles.

This method is compared with the works of
Refs. 37, 38, and 39 based on the selection of rect-
angular ROIs or with the methods used by Refs. 40
or 41 based on a difference in contrast, allowing dif-
ferent stages in tissues to be followed and improving
information for the training of classifiers.

However, because this method could generate er-
rors through the border effect or irregular distribu-
tion of damage levels in the selected tissue, it is nec-
essary to pre-process the spectral profiles to reduce
noise and remove anomalous profiles.

Spectral preprocessing. In most cases, the ex-
tracted spectral data contain some noise and vari-
ability, and addressing this variability requires the
use of spectral enhancement, such as spectral filter-
ing, smoothing, normalization, mean centering, and
auto scaling.!?

For this research, the spectral profiles were first
smoothed using a second-degree Savitzky-Golay fil-
ter; see eq.2.

m
Z Ci,yj+i
i=—m
ng = T . (2)
Here, Y is the original profile, ¥, is the filtered pro-
file, C is the coefficient for the i’ term of the profile,

and N is the number of convolution integers.



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 86-100

Subsequently, anomalous spectral profiles were
removed using a script that evaluates intensity val-
ues at each wavelength and deletes those whose in-
tensity deviates from the median by more than one
standard deviation. This script uses the following
steps:

(i) Select wavelength (4;).

(i1) Calculate the median (IA) and standard devia-
tion (o) of the intensity value at (A;).

(iii) Select a profile (p) .

(iv) If I, < T1—ojor I, > 1+ oy, delete profile (p);
otherwise, keep profile (p).

(v) Return to point (item iii) until finishing the
profiles.

(vi) Return to point a until the wavelengths are
over.

Dimensionality reduction. In many situations, di-
mensionality reduction can improve model perfor-
mance and model characteristics by identifying and
removing useless, noisy and redundant variables.*?
Therefore, in this research, the possibility of dimen-
sionality reduction was evaluated using the Bartlett
test and Kaiser-Meyer-Olkin (KMO) test. Subse-
quently, following the reports of Refs. 43, 44, 45,
and 46, the dimensionality of the input data was re-
duced using principal component analysis (PCA).

PCA reduces the dimensions of the data, trans-
forming the initial dimensions into new uncorrelated
dimensions called main components through a linear
combination of the initial dimensions, and these are
obtained in order of importance according to their
capacity to represent the greater variability of the
data.*® This step was performed using the pca func-
tion of Matlab 2015a.

Creation, training and validation of classifiers. Us-
ing the Matlab 2015a classification learner tool-
box, three different classifiers were created and
trained: support vector machine (SVM), decision
tree (DT), and K-nearest neighbor (KNN).

From each classifier, confusion matrices and the
principal statistics values were obtained to select the
classifier with the best performance.
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2.3.3. Classifier application

At this stage, the potential of the expert system pre-
viously selected to determine the progress of leaf
rust infection was evaluated in comparison to the vi-
sual analysis performed by experts.

The first step was the segmentation of the im-
ages. In this step, the pixels of the image containing
coffee leaf information were selected using the con-
trast between the sample and background; see eq.7.

1
8(xy) = 0

Here, g is the binary image, p(,,) represents the
intensity of the image in gray scale, and T is the
threshold. In this step, intensity images were se-
lected at 562 nm because greater contrast between
sample and background exists at this wavelength;
see fig6.

a) b) <

Fig. 6. Leaf image: a) RGB, b) 562 nm, and c) segmented.

Py =T

~ 3
P(xy) <T )

To obtain classified images, according to the
level of damage in the coffee leaves, a pixel by pixel
analysis is conducted to determine the affected area
over the entire sample. For this purpose, the posi-
tion of the sample pixel and its spectral profile are
obtained, and then eq.8 is used to determine the state
of damage.

Vg(xy) >0: H(xo,) = C(I(x’y)) . (4)

Here, H is the classified image, C is the classifier,
Iy 1s the spectral profile, and g is the segmented
image.

Next, we proceed to determine the percentage of
leaf area with rust (PLAR) quantifying the number
of pixels per state of damage; see eq.9.

5
V(HNg)(y) >0: PLARG) =Y. (j+1)/N. (5)
i=1

Here, PLAR is the percentage of leaf area with rust,
i are the levels of rust damage, and N is the number
of pixels.
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2.3.4. Visual analysis

To conduct the visual analysis (VA), judges belong-
ing to The Phytopathology Laboratory of the Re-
search Institute for the Sustainable Development
of Ceja de Selva at National University Toribio
Rodriguez de Mendoza of Amazons were used; these
judges performed the visual analysis of samples us-
ing the SAGARPA scale; see table2.

Table 4. Scale for evaluating rust advance level.

Level Description PLAR
1 Slightly visible chlorotic spots 05-1
2 Visible symptoms of leaf area 1-5
3 The stains begin to bond 6-20
4 The leaves begin to show obvious necrosis 21-50
5 High percentage of necrotic areas > 50

Source: extracted from SAGARPA .47

2.3.5. Classification method comparison

In this stage, the results of the classification of val-
idation samples using the trained classifiers and vi-
sual classification were compared; it was determined
whether there are statistically significant differences
between the classification techniques, and the clas-
sification method that presents the greatest perfor-
mance was identified.

3. Results and Discussion

3.1. Preprocessing phase

In the first steps of the methodology, a total of
22,498 profiles distributed in the pre-established lev-
els were obtained. These profiles were smoothed,
the median was extracted, and the upper and lower
bounds were determined by adding and subtracting
the standard deviation. These profiles are plotted in
fig7a.

However, this graph shows excessive overlap be-
tween levels that, as commented in Ref. 6, may be
due to the manual selection of ROIs, which could
have a large impact on the features extracted to de-
scribe these regions and logically on the detection
accuracy.
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Consequently, it was necessary to perform cor-
rection by removing the outliers, and the results are
plotted in fig7b, which shows that the median pro-
files with or without outliers are the closest, but in
the second graph, there is a marked reduction in
overlap between levels.

3.2. Spectral profiles

The previously obtained median profiles, plotted in
fig8, show a constant pattern throughout the devel-
opment of the infection. In this case, the median
profiles, except for the necrotic stage, show inten-
sity values that are progressively higher during the
progression of the infection.

In the initial stages of infection, the profiles show
a reduction in intensity from 400 to 530 nm and then
an increase in intensity to 670 nm. From this wave-
length and up to 1,000 nm, the rate of increase in in-
tensity is slightly lower as the infection progresses.
The profile of necrotic tissues, unlike the profiles for
the initial, intermediate and advanced stages, starts
below the profile for healthy tissues and shows a
very low rate of change, similar to that reported by
Ref. 19. From the observation of these profiles, it
was determined that there is a correspondence be-
tween the change in the profiles and the progression
of the disease, thereby enabling the analysis of pat-
terns for the later implementation of classifiers.

3.3. Dimensionality reduction

Using the Bartlett test, p-value = 0, it was deter-
mined that there is a statistically significant differ-
ence between the standard deviations of the wave-
lengths at 99.0% confidence; likewise, the factor ob-
tained using the Kaiser-Meyer-Olkin test, 0.9813,
shows that it is possible and advisable to perform
wavelength factorization.

When performing PCA, it was determined that
more than 99.1% of the variance could be explained
by two components; see fig9.

Plotting the score of the two selected compo-
nents, as shown in figl0, it is observed that, ex-
cept for the profiles with necrotic damage, there is
a slight confusion in the limits of each level of dam-
age.
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Fig. 7. Spectral profiles (a) without removal of outliers and
(b) with removal of outliers.
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Fig. 8. Average spectral profiles of damage caused by rust.
Table 5. Confusion matrices for classification techniques.
Support Vector Machine
Healthy Initial Intermediate Advanced Necrotic Metrics*
Healthy 99.20% 0.80% 0.00% 0.00% 0.00% ACC: 94.70%
Initial 2.90% 52.40% 44.70% 0.00% 0.00% ERR: 5.30%
Intermediate 0.00% 0.00% 98.50% 1.50% 0.00% PRC: 95.30%
Advanced 0.00% 0.00% 3.10% 96.90% 0.00% FP: 0.60%
Necrotic 0.00% 0.00% 0.00% 0.00% 100.00% MAUC: 96.00%
Decision Tree
Healthy Initial Intermediate Advanced Necrotic Metrics*
Healthy 99.10% 0.00% 0.00% 0.00% 0.00% ACC: 90.30%
Initial 2.60% 5.50% 91.80% 0.00% 0.00% ERR: 9.70%
Intermediate 0.00% 0.00% 98.10% 1.90% 0.00% PRC: 90.70%
Advanced 0.00% 0.00% 2.10% 97.90% 0.00% FP: 0.50%
Necrotic 0.00% 0.00% 0.00% 0.00% 100.00% MAUC: 86.00%
K-Nearest Neighbor
Healthy Initial Intermediate Advanced Necrotic Metrics*
Healthy 98.70 % 1.30% 0.00% 0.00% 0.00% ACC: 93.00%
Initial 2.80% 67.10% 30.10% 0.00% 0.00% ERR: 7.00%
Intermediate 0.00% 10.50% 87.20% 2.30% 0.00% PRC: 96.30%
Advanced 0.00% 0.00% 5.00% 95.00% 0.00% FP: 3.40%
Necrotic 0.00% 0.00% 0.00% 0.00% 100.00% MAUC: 83.00

*ACC: Accuracy; ERR: Error; PRC: Precision; FP: False positive; MAUC: Minimum area under curve.
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3.4. Classifier creation, training and validation

The performance of the classification techniques
previously mentioned and trained with the two main
components determined in the previous step was cal-
culated, and the results are presented in table3.

The classification techniques used in this pa-
per to differentiate the five stages of rust infection
showed precisions between 90 and 94.7%. These
results are similar to previously reported results and
those shown in tablel for fungal diseases with signs
in leaves. In this work, the obtained results were
slightly superior to those obtained by Refs. 1 and
48, who classified three stages of anthracnose in-
fection in strawberry leaves and Fusarium infection
in wheat leaves, respectively, but the results were
slightly inferior to those reported by Ref. 25 in eval-
uating tomato leaf infection by Alternaria solani
and Helminthosporium oryzae infection over rice
leaves.’

When analyzing the techniques used in detail
through the confusion matrices shown in table3, we
observe the following:

o The technique that obtained the highest accuracy
(94.7%) and lowest error (5.3%) was SVM.

o The decision tree technique obtained the lowest
rate of false positives.

o According to the MUAC indicator (an indicator of
the performance level of the classifier), the three
techniques used showed good performance, with
arange between 83 and 96%.

o Referring to the classification between classes,
shown in figl1, except for the initial state, the dif-
ferent stages of progression of the infection can be
classified using the techniques at an average per-
centage accuracy of 97.6%.

Based on the results of the ACC, ERR, FP and
MAUC metrics, the classifier to be used in the exper-
imentation phase was selected. Consequently, the
SVM technique is the one that achieves better bene-
fits for our case study.
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3.5. Classifier application

The coffee leaves were analyzed following the
guidelines shown in section 2.3.3. For this purpose,
the previously trained classifier (SVM) was used, its
PLAR was determined, and its respective classified
image was generated. figl2 presents an example of
the use of the SVM technique in our case study.

a) b)
Fig. 12. Classification of rust infection states: a) Intensity
images and b) classified images.

From the PLAR value and the limits for leaf
damage levels established by SAGARPA, as shown
in table2, the classification of the validation samples
was performed, obtaining different degrees of infec-
tion. figl3 shows the results for each method used;
as shown, there are differences in the results of the
applied methods.

Classifier SVM
40

-+

T

Frecuency

a0k, ;
-1 0

6

Visual analysis
Fig. 13. Frequency of classes obtained by the SVM classi-
fier and visual analysis.
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3.6. Evaluation of classification methods

Due to differences in the results of the applied
methods (SVM and VA), it is necessary to deter-
mine whether such differences are significant. For
this purpose, a non-parametric statistical analysis
was performed using the Kolmogorov-Smirnov test.
Consequently, it was determined that there are sta-
tistically significant differences. table4 shows the
results of the Kolmogorov-Smirnov test in detail.

Subsequently, through the Wilcoxon signed-rank
test, the method that generates the highest class val-
ues was determined. table5 presents the results of
the Wilcoxon test.

Meanwhile, from the statistics for the VA-SVM
ratio, shown in table6, it is observed that there is
a statistically significant difference between the VA
and the SVM (p = 0.000 < 0.05—Wilcoxon test). In
addition, it was determined that the SVM ratings are
significantly higher than those obtained by VA.

Finally, the statistics of both methods were eval-
uated using samples with a PLAR between 0 and 0.5
and a total of 12 leaves; see table7.

From these data, it was determined using a Stu-
dent #-test 0.000 < p < 0.05 at a 95% confidence
level that there is a significant difference between
the PLAR obtained with the SVM and the minimum
observed with VA. table8 presents the results.

In this way, there is sufficient statistical evidence
to confirm that the rigor of evaluation using an ex-
pert system based on an SVM classifier is more rig-
orous than that using VA and the SAGARPA scale.
Therefore, it is necessary to develop a new scale for
the proposed methodology to increase the effective-
ness of rust treatment in coffee plants.

4. Conclusions

In this paper, we investigated the potential of us-
ing expert systems techniques for classifying dif-
ferent stages of coffee rust infection in hyperspec-
tral images. Five levels of infection were pre-
established (healthy, initial, intermediate, advanced
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Table 6. Kolmogorov-Smirnov test for classification.

Statistical Classifier SVM Visual Analysis

N 120 120
Normal parameters (a) Media 3.49 3.01

Standard deviation 1.55 1.68

Absolute 0.21 0.22
More extreme differences(?) Positive 0.17 0.12

Negative -0.21 -0.22
The Kolmogorov-Smirnov Z 2.32 2.35
Asymp.sig. (2-tailed) 0 0

(@) The contrast distribution is normal. (”) Data from both variables are normal (0.00 > p < 0.05).

Table 7. Wilcoxon signed-rank test.

Visual - SVM N Average rank Sum of ranks
Negative rank 52(@) 27.07 1 407.50
Positive rank 1) 235 23.5
Draws 67()

Total 120

(@visual < SVM. ®)Visual > SVM. (©)Visual = SVM.

Table 8. The contrast statistics for the VA-SVM ratio.

Statistical Visual - SVM
z -6.687@
Asymptotic Sig. (bilateral) 0.000%)

(@Based on positive ranges. (®)Based on the Wilcoxon signed-rank test.

Table 9. Statistics of the sample PLAR.

N Median Standard deviation Standard Error
12 0.1167 0.103 0.030

Table 10. T-test for a sample.

gl Sig. (bilateral) Difference of means Confidence interval for the difference (95%)

lower upper

-12.894

11 0.000 -0.38333 -0.4488 -0.3179
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and necrotic), which were used to create and train
three classifiers (DT, SVM, and KNN). The results
of the experiment revealed differences in their mean
spectral profiles. The classifier based on the SVM
technique obtained the best classification perfor-
mance (ACC = 94.7%, and FP = 0.6%). The re-
sults obtained using the SVM classifier were statisti-
cally compared against the results obtained through
visual analysis, and a statistically significant differ-
ence was observed. The results have confirmed the
feasibility of using expert systems techniques and
hyperspectral images for evaluating the progression
of coffee rust infection.
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