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Abstract

Hesitant fuzzy sets, as an extension of fuzzy sets to deal with uncertainty, have attracted much atten-
tion since its introduction, in both theory and application aspects. The present work is focused on the
interval-valued hesitant fuzzy sets (IVHFSs) to manage additional uncertainty. Now that distance and
similarity as a kind of information measures are essential and important numerical indexes in fuzzy set
theory and all their extensions, the present work aims at investigating distance and similarity measures
in the IVHFSs and then employing them into multiple attribute decision making application. To begin
with, II-type generalized interval-valued hesitant fuzzy distance is firstly introduced in the IVHFS, along
with its properties and its relationships with the traditional Hamming-Distance and the Euclidean dis-
tance. Afterwards, another interval-valued hesitant fuzzy Lp distance based on Lp metric is proposed and
its relationship with the Hausdorff distance is discussed. In addition, different from most of similarity
measures with dependent on the corresponding distances, a new similarity measure based on set-theoretic
approach for IVHFSs is introduced and its properties are discussed; especially, a relative similarity mea-
sure is proposed based on the positive ideal IVHFS and the negative ideal IVHFS. Finally, we describe
how the IVHFS and its relative similarity measure can be applied to multiple attribute decision making.
A numerical example is then provided to illustrate the effectiveness of the proposed method.

Keywords: Interval-valued hesitant fuzzy set, II-type interval-valued hesitant fuzzy distance, interval-
valued hesitant fuzzy Lp distance, relative similarity measure, multiple attribute decision making.
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1. Introduction

Fuzzy set, a generalization of classical set theory
introduced by Zadeh 23, has drawn the attention
of many researchers who have extended the fuzzy
sets to intuitionistic fuzzy sets (IFSs)2, interval-
valued intuitionistic fuzzy sets (IVIFSs)1, interval-
value Pythagorean fuzzy set15 and so on, which are
also applied to some decision making11. In 2010,
Torra 20 introduced an important extension of fuzzy
sets named the hesitant fuzzy sets (HFSs) which per-
mit the membership degree of an element to a set to
be represented as several possible values between 0
and 1, human beings hesitate among a set of mem-
bership degrees and they need to represent such a
hesitation. Rodriguez 17,18 recently provided a po-
sition and perspective analysis of HFSs in decision
making, which gave a detailed review on HFS and its
application in decision making, especially pointed
out some important challenges.

In many real world decision making problems,
due to insufficiency in available information, it may
be difficult for decision makers to exactly quantify
their opinions with a crisp number, instead they may
prefer an interval number within [0, 1]. Accordingly,
Chen 5,6 introduced the concept of interval-valued
hesitant fuzzy sets (IVHFSs), which represent the
membership degrees of an element to a set with sev-
eral possible interval values.

Information measures (specially, distance, sim-
ilarity, and entropy) for IVHFSs have played the
key roles in the development of the IVHFS theory
and its applications. IVHFS distance and similar-
ity measures indicate the distance and similarity de-
grees of two IVHFSs, and the entropy of an IVHFS
describes the fuzziness degree of an IVHFS. There-
fore, many researchers have investigated these three
concepts for IVHFSs from different points of views.
For example, Farhadinia 7 investigated the relation-
ship among the entropy, the similarity and the dis-
tance for IVHFSs and applied the similarity mea-
sures to two clustering algorithms with applications
in data analysis and classification. He also investi-
gated the approach for deriving the correlation coef-
ficient of dual IVHFSs 8 and proposed division and
subtraction formulas for IVHFSs 9. Gitinavard 10

proposed a decision model based on IVHFSs using

the distance measures and applied it to the industrial
selection problems. Jin 13 proposed a multiple at-
tribute group decision making method on the basis
of some information measures under the interval-
valued hesitant fuzzy environment, where the ax-
iomatic definitions of continuous entropy and con-
tinuous similarity measures on IVHFSs were intro-
duced and the method was applied to emergency
risk assessment. Quiros 16 studied entropy mea-
sures under interval-valued hesitant fuzzy environ-
ment and built the entropy measure using three dif-
ferent measures: fuzziness, lack of knowledge and
hesitance. Wei 22 proposed a variety of distance
measures for IVHFSs, based on which the corre-
sponding similarity measures are derived, and some
properties of these distance measures and similar-
ity measures were investigated, but the general def-
inition of distance measures and similarity measure
are not given like the notions of fuzzy sets. Farha-
dini 9 gave the axiom definition of distance measures
of HFSs and IVHFSs, and all distance must be in
[0, 1], however, there are many distance measures
beyond [0,1]. So we modify the axiom definitions
of distance and similarity measures for IVHFSs and
propose some new distance and similarity measures
between IVHFSs, the new distance measures are
more reasonable since they are very similar with
the existing ones except for some minor modifica-
tion of the expression. Wei 22 introduced a gener-
alized interval-valued hesitant Hamming-Hausdorff
distance which is a generalization of interval-valued
hesitant normal Hamming-Hausdorff distance, we
will introduce new distance measure whose limit
is the interval-valued hesitant normal Hamming-
Hausdorff distance from the point of view of Lp met-
ric. They are another new reasonable distance mea-
sures from different point of view and the main ad-
vantages of the new distance measures is that they
do not need to be normalized and more reasonable
since they are very similar with the existing ones ex-
cept for some minor modification of the expression.

The IVHFSs method and its distance measures
were applied to show potential evaluation of emerg-
ing technology commercialization with interval-
valued hesitant fuzzy information.

As pointed out in 17, one of the great challenges
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is to further develop foundation in the HFS the-
ory, e.g., the notion of entropy, similarity and dis-
tance measures. Based on the existing work as re-
viewed above about the information measures for
IVHFSs, in the present work, we continue investi-
gating distance and similarity measures for IVHFSs
from different points of views. The main contribu-
tions are summarized as below: (1) introduce a new
generalized interval-valued hesitant fuzzy distance,
named II-type generalized interval-valued hesitant
fuzzy distance which is a generalization of the fa-
mous Haming-distance and the Euclidean distance;
(2) introduce an interval-valued hesitant fuzzy Lp
distance based on Lp metric, and shows that the
Hausdorff distance of two IVHFSs is the limit of Lp
distance when p→+∞; (3) propose a new similarity
measure of IVHFSs based on the set theoretical view
after analysing and summarizing the existing simi-
larity measures which are dependent on the distance
measures; (4) propose a new relative information
measure, that is, a new relative similarity measure
based on the positive ideal IVHFS and the negative
ideal IVHFS; and 5) propose a multiple attributes
decision making method under IVHFSs based on the
new relative similarity measure.

The rest of the paper is organized as follows. In
Section 2, we review some definitions on IVHFSs,
some existing distance and similarity measures of
IVHFSs, which are used in the analysis throughout
this paper. Section 3 is devoted to the main results
concerning the distances of IVHFSs: 1) II-type gen-
eralized interval-valued hesitant fuzzy distance; 2)
the interval-valued hesitant fuzzy Lp distance based
on Lp metric. Section 4 is focused on the new simi-
larity measures base on set theory after analysing the
existing similarity measures and proposing a generic
definition of a family of similarity measures, which
are dependent on the distance measures. In Sec-
tion 5, we propose the concept of relative similarity
measure of IVHFSs and construct multiple attribute
decision-making approach based on the relative sim-
ilarity measure. Consequently, a practical example
is provided in Section 6 to illustrate this method and
compare the proposed methods with the existing one
in Wei2013. This paper is concluded in Section 7.

2. Preliminaries

Necessary basic concepts to understand the defini-
tion of distance and similarity measures proposed
in this work are given in this section. It has been
split into two subsections. Basic concepts about the
interval-valued hesitant fuzzy set are explained in
the first subsection. In the second subsection, the
axiomatic definitions of distance and similarity mea-
sures for IVHFSs are given, which establish founda-
tions for the follow-up development of this work in
other sections.

2.1. Interval-Valued Hesitant Fuzzy Set

Definition 1.20 Let X = {x1,x2, · · · ,xn} be a ref-
erence set. A hesitant fuzzy set (HFS) F on X
is defined in terms of a function hF(x) that re-
turns a subset of [0,1] when it is applied to X , i.e.,
F = {⟨x,hF(x)|x ∈ X⟩} where hF(x) is a set of some
different values in [0,1], representing the possible
membership degrees of the element x ∈ X to F .
hF(x) is called a hesitant fuzzy element (HFE), a
basic unit of HFS.

Definition 2.5,6 Let X = {x1,x2, · · · ,xn} be a ref-
erence set. An interval-valued hesitant fuzzy set
(IVHFS) on X is

F̃ = {⟨x,hF̃(x)⟩|x ∈ X},

where hF̃(x) denotes all possible interval-valued
membership degrees of the element x ∈ X to the
set F̃ . For convenience, we call hF̃(x) an interval-
valued hesitant fuzzy element (IVHFE), which reads

hF̃(x) = {r̃|r̃ ∈ hF̃(x)}.

Here r̃ is an interval number. An IVHFE is the ba-
sic unit of an IVHFS, and it can be considered as
a special case of the IVHFS. The relationship be-
tween IVHFE and IVHFS is similar to that between
interval-valued fuzzy number and interval-valued
fuzzy set.

Example 1. If X = {x1,x2,x3} is a reference set,
hF(x1) = {0.1,0.2}, hF(x2) = {0.4,0.5,0.7}, and
hF(x3)= {0.2} are the possible membership degrees
of xi(i = 1,2,3) to the set F , then F can be regarded
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as a HFS and is presented as follows:

F = { ⟨x1,{0.1,0.2}⟩,⟨x2,{0.4,0.5,0.7}⟩,
⟨x3,{0.2}⟩}.

For the reference set X = {x1,x2,x3}, if hF̃(x1) =
{[0.1,0.2]}, hF̃(x2) = {[0.5,0.7], [0.3,0.4]},
hF̃(x3) = {[0.2,0.5]} are the possible membership
degrees of xi(i = 1,2,3) to the set F̃ . then F̃ can be
regarded as an IVHFS and is presented as follows:

F̃ = {⟨x1,{[0.1,0.2]}⟩,⟨x2,{[0.5,0.7], [0.3,0.4]}⟩,
⟨x3,{[0.2,0.5]}⟩}.

Hereafter, for the notation convenience, a real
number a can be regarded as an interval [a,a],
so it is also regarded as a special IVHFS, that is,
⟨x,{[a,a]}⟩.

Remark 1. From Definition 2.2, it should be noted
that HFSs permit the membership of an element to
be a set of several possible values. All these possi-
ble values are crisp real numbers that belong to [0,
1]. However, IVHFSs permit the membership de-
grees of certain elements to a set with several pos-
sible interval values. Therefore, IVHFSs are more
reasonable for experts to assign their evaluation val-
ues in some practical problems. Whist we can see
that both HFSs and IVFSs are all particular cases of
IVHFSs.

We use I V H FS (X) to denote the class of
all IVHFSs of a reference set X . In addition, for an
IVHFE hF̃(xi), it is necessary to arrange the inter-
vals in an increasing order. To achieve the goal, the
score function and accuracy function, given in 16, are
employed to compare two intervals and described as
follows:

Let X = [x1,x2], the score function of X defined
as S(X)= x2−x1 and accuracy function of X defined
as H(X) = x1 + x2. Let A = [a1,b1] and B = [a2,b2]
be two intervals, then

A 6 B ⇐⇒


H(A)6 H(B)
or
H(A) = H(B) and S(A)6 S(B).

Let hσ( j)
F̃

(xi) stand for the jth smallest interval in
the hF̃(xi), where

hσ( j)
F̃

(xi) = [hσ( j)L
F̃

(xi),h
σ( j)U
F̃

(xi)].

hσ( j)L
F̃

(xi) = in f j(h
σ( j)
F̃

(xi)),

hσ( j)U
F̃

(xi) = sup j(h
σ( j)
F̃

(xi)),

1 6 i 6 n,1 6 j 6 n(hF̃(xi)).

Here n(hF̃(xi)) denotes the number of intervals
in the hF̃(xi).

Example 2. Let X = {x1,x2} be a reference set. De-
fine an IVHFS F̃ on X as follows:

F̃ = {⟨x1,{[0.5,0.6], [0.2,0.3], [0.4,0.6]}⟩,
⟨x2,{[0.3,0.5], [0.4,0.6]}⟩}.

Then hσ(1)
F̃

(x1) = [0.2,0.3], hσ(2)
F̃

(x1) = [0.4,0.6],

hσ(3)
F̃

(x1) = [0.5,0.6], hσ(1)
F̃

(x2) = [0.3,0.5],

hσ(2)
F̃

(x2) = [0.4,0.6].
It follows from Example 1 and Example 2 that

the number of intervals in different IVHFEs may
be different. We use n(hF̃(x)) to stand for the
number of intervals in the IVHFE hF̃(x). For any
two IVHFSs Ã, B̃ on the same reference set X , set
nx(Ã, B̃) =max{n(hÃ(x)),n(hB̃(x))} for some x∈X .
In order to compare two IVHFSs conveniently and
correctly, the two IVHFEs hÃ(x) and hB̃(x) should
have the same number of intervals, that is, nx(Ã, B̃).
Therefore, if there are less intervals in hÃ(x) than in
hB̃(x), an extension of hÃ(x) should be considered
optimistically by repeating its maximum interval
until it has the same number of the intervals as that
in hB̃(x), that is nx(Ã, B̃), in short denoted as nx (
of course, an extension of hÃ(x) is also considered
pessimistically by repeating its minimal interval un-
til it has the same number of the intervals as that in
hB̃(x). Although the results may be different if we
extend the shorter one by adding different values,
this is reasonable because the decision makers risk
preferences can directly influence the final decision.
In this paper, we assume that the decision makers
are all optimistic (other situations can be studied
similarly)). In the subsequent section, without loss
of generality, assume that the IVHFEs involved in
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distance or similarity measures have the same num-
ber of intervals.

Example 3. Let X = {x1,x2} be a reference set. De-
fine two IVHFSs F̃ and G̃ on X as follows:

F̃ = {⟨x1,{[0.5,0.6], [0.2,0.3], [0.4,0.6]}⟩,
⟨x2,{[0.3,0.5], [0.4,0.6]}⟩};

G̃ = {⟨x1,{[0.4,0.5], [0.5,0.6]}⟩,
⟨x2,{[0.3,0.5], [0.4,0.6], [0.6,0.7]}⟩}.

Then, to keep the same number of intervals, after the
extensions on both F̃ and G̃ respectively, these two
IVHFSs can be re-expressed respectively as follows:

F̃ = {⟨x1,{[0.2,0.3], [0.4,0.6], [0.5,0.6]}⟩,
⟨x2,{[0.3,0.5], [0.4,0.6], [0.4,0.6]}⟩};

G̃ = {⟨x1,{[0.4,0.5], [0.5,0.6], [0.5,0.6]}⟩,
⟨x2,{[0.3,0.5], [0.4,0.6], [0.6,0.7]}⟩}.

Definition 3.7 Let X be a reference set, F̃ and G̃
be two IVHFSs on X . Then, one kind of ordering
for IVHFSs, i.e., the component-wise ordering of
IVHFSs, is defined as follows:

F̃ 6 G̃ ⇔ hσ( j)L
F̃

(xi)6 hσ( j)L
G̃

(xi),

hσ( j)U
F̃

(xi)6 hσ( j)U
G̃

(xi),

where xi ∈ X ,1 6 i 6 n,1 6 j 6 nxi .

2.2. Axiomatic Definitions of Distance and
Similarity Measures for IVHFSs

Distance and similarity measures are the fundamen-
tal and important issues of theory of fuzzy sets.
The axiomatic definitions of distance and similarity
measure between two IVHFSs is introduced in 7 and
reviewed as below in Def. 4 and Def. 5 respectively.

Definition 4.7 Let F̃ and G̃ be IVHFSs on the refer-
ence set X = {x1,x2, · · · ,xn} and d a real function:
I V H FS ×I V H FS → [0,1]. d is a distance
measure between F̃ and G̃ if d satisfies the following
properties:

(D1) 0 6 d(F̃ , G̃)6 1;
(D2) d(F̃ , G̃) = 0 ⇔ F̃ = G̃;
(D3) d(F̃ , G̃) = d(G̃, F̃);
(D4) d(F̃ , F̃C) = 1 if and only if F̃ =

{⟨x,{[0,0]}⟩} or F̃ = {⟨x,{[1,1]}⟩};
(D5) let Ẽ be an IVHFS and Ẽ 6 F̃ 6 G̃. Then

d(Ẽ, F̃) 6 d(Ẽ, G̃) and d(F̃ , G̃) 6 d(Ẽ, G̃). Here in
(D4), F̃C = {⟨x,∪r̃∈hM̃(x)

{r̃C}}⟩|x ∈ X} denotes the

complement of F̃ , and r̃C is the complement of an
interval r̃.

Moreover, various distance measures of
two IVHFSs F̃ , G̃ are proposed in 7,21.
For example, given two IVHFSs F̃ , G̃,
hσ( j)

F̃
(xi) = [hσ( j)L

F̃
(xi),h

σ( j)U
F̃

(xi)] and hσ( j)
G̃

(xi) =

[hσ( j)L
G̃

(xi),h
σ( j)U
G̃

(xi)] denote the jth smallest inter-
vals in hF̃(xi) and hG̃(xi), respectively.

The interval-valued hesitant fuzzy Hamming dis-
tance is defined in 7 as follows:

d1(F̃ , G̃) =
1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|+ |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|)]. (1)

The interval-valued hesitant fuzzy Euclidean dis- tance is defined in 21 as follows:

d2(F̃ , G̃) =

√√√√1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|2 + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|2)]. (2)
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The generalized interval-valued hesitant fuzzy distance is defined in 21 as follows:

d3(F̃ , G̃) = {1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|)p]}
1
p , p > 0. (3)

We can see from the above distances that
di(F̃ , G̃)(i = 1,2,3) all satisfy 0 6 di(F̃ , G̃) 6 1,

sometimes some defined operators satisfy (D2)−
(D5), but did not satisfy (D1). For example,

d
′
1(F̃ , G̃) =

1
n

n

∑
i=1

[
1

nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|+ |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|)].

Obviously, d
′
1(F̃ , G̃) 6 2, which shows that

d
′
1(F̃ , G̃) does not satisfy the condition (D1). In or-

der to distinguish it from Def. 6 introduced in the
subsequent section, d(F̃ , G̃) in Def. 4 is also called
an interval-valued hesitant fuzzy normalized dis-
tance between two IVHFSs F̃ and G̃.

Therefore, di(F̃ , G̃)(i = 1,2,3) are called
interval-valued hesitant fuzzy normalized Hamming
distance, interval-valued hesitant fuzzy normalized
Euclidean distance and generalized interval-valued
hesitant fuzzy normalized distance, respectively.

Definition 5.7. Let F̃ and G̃ be IVHFSs on the ref-
erence set X = {x1,x2, · · · ,xn} and s a real function:
I V H FS ×I V H FS → [0,1]. s is called a
similarity measure between F̃ and G̃ if s satisfies the
following properties:

(S1) 0 6 s(F̃ , G̃)6 1;

(S2) s(F̃ , G̃) = 1 ⇔ F̃ = G̃;

(S3) s(F̃ , G̃) = s(G̃, F̃);

(S4) if F̃ = {⟨x,{[0,0]}⟩} or F̃ = {⟨x,{[1,1]}⟩},
then s(F̃ , F̃C) = 0;

(S5) let Ẽ be an IVHFS and Ẽ 6 F̃ 6 G̃. Then
s(Ẽ, F̃) > s(Ẽ, G̃) and s(F̃ , G̃) > s(Ẽ, G̃). Here,
F̃C = {⟨x,∪r̃∈hM̃(x)

{r̃C}}⟩|x ∈ X}, as the same as de-
fined above. .

3. New Distance Measures for IVHFSs

In this section, we will introduce two new dis-
tance measures between two IVHFSs, that is, II-
type generalized interval-valued hesitant fuzzy dis-
tance and the interval-valued hesitant fuzzy Lp dis-
tance based on Lp metric, along with their prop-
erties. They are another new reasonable distance
measures from different point of view and the main
advantages of the new distance measures is that
they do not need to be normalized and more rea-
sonable since they are very similar with the exist-
ing ones except for some minor modification of the
expression. If not otherwise specified, in the sub-
sequent sections, we always assume that F̃ , G̃ are
two IVHFSs and hσ( j)

F̃
(xi) = [hσ( j)L

F̃
(xi),h

σ( j)U
F̃

(xi)]

and hσ( j)
G̃

(xi) = [hσ( j)L
G̃

(xi),h
σ( j)U
G̃

(xi)] denote the jth
smallest intervals in hF̃(xi) and hG̃(xi), respectively.

3.1. II-type generalized interval-valued hesitant
fuzzy distance

We have listed three kinds of important distances
in Section 2. Obviously, if p = 1, p = 2 in Eq.(3),
then d3(F̃ , G̃) will be degenerated to d1(F̃ , G̃) and
d2(F̃ , G̃) respectively, which reflects the connection
between these two sets of distances. From d1(F̃ , G̃),
assume

di =
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|+ |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|). (4)
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It is actually the distance between the ith IVH-
FEs of F̃ and G̃. However, d1(F̃ , G̃) is the distances
between all IVHFEs of F̃ and G̃. From this point of

view, we can modify d3(F̃ , G̃) and redefine another
generalized measure d4(F̃ , G̃) between F̃ and G̃ as
follows:

d4(F̃ , G̃) =
1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p , p > 0. (5)

If p = 1 in Eq. (5), Eq. (5) is also degenerated
to Eq. (1). If p = 2 in Eq. (5), Eq. (5) will not be
degenerated to Eq. (2), instead, it is degenerated to

another measure d5(F̃ , G̃) between F̃ and G̃ as fol-
lows:

d5(F̃ , G̃) =
1
n

n

∑
i=1

√√√√ 1
2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|2 + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|2). (6)

Of course, it is natural to consider the rationality
of Eq. (5) in terms of distance measure. In other
words, we need to check if d4(F̃ , G̃) satisfies (D1)-
(D5) in Def. 4 or not. The answer is positive and
stated in the following theorem.

Theorem 1. d4(F̃ , G̃) is an interval-valued hesitant
fuzzy normalized distance between two IVHFSs, F̃
and G̃.

Proof. Obviously, it is straightforward to see that
d4(F̃ , G̃) satisfies (D1), (D2), (D3) and (D4) in Defi-
nition 4. Now, we consider the axiom (D5). Let Ẽ 6
F̃ 6 G̃. Then hσ( j)L

Ẽ
(xi) 6 hσ( j)L

F̃
(xi) 6 hσ( j)L

G̃
(xi),

hσ( j)U
Ẽ

(xi) 6 hσ( j)U
F̃

(xi) 6 hσ( j)U
G̃

(xi). Therefore, for
any p > 0, we have

|hσ( j)L
Ẽ

(xi)−hσ( j)L
F̃

(xi)|p 6 |hσ( j)L
Ẽ

(xi)−hσ( j)L
G̃

(xi)|p,

|hσ( j)U
Ẽ

(xi)−hσ( j)U
F̃

(xi)|p 6 |hσ( j)U
Ẽ

(xi)−hσ( j)U
G̃

(xi)|p.

It follows that

|hσ( j)L
Ẽ

(xi)−hσ( j)L
F̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
F̃

(xi)|p

6 |hσ( j)L
Ẽ

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
G̃

(xi)|p.

Hence,

1
2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
F̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
F̃

(xi)|p)

6 1
2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
G̃

(xi)|p).

and

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
F̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
F̃

(xi)|p)]
1
p

6 [
1

2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p .
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Therefore,

1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
F̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
F̃

(xi)|p)]
1
p

6 1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
Ẽ

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
Ẽ

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p .

That is, d4(Ẽ, F̃) 6 d4(Ẽ, G̃). Similarly, we can
prove that d4(F̃ , G̃) 6 d4(Ẽ, G̃). Thus d4(Ẽ, F̃) sat-
isfies the axiom (D5). The completes the proof.

Remark 2. d5(F̃ , G̃) is the special case of d4(F̃ , G̃)

when p = 2. d4(F̃ , G̃) is called II-type generalized
interval-valued hesitant fuzzy normalized distance
measure and d5(F̃ , G̃) is called II-type interval-

valued hesitant fuzzy normalized Euclidean distance
measure corresponding to d2(F̃ , G̃). Accordingly,
the interval-valued hesitant fuzzy normalized Ham-
ming distance d1(F̃ , G̃) is a special case of II-type
generalized interval-valued hesitant fuzzy normal-
ized distance measures when p = 1.

Based on Eq. (5), we can further define another
measure d

′
4(F̃ , G̃) between F̃ and G̃ as follows:

d
′
4(F̃ , G̃) =

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p , p > 0.

Obviously, d
′
4(F̃ , G̃) is not normalized and does

not satisfy (D1). So it is not a distance measure as
defined in Def. 4. (D1) is a rather restricted prop-
erty and if it was modified, (D4) would need to be
modified accordingly.

In the following, we will introduce another new
distance measure which generalise (D1), i.e., the
distance measure is defined in the R+, instead of
[0, 1], in order to cover more general cases, accord-
ingly, (D4) is also modified.

Definition 6. Let F̃ and G̃ be two IVHFSs on the ref-
erence set X = {x1,x2, · · · ,xn} and d a real function
: I V H FS ×I V H FS →R∗. d is a distance
measure between F̃ and G̃ if d satisfies the following
properties:

(D1
′
) 0 6 d(F̃ , G̃);

(D2
′
) d(F̃ , G̃) = 0 ⇔ F̃ = G̃;

(D3
′
) d(F̃ , G̃) = d(G̃, F̃);

(D4
′
) d(F̃ , F̃C) = maxÃ,B̃∈I V H FS (X)d(Ã, B̃) if

and only if F̃ = {⟨x,{[0,0]}⟩} or F̃ = {⟨x,{[1,1]}⟩};
(D5

′
) let Ẽ be an IVHFS and Ẽ 6 F̃ 6 G̃. Then

d(Ẽ, F̃) 6 d(Ẽ, G̃) and d(F̃ , G̃) 6 d(Ẽ, G̃). where,
F̃C = {⟨x,∪r̃∈hF̃(x)

{r̃C}}⟩|x ∈ X}.

Corresponding to Def. 4, d(F̃ , G̃) in Definition
6 is called an interval-valued hesitant fuzzy distance
between F̃ and G̃.

Remark 3. According to definitions, we can see that
the normalized distance measure defined in Def. 4
is a special case of the distance measures defined in
Def. 6. According to Def. 6, similar to the proof of
Theorem 1, we have

Theorem 2. d
′
4(F̃ , G̃) is an interval-valued hesitant

fuzzy distance between F̃ and G̃.

Remark 4. The normalized distance measure can
be obtained by a distance measure, i.e., if d is a dis-
tance measure and dmax is the maximal distance of
any two interval-valued hesitant fuzzy sets, then d

dmax
is a normalized distance measure.

Remark 5. It is easy to prove that (D5
′
) is equiva-
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lent to
(D5

′′
): Let D̃, Ẽ, F̃ , G̃ be four IVHFSs and D̃ 6

Ẽ 6 F̃ 6 G̃. Then d(D̃, G̃)> d(Ẽ, F̃).

3.2. Interval-valued hesitant fuzzy Lp distance
based on Lp metric

In 12, Huang studied the similarity of intuitionistic
fuzzy sets based on Lp metric. The reader can refer
to 12 about the Lp metric concept. Huang extend the
normal Lp metric concept onto the one on the inter-
val, this basic idea as follows:

Let R be a Euclidean space and I = {[a,b]|a,b ∈
R,a6 b} be the set of closed intervals in R. For any
two interval x = [x1,y1],y = [x2,y2] ∈ I, the distance
between two intervals x,y is defined as follows:

dp(x,y) = (|x1 − x2|p + |y1 − y2|p)
1
p , p > 1.

This corresponds to representing an interval [a,b]∈ I
as a point (a,b), where the lower bounds of the in-

tervals are represented in the x-axis, and the upper
bounds in the y-axis, and then computing the Lp dis-
tance between the points (x1,x2) and (y1,y2). There-
fore, the distance dp is a suitable extension of the Lp
metric on the interval.

Hamming distance and Hausdorff distance are
two important distance. Wei 22 introduced a gener-
alized interval-valued hesitant Hamming-Hausdorff
distance which is a generalization of interval-
valued hesitant normal Hamming-Hausdorff dis-
tance. Since the IVHFEs of an IVHFS are sets
of some intervals and the distance of two IVHFSs
are closely related the distances of IVFHEs, we
will introduce new distance measure named interval-
valued hesitant fuzzy Lp distance whose limit
is the interval-valued hesitant normal Hamming-
Hausdorff distance based on Lp metric idea. This
new measure between F̃ and G̃, denoted as dp(F̃ , G̃),
is defined as follows:

dp(F̃ , G̃) =
1
n

n

∑
i=1

(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p , p > 1. (7)

It is easy to prove that dp(F̃ , G̃) is a distance
measure in terms of Definition 3.

Wei 21 introduced the interval-valued hesitant

fuzzy normalized Hamming-Hausdorff distance as
below:

d7(F̃ , G̃) =
1
n

n

∑
i=1

(max j=1,2,··· ,nxi
{|hσ( j)L

F̃
(xi)−hσ( j)L

G̃
(xi)|, |hσ( j)U

F̃
(xi)−hσ( j)U

G̃
(xi)|}). (8)

In the following, we propose and prove an inter-
esting result:

limp→+∞dp(F̃ , G̃) = d7(F̃ , G̃). (9)

To prove the interesting result Eq. (9), the fol-
lowing lemma is necessary.

Lemma 1.12 Let a,b be two non-negative real num-
bers. We have

limp→+∞(ap +bp)
1
p = max{a,b}, p > 1.

The following Theorem 3 can be easily obtained
from Lemma 1.

Theorem 3. limp→+∞dp(F̃ , G̃) = d7(F̃ , G̃).

Proof. By the properties of a limit and Lemma 1, we
have
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limp→+∞dp(F̃ , G̃) = limp→+∞(
1
n

n

∑
i=1

(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p )

=
1
n

n

∑
i=1

limp→+∞(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p

=
1
n

n

∑
i=1

(max j=1,2,··· ,nxi
{|hσ( j)L

F̃
(xi)−hσ( j)L

G̃
(xi)|, |hσ( j)U

F̃
(xi)−hσ( j)U

G̃
(xi)|})

= d7(F̃ , G̃).

In the multiple attribute decision making prob-
lems, when we select different distance functions, it
may lead to different results. Usually, the weight of
each element xi ∈ X should be taken into account.
Hereafter, assume that the weight of the element
xi ∈ X is ωi (i = 1,2, · · · ,n) with ωi ∈ [0,1] and

∑n
i=1 ωi = 1. Several weighted distance measures

for the IVHFSs have been presented in 21. Among
all weighted distance measures for the IVHFSs, the
most popular one is the generalized interval-valued
hesitant fuzzy weighted Hamming distance. For two
IVHFSs F̃ and G̃, it is defined as below:

d8(F̃ , G̃) = [
n

∑
i=1

ωi(
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃)

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p , p > 0. (10)

Here, we define a generalized interval-valued hesitant fuzzy weighted Lp distance as below:

d9(F̃ , G̃) =
n

∑
i=1

ωi(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p , p > 1. (11)

It is also easy to prove that d9(F̃ , G̃) is a distance
measure in terms of Definition 6.

Obviously, if each element has the same impor-
tance, i.e., ωi =

1
n , then Eq. (10) and Eq. (11) will

be degenerated to Eq. (3) and Eq. (7) respectively.

4. New Similarity Measures for IVHFSs

In this section, we focus on the new similarity mea-
sures in IVHFSs. The existing similarity measures
of IVHFSs are analysed and then a new kind of new
and more general similarity of IVHFSs are given;
whist a new similarity measure, which is not depen-
dent on the distance measure, but based on the set-
theoretic approach, is also introduced in this section.

4.1. Analysis on the existing similarity measures
for IVHFSs

Similarity measures are generally used for deter-
mining the degree of similarity between two ob-
jects. Similarity measure between two fuzzy sets
is mostly dependent on their corresponding distance
measures, so the former can normally be derived
from the latter. This is also true for IVHFSs as de-
tailed in 21. In addition, in most of cases, the relation
between the similarity measure s and the distance
measure d defined in the interval [0, 1]for IVHFSs
can be naturally expressed as:

s = 1−d. (12)
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However, there are also some other ways or formu-
las to derive the similarity measure from the distance
measure for IVHFSs. For example, a new similarity
measure is defined with the following theorem.

Theorem 4.7 Let F̃ and G̃ be two IVHFSs, Z :
[0,1] → [0,1] a strictly monotone decreasing real
function, and d a distance measure between F̃ and
G̃. Then,

sd(F̃ , G̃) =
Z(d(F̃ , G̃))−Z(1)

Z(0)−Z(1)

is a similarity measure between F̃ and G̃ based on
the corresponding distance d.

As indicated in 7, the distance d is a normalized
distance in terms if Definition 4, so 0 6 d(F̃ , G̃)6 1.
In Section 3, we have the modified normalized
distance with the update of the axiom (D(1)):
0 6 d(F̃ , G̃) 6 1 to (D1

′
): 0 6 d(F̃ , G̃) 6 dmax,

where dmax ∈ R+ is the maximal distance. Hence
we can give an extension of Theorem 4.

Theorem 5. Let F̃ and G̃ be two IVHFSs, Z :
[0,1] → [0,1] a strictly monotone decreasing real
function, d a distance measure between F̃ and G̃,
and dmax the maximal distance. Then,

s
′
d(F̃ , G̃) =

Z(d(F̃ , G̃))−Z(dmax)

Z(0)−Z(dmax)

is a similarity measure between F̃ and G̃ based on
the corresponding distance d.

Proof. It only needs to prove that the measure
s
′
d(F̃ , G̃) is a similarity measure in terms of Defini-

tion 7. Since Z is a monotone decreasing function

and 0 6 d(F̃ , G̃)6 dmax, we have

Z(dmax))6 Z(d(F̃ , G̃)6 Z(0).

It follows that

Z(d(F̃ , G̃))−Z(dmax)6 Z(0)−Z(dmax).

Therefore,

0 6 Z(d(F̃ , G̃))−Z(dmax)

Z(0)−Z(dmax)
6 1.

Hence (S1) holds. Similarly, we can prove (S5)
holds according to (D5) in Definition 6, the details
are omitted. For (S2)-(S4) are straightforward.

By Theorem 4 and Theorem 5, if we choose the
monotone decreasing function Z(x) = e−x, or 1− x,
or 1−x

1+x , or others), then different similarity measures
between F̃ and G̃ will be obtained, and they are
closely related to the distance. It is also consis-
tent with most similarity measures corresponding to
distant. Hence, Theorem 4 and Theorem 5 present
two ways to construct the similarity measures for
IVHFSs based on some distance measures. For ex-
ample, if we choose the function Z(x) = 1 − x in

Theorem 5, then we have s
′
d(F̃ , G̃) = 1− d(F̃ ,G̃)

dmax
. If

the distance d is normalized into [0, 1], then we have
sd(F̃ , G̃) = 1−d(F̃ , G̃), which is consistent with Eq.
(12). This means both sd and s

′
d are more gen-

eral definitions of similarity measures than the most
common case as in Eq. (12). Based on this idea and
different distance measures for IVHFSs defined in
Section 2, we can construct the following new simi-
larity measures accordingly:

• Similarity measure for IVHFSs based on II-
type generalized interval-valued hesitant fuzzy dis-
tance measures:

s1(F̃ , G̃) = 1− 1
n

n

∑
i=1

[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p , p > 0. (13)
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If we take the weight of each element x ∈ X
into account in s1(F̃ , G̃) and s2(F̃ , G̃), where ω =
(ω1,ω2, · · · ,ωn), ωi ∈ [0,1] and ∑n

i=1 ωi = 1. Then
we obtain

• Similarity measure with weight ω for IVHFSs
based on II-type generalized interval-valued hesitant
fuzzy distance measures

s
′
1(F̃ , G̃) = 1−

n

∑
i=1

ωi[
1

2nxi

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p)]
1
p , p > 0. (14)

• Similarity measure for IVHFSs based on interval-valued hesitant fuzzy Lp distance

s2(F̃ , G̃) = 1− 1
n

n

∑
i=1

(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p , p > 1. (15)

• Similarity measure with weight ω for IVHFSs based on interval-valued hesitant fuzzy Lp distance:

s
′
2(F̃ , G̃) = 1−

n

∑
i=1

ωi(

nxi

∑
j=1

(|hσ( j)L
F̃

(xi)−hσ( j)L
G̃

(xi)|p + |hσ( j)U
F̃

(xi)−hσ( j)U
G̃

(xi)|p))
1
p , p > 1. (16)

Of course, we can also choose other types of
monotone decreasing functions to construct other
different similarity measures for IVHFSs. Many
similarity measures can be obtained by the rela-
tion function: sd(F̃ , G̃) = 1−d(F̃ , G̃) or s

′
d(F̃ , G̃) =

1− d(F̃ ,G̃)
dmax

, will not be listed one by one here.

4.2. New similarity measures for IVHFSs based
on set-theoretic approach

It follows from the above analysis on the existing
similarity measures that most of similarity mea-
sures are dependent on the corresponding distance
measures. In this section, we will introduce a new
similarity measure for IVHFSs, which is not de-
pendent on the distance measure, but based on the
set-theoretic approach.

Theorem 6. Let F̃ , G̃ be two IVHFSs. Then

s3(F̃ , G̃) =
1
n

n

∑
i=1

min{
∑

nxi
j=1 min{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

F̃
(xi))

c,(hσ( j)U
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

F̃
(xi))c,(hσ( j)U

G̃
(xi))c}

} (17)

is a similarity measure between F̃ and G̃.

Proof. It needs to prove that s3(F̃ , G̃) satisfies
(S1)-(S5) in Definition 5. Obviously, s3(F̃ , G̃) sat-

isfies (S1), (S3) and (S4). Now, we need to prove
s3(F̃ , G̃) satisfies (S2) and (S5).

For (S2), s3(F̃ , G̃) = 1, that is,
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1
n

n

∑
i=1

min{
∑

nxi
j=1 min{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

F̃
(xi))

c,(hσ( j)U
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

F̃
(xi))c,(hσ( j)U

G̃
(xi))c}

}= 1

if and only if

min{hσ( j)L
F̃

(xi),h
σ( j)L
G̃

(xi)}

= max{hσ( j)L
F̃

(xi),h
σ( j)L
G̃

(xi)}

and

min{(hσ( j)U
F̃

(xi))
c,(hσ( j)U

G̃
(xi))

c}

= max{(hσ( j)U
F̃

(xi))
c,(hσ( j)U

G̃
(xi))

c}

if and only if

hσ( j)L
F̃

(xi) = hσ( j)L
G̃

(xi) and hσ( j)U
F̃

(xi) = hσ( j)U
G̃

(xi)

if and only if F̃ = G̃.
For (S5). Let Ẽ, F̃ , and G̃ be three IVHFSs and

Ẽ 6 F̃ 6 G̃.

s3(Ẽ, F̃) =
1
n

n

∑
i=1

min{
∑

nxi
j=1 min{hσ( j)L

Ẽ
(xi),h

σ( j)L
F̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

Ẽ
(xi),h

σ( j)L
F̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

Ẽ
(xi))

c,(hσ( j)U
F̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

Ẽ
(xi))c,(hσ( j)U

F̃
(xi))c}

}

=
1
n

n

∑
i=1

min{
∑

nxi
j=1 hσ( j)L

Ẽ
(xi)

∑
nxi
j=1 hσ( j)L

Ẽ
(xi)

,
∑

nxi
j=1(h

σ( j)U
F̃

(xi))
c

∑
nxi
j=1(h

σ( j)U
F̃

(xi))c
}

> 1
n

n

∑
i=1

min{
∑

nxi
j=1 hσ( j)L

Ẽ
(xi)

∑
nxi
j=1 hσ( j)L

Ẽ
(xi)

,
∑

nxi
j=1(h

σ( j)U
G̃

(xi))
c

∑
nxi
j=1(h

σ( j)U
G̃

(xi))c
}

=
1
n

n

∑
i=1

min{
∑

nxi
j=1 min{hσ( j)L

Ẽ
(xi),h

σ( j)L
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

Ẽ
(xi),h

σ( j)L
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

Ẽ
(xi))

c,(hσ( j)U
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

Ẽ
(xi))c,(hσ( j)U

G̃
(xi))c}

}

= s3(Ẽ, G̃).

Similarly, we have s3(Ẽ, G̃) 6 s3(F̃ , G̃). There-
fore, s3 is a similarity measure for IVHFSs accord-
ing to Definition 5.

In fact, we can also propose another new mea-
sure between F̃ and G̃ as follows:

s4(F̃ , G̃) =
1
n

n

∑
i=1

min{
∑

nxi
j=1 min{hσ( j)L

F̃
(xi),h

σ( j)U
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

F̃
(xi),h

σ( j)U
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

F̃
(xi))

c,(hσ( j)L
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

F̃
(xi))c,(hσ( j)L

G̃
(xi))c}

}. (18)

Similar to the proof of Theorem 6, we have

Theorem 7. s4(F̃ , G̃) is a similarity measure be-
tween F̃ and G̃.

By comparing s3(F̃ , G̃) and s4(F̃ , G̃), we can find
that they have a dual relationship. In this sense,
a compromise between s3(F̃ , G̃) and s4(F̃ , G̃) is
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meaningful so that we can have a new measure as
a weighted average of s3(F̃ , G̃) and s4(F̃ , G̃) as fol-
lows:

s5(F̃ , G̃) = ωs3(F̃ , G̃)+(1−ω)s4(F̃ , G̃),0 6 ω 6 1. (19)

It follows from Theorem 6 and Theorem 7 that

Theorem 8. s5(F̃ , G̃) is a similarity measure be-
tween F̃ and G̃.

The proof of Theorem 8 is easy from Theorem 7
and Theorem 6, so we omit its proof.

If we take the weight of each element x ∈ X into
account in s3(F̃ , G̃) and s4(F̃ , G̃), then we obtain

s
′
3(F̃ , G̃) =

n

∑
i=1

ωi[min{
∑

nxi
j=1 min{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

F̃
(xi),h

σ( j)L
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

F̃
(xi))

c,(hσ( j)U
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

F̃
(xi))c,(hσ( j)U

G̃
(xi))c}

}] (20)

and

s
′
4(F̃ , G̃) =

n

∑
i=1

ωi[min{
∑

nxi
j=1 min{hσ( j)L

F̃
(xi),h

σ( j)U
G̃

(xi)}

∑
nxi
j=1 max{hσ( j)L

F̃
(xi),h

σ( j)U
G̃

(xi)}
,

∑
nxi
j=1 min{(hσ( j)U

F̃
(xi))

c,(hσ( j)L
G̃

(xi))
c}

∑
nxi
j=1 max{(hσ( j)U

F̃
(xi))c,(hσ( j)L

G̃
(xi))c}

}], (21)

where ωi ∈ [0,1] and ∑n
i=1 ωi = 1. Specially, if

ωi =
1
n(i = 1,2, · · · ,n), then Eq. (20) and Eq. (21)

will be degenerated to Eq. (17) and Eq. (18), respec-
tively.

5. A Multiple Attribute Decision Making
Approach Based on Interval-Valued
Hesitant Fuzzy Information

In this section, we shall utilize the interval-valued
hesitant fuzzy similarity measures to multiple at-
tribute decision making with interval-valued hesitant
fuzzy information, especially, a relative similarity
measure is proposed in order to fit into the multiple
attribute decision making approach.

Assume A = {A1,A2, · · · ,Am} is a discrete set
of alternatives, X = {x1,x2, · · · ,xn} is a set of at-
tributes, and ω = {ω1,ω2, · · · ,ωn} is the weight
vector of the attribute x j ( j = 1,2, · · · ,n), where
ω j ∈ [0,1] and ∑n

j=1 = 1. Assume that the character-
istics for alternatives Ai are presented by the IVHFS
as follows:

Ai = {⟨x j,hAi(x j)⟩|x j ∈ X}, i = 1,2, · · · ,m, (22)

where hAi(x j) indicates the degree that the alterna-

tive Ai satisfies the attribute x j. This also means
that, if the decision makers provide several interval-
valued values for the alternative Ai under the at-
tribute x j on condition of anonymity, these values
can be considered as an interval-valued hesitant
fuzzy element hAi(x j). Before the decision mak-
ing method is introduced, we firstly introduce the
concepts of the positive ideal IVHFS, the negative
ideal IVHFS and the relative similarity measure for
IVHFS as follows:

Definition 7.14 Let Ai(i= 1,2, · · · ,m) be IVHFSs on
the reference set X . The positive ideal IVHFS A+

and the negative ideal IVHFS A− are defined as fol-
lows, respectively:

A+ = {⟨x j,hA+(x j)⟩|x j ∈ X},
A− = {⟨x j,hA−(x j)⟩|x j ∈ X},

where,

hA+(x j) = {maxi{hσ(k)
Ai

(x j)}|k = 1,2, · · · ,nxi ,

i = 1,2, · · · ,m}
hA−(x j) = {mini{hσ(k)

Ai
(x j)}|k = 1,2, · · · ,nxi ,

i = 1,2, · · · ,m}.
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Note that both the positive ideal IVHFS and the
negative ideal IVHFS are special case of an IVHFS
with only one IVHFE in each IVHFS.

In order to choose the desired alternative in
multiple attribute decision making problem, based
on some aforementioned similarity measures for
IVHFSs in Section 4, we can compute the sim-
ilarity degree between the positive ideal IVHFS
A+ and the alternative Ai, as well as the similar-
ity degree between the negative ideal IVHFS A−

and the alternative Ai, denoted by s(A+,Ai) and
s(A−,Ai), respectively. Intuitively, the larger the
similarity s(A+,Ai), the better the alternative; while
the smaller the s(A−,Ai), the better the alternative.
Motivated by the well-known TOPSIS (Technique
for Order Preference by Similarity to an Ideal Solu-
tion method 4, we take both s(A+,Ai) and s(A−,Ai)
into consideration. This leads naturally to the con-
cept of relative similarity measure.

Definition 8. Let A = {A1,A2, · · · ,Am} be a discrete
set of alternatives. The relative similarity measures
rsi corresponding to the alternative Ai are defined as:

rsi =
s(A+,Ai)

s(A+,Ai)+ s(A−,Ai)
, i = 1,2, · · · ,m. (23)

Based on the above analysis and concepts, we
propose the following procedure of a multiple at-
tribute decision making:

Step 1. Construct the corresponding interval-
valued hesitant fuzzy sets according to the charac-
teristics of the alternatives:

Ai = {⟨x j,hAi(x j)⟩|x j ∈ X}, i = 1,2, · · · ,m.

Step 2. Construct the notions of the positive
ideal IVHFS A+ and the negative ideal IVHFS A−

according to Def.7.

Step 3. Calculate similarity measure s(A+,Ai)
and s(A−,Ai) according to some similarity measures
given in the Section 4. We will choose any weighted
similarity measures when the attributes with weight
information. Otherwise, we can choose other simi-
larity measures without weight.

Step 4. Calculate the relative similarity measure
rsi corresponding to the alternative Ai according to
Eq.(23).

Step 5. Obtain the priority of the alterna-
tive Ai(i = 1,2, · · · ,m) by ranking the rsi(i =
1,2, · · · ,m).

Step 6. End of the steps.

6. An Example Illustration

We choose a practical problem as an illustrative ex-
ample, which have been discussed in 22, in order
to illustrate the effeteness of the proposed method
compared with the the one in 22.

Assume that there is an investment company,
which wants to invest a sum of money in the best
option. There is a panel with five possible alter-
natives Ai(i = 1,2, · · · ,5) to invest money: (1) A1
is a car company; (2) A2 is a food company; (3)
A3 is a computer company; (4) A4 is an cosmetic
company; (5) A5 is a TV company. The investment
company must take a decision according to the fol-
lowing attributes xi(i = 1,2,3,4): (1) x1 is the risk
analysis; (2) x2 is the growth analysis; (3) x3 is the
social-political impact analysis; (4) x4 is the envi-
ronment impact analysis. In order to avoid influence
each other, the decision makers are required to eval-
uate the five companies Ai(i = 1,2, · · · ,5) under the
above four attributes X = (x1,x2,x3,x4) on condition
of anonymity. And suppose that the weight vector

Table 1: Interval-valued hesitant fuzzy decision matrix
x1 x2 x3 x4

A1 {[0.2,0.3], [0.3,0.4]} {[0.2,0.5]} {[0.7,0.8], [0.8,0.9]} {[0.4,0.5]}
A2 {[0.2,0.3], [0.4,0.5], [0.5,0.6]} {[0.3,0.4], [0.6,0.7]} {[0.3,0.4]} {[0.5,0.6], [0.8,0.9]}
A3 {[0.5,0.7]} {[0.2,0.3], [0.4,0.5]} {[0.8,0.9], [0.9,1.0]} {[0.3,0.5]}
A4 {[0.3,0.4], [0.7,0.8]} {[0.1,0.3]} {[0.6,0.7], [0.8,0.9]} {[0.5,0.7]}
A5 {[0.2,0.3]} {[0.4,0.6]} {[0.2,0.3], [0.6,0.7]} {[0.6,0.7]}
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of attributes is (0.4,0.2,0.3,0.1). The decision ma-
trix is presented in Table 1 below, which shows all
interval-valued hesitant fuzzy information.

Step 1. Construct the corresponding interval-

valued hesitant fuzzy sets according to the charac-
teristics of the alternatives as follows based on Table
1:

A1 = {⟨x1,{[0.2,0.3], [0.3,0.4]}⟩,⟨x2,{[0.2,0.5]}⟩,⟨x3,{[0.7,0.8], [0.8,0.9]}⟩,⟨x4,{[0.4,0.5]}⟩},
A2 = {⟨x1,{[0.2,0.3], [0.4,0.5], [0.5,0.6]}⟩,⟨x2,{[0.3,0.4], [0.6,0.7]}⟩,⟨x3,{[0.3,0.4]}⟩,

⟨x4,{[0.5,0.6], [0.8,0.9]}⟩},
A3 = {⟨x1,{[0.5,0.7]}⟩,⟨x2,{[0.2,0.3], [0.4,0.5]}⟩,⟨x3,{[0.8,0.9], [0.9,1.0]}⟩,⟨x4,{[0.3,0.5]}⟩},
A4 = {⟨x1,{[0.3,0.4], [0.7,0.8]}⟩,⟨x2,{[0.1,0.3]}⟩,⟨x3,{[0.6,0.7], [0.8,0.9]}⟩,⟨x4,{[0.5,0.7]}⟩},
A1 = {⟨x1,{[0.2,0.3]}⟩,⟨x2,{[0.4,0.6]}⟩,⟨x3,{[0.2,0.3], [0.6,0.7]}⟩,⟨x4,{[0.6,0.7]}⟩}.

Step 2. Calculate the positive ideal IVHFS and
the negative ideal IVHFS as follows, respectively:

A+ = {⟨x1,{[0.7,0.8]}⟩,⟨x2,{[0.6,0.7]}⟩,
⟨x3,{[0.9,1.0]}⟩,⟨x4,{[0.8,0.9]}⟩},

A− = {⟨x1,{[0.2,0.3]}⟩,⟨x2,{[0.1,0.3]}⟩,
⟨x3,{[0.2,0.3]}⟩,⟨x4,{[0.3,0.5]}⟩}.

For Step 3, we can utilize different similarity
measures provided in Section 4 to determine the pri-
ority of the alternatives.

(Case 1) Utilizing the similarity measure s
′
1 with

the weight vector ω for IVHFSs based on II-type
generalized interval-valued hesitant fuzzy distance
measures, i.e., Eq. (14).

Step 3. By (14), we calculate s
′
1(A

+,Ai) and
s
′
1(A

−,Ai) (i = 1,2,3,4,5) and assume that p = 2.

s
′
1(A

+,A1) = 0.6682,s
′
1(A

+,A2) = 0.6140,

s
′
1(A

+,A3) = 0.8070,s
′
1(A

+,A4) = 0.7037,

s
′
1(A

+,A5) = 0.5868;

s
′
1(A

−,A1) = 0.7556,s
′
1(A

−,A2) = 0.7850,

s
′
1(A

−,A3) = 0.6256,s
′
1(A

−,A4) = 0.6999,

s
′
1(A

−,A5) = 0.8296.

Step 4. Calculate the relative similarity measure
rsi corresponding to the alternative Ai using Eq. (23)

rs1 = 0.4693,rs2 = 0.4389,rs3 = 0.5633,
rs4 = 0.5014,rs5 = 0.4121.

Step 5. Obtain the priority of the alternative
Ai(i = 1,2, · · · ,5) by ranking the rsi(i = 1,2, · · · ,5).

A3 ≻ A4 ≻ A1 ≻ A2 ≻ A5. (24)

(Case 2) Utilizing the similarity measure s
′
2 with

the weight vector ω for IVHFSs based on the
interval-valued hesitant fuzzy Lp distance.

Step 3. Calculate s
′
2(A

+,Ai) and s
′
2(A

−,Ai) (i =
1,2,3,4,5) and assume that p = 2.

s
′
2(A

+,A1) = 0.3969,s
′
2(A

+,A2) = 0.2695,

s
′
2(A

+,A3) = 0.6776,s
′
2(A

+,A4) = 0.4754,

s
′
2(A

+,A5) = 0.3210;

s
′
2(A

−,A1) = 0.5573,s
′
2(A

−,A2) = 0.5501,

s
′
2(A

−,A3) = 0.3340,s
′
2(A

−,A4) = 0.4116,

s
′
2(A

−,A5) = 0.7094.

Step 4. Calculate the relative similarity measure
rsi corresponding to the alternative Ai using Eq. (23)

rs1 = 0.4159,rs2 = 0.3288,rs3 = 0.6698,
rs4 = 0.5360,rs5 = 0.3115.

Step 5. Obtain the priority of the alternative
Ai(i = 1,2, · · · ,5) by ranking the rsi(i = 1,2, · · · ,5).

A3 ≻ A4 ≻ A1 ≻ A2 ≻ A5. (25)

(Case 3) Utilizing the similarity measure s
′
3 with

the weight vector ω for IVHFSs based on the set-
theoretic approach.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 15–32
___________________________________________________________________________________________________________

30



Step 3. Calculate s
′
3(A

+,Ai) and s
′
3(A

−,Ai) (i =
1,2,3,4,5).

s
′
3(A

+,A1) = 0.2097,s
′
3(A

+,A2) = 0.2789,

s
′
3(A

+,A3) = 0.3866,s
′
3(A

+,A4) = 0.2667,

s
′
3(A

+,A5) = 0.2810;

s
′
3(A

−,A1) = 0.5593,s
′
3(A

−,A2) = 0.5126,

s
′
3(A

−,A3) = 0.3481,s
′
3(A

−,A4) = 0.5057,

s
′
3(A

−,A5) = 0.65.

Step 4. Calculate the relative similarity measure
rsi corresponding to the alternative Ai using Eq. (23)

rs1 = 0.2727,rs2 = 0.3523,rs3 = 0.5262,
rs4 = 0.3453,rs5 = 0.3018.

Step 5. Obtain the priority of the alternative
Ai(i = 1,2, · · · ,5) by ranking the rsi(i = 1,2, · · · ,5).

A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1. (26)

According to the above numerical results for
three cases utilizing different similarity measures
under interval-valued hesitant fuzzy environment,
the ordering of the alternatives are given in Eq. (24),
Eq. (25), Eq. (26) respectively. The ≻ in Eqs.
(24)-(26) means ”preferred to”. We can see from
the results, depending on the similarity measures
used, the ordering of the alternatives is slightly dif-
ferent. Therefore, depending on the similarity mea-
sure used, the result will lead to different ranking of
other alternatives, but the best desirable alternative
is the same. From Eq. (24) to Eq. (26), we know
that alternative A3 is the best one obtained by using
all three similarity measures proposed in Section 4.

In addition, in 22, Wei. et al. applied an interval-
valued hesitant fuzzy choquet ordered averaging
(IVHFCOA) operator and a hesitant interval-valued
fuzzy choquet ordered geometric (IVHFCOG) op-
erator to the same practical example with interval-
valued hesitant fuzzy information. As the results of
aggregation are some intervals, so, a score function
of IVFHNs was employed in order to obtain the or-
dering of the alternatives. The result is the same as
the one obtained using the proposed method based
on the relative similarity measures for IVHFSs. This
shows the proposed method is rational and practi-
cally feasible.

7. Conclusions

IVHFSs, which is a generalization of the HFSs, have
been used widely in decision problems 17,19. IVHFS
permits the memberships of an element to a given
set having a few different interval values in [0, 1]
rather than precise single numbers, so it can be con-
sidered as a useful tool to express uncertain informa-
tion in the human decision making process. In this
paper, our aim mainly focused on the following two
aspects:

(1) New information measure A generalization of
popular Haming-distance (that is, a II-type gener-
alized interval-valued hesitant fuzzy distance) and
an interval-valued hesitant fuzzy Lp distance were
introduced based on some existing distance mea-
sures for IVHFSs and Lp metric, the relation be-
tween interval-valued hesitant fuzzy Lp distance and
interval-valued hesitant fuzzy Hausdorff distance
was also discussed. About the similarity measure,
we analysed the existing similarity measures, a fam-
ily of similarity measures for IVHFSs were obtained
and a new similarity measure, which is not depen-
dent on the distance measure in IVHFSs from the
view of set theory, was proposed.

(2) Application of relative similarity measure We
proposed the concept of relative similarity mea-
sure of IVHFSs based on the new similarity mea-
sure in (1) and constructed a multiple attribute deci-
sion making approach under interval-valued hesitant
fuzzy environment and based on the relative simi-
larity measure. Consequently, a practical example
was provided to illustrate this method and compare
it with the existing one in22.

In the future, we shall continue working apply-
ing the interval-valued hesitant fuzzy multiple at-
tribute decision making approach to other problem
domains, and also focus on other information mea-
sures on hesitant fuzzy set and its application in the
real world.
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