
An Evaluation of Coding Violation Focusing on
Change History and Authorship of Source File∗

Aji Ery Burhandenny 1,2 , Hirohisa Aman 3 , Minoru Kawahara 3

1 Graduate School of Science and Engineering, Ehime University
3, Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan

2 Engineering Faculty, Mulawarman University
Samarinda, East Kalimantan 75119, Indonesia

E-mail: a.burhandenny@ft.unmul.ac.id
3 Center for Information Technology, Ehime University
3, Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan

E-mail: {aman, kawahara}@ehime-u.ac.jp

Abstract

This paper focuses on an evaluation of coding violation warned by a static code analysis tool while
considering the change history of violation and the authorship of source file. Through an empirical study
with data collected from seven open source software projects, the following findings are reported: (1)
the variety and the evaluation of a coding violation tend to vary accroding to the authoring type of the
source file; (2) while important violations tend to vary from project to project, about 30% of violations
are commonly disregarded by many programmers.

Keywords: Static code analysis, coding violation, authorship of source file, programmer’s attention.

1. Introduction

The programming has been widely known as the

most significant activity for producing high-quality

software systems. The programming activity is usu-

ally performed by a programmer, i.e., a human be-

ing. Thus, it is hard to avoid any human errors

during the programming, so there is always a risk

of a latent fault in a source code. Moreover, such

a risk usually gets higher through the system’s up-

grade since a code change may create another fault1.

In order to reduce the risk of latent faults, it is effec-

tive to perform a careful code review2. A code re-

view can find potentially problematic parts of source

programs, which are fault-prone parts or hard-to-

understand ones. While a code review is a useful

activity for enhancing the quality of source code,

it is also costly activity. For a large-scale system,

it is not easy to perform a thorough review for all

source programs. Furthermore, whenever a large-

scale system is upgraded, it is impractical to review

not only modified code but also all possible parts

which may be affected by the modifications. Thus, a

manually-performed code review is limited by lacks

∗ An earlier version of this paper was presented at The 2nd International Conference on Big Data, Cloud Computing, and Data Science

Engineering (BCD2017).

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

211

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

of time, effort and manpower. To support code re-

views by programmers themselves, there have been

automated support tools referred to as “static code

analysis tools.” Those tools point the parts which vi-

olate to a predefined coding convention or the ones

which match to a predefined anti-coding pattern.

Since such tools can find potential poor quality parts

or latent faults, they can be great helps for the code

review and thus for the quality management of code.

However, such analysis tools have not been ac-

tively utilized in reality3. In many cases, a lot of vi-

olations (warnings) are reported by a tool and many

of them are not actually important (false positives),

then programmers tend to have hesitations in using

such a tool. Thus, there have been studies for pri-

oritizing (evaluating) violations to reduce the false-

positive rate in the past. Aji et al.4 focused on

change patterns of violations over releases, and pro-

posed a metric for evaluating violations, “Index of

Programmers’ Attention (IPA).” When some parts

of a source file were warned as a violation and the

number of those warned parts have been decreased

through their upgrades, such a decreasing trend is

a proof that the programmer paid an attention to

the violation and fixed them. On the other hand, if

the number of warned parts have been constant or

increased through their upgrades, the programmer

would disregard the corresponding violation. IPA is

a ratio of the former cases to the latter cases as an

index of violation’s importance. While an empiri-

cal study using IPA was reported in literature4, the

study missed a consideration for the authorship of

source files. When a source file has been developed

and maintained by a single programmer, the viola-

tions depend on his/her preference. If two or more

programmers are involved in the source file, the vi-

olations would be influenced by common sense of

those programmers. Thus, this paper will examine

the impact of authorship on the above evaluation of

violations and report the results of analysis.

The remainder of this paper is organized as fol-

lows: Section 2 presents the way of evaluating viola-

tions and our main focus. Section 3 reports our em-

pirical study along with our discussions, and Sect.4

briefly describes the related work. Finally, Sect.5

gives the conclusions and our future plan.

2. Evaluation of Violation and Authorship of
Source File

2.1. Evaluation of Violation

A static code analysis tool can automatically check

all source files included in a release version of a

large-scaled software product. While we can eas-

ily perform such a thorough checking thanks to an

automated tool, it may be hard to utilize the re-

sults of checking because of a large number of vi-

olations (warnings) made by the tool—we may face

too many violations to examine whether we should

modify the warned parts or not. Hence, a proper pri-

oritization of violation has been required for a suc-

cessful utilization of static code analysis tools.

In order to automatically evaluate the priority

of violation from the perspective of code change

history, Aji et al.4 focused on change patterns of

violations over releases (see Fig. 1): (1) one-shot,

(2) sticky, (3) decreasing, (4) increasing, and (5)

other. The one-shot pattern of a violation means that

it appeared only at one version through all releases.

The sticky pattern of a violation refers to the case

that the number of appearances is constant from its

first warned version to the latest one. The decreas-

ing pattern of a violation corresponds to the case that

the number of appearances monotonically decreased

after its first appearance version, and the increasing

pattern means a monotonically increasing case. The

other pattern is a mixed case of the above four pat-

terns. Violations belong to the one-shot pattern or

the decreasing one seem to be paid attentions by

programmers since one or more violations had been

eliminated through a upgrade. On the other hand,

violations of the sticky pattern or the increasing

one would be disregarded by programmers because

those ones were not cleared throughout upgrades.

Fig. 1. Four change patterns of violations.

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

212

Aji et al. proposed the following metric, “Index of

Programmers’ Attention (IPA)” using these notions:

For a violation (warning) v,

IPA(v) =
No(v)+Nd(v)
Ns(v)+Ni(v)

, (1)

where No(v), Nd(v), Ns(v) and Ni(v) are the numbers

of parts warned as violation v belonging to “one-

shot,” “decreasing,” “sticky” and “increasing,” re-

spectively. When Ns(v)+Ni(v) = 0, it is defined as

IPA(v) =∞. Notice that the study excludes violation

v such that No(v)+Nd(v)+Ns(v)+Ni(v) = 0.

2.2. Impact of Authorship on Evaluation

Although IPA can be useful in evaluating many vi-

olations automatically, it may be affected by differ-

ences in style of development. If a source file has

been developed and maintained by a certain pro-

grammer only, the paying-attention depends on the

programmer’s preference. Thus, we will focus on

whether a source file has been developed and main-

tained by a single programmer or not, and examine

its impact on the violation evaluation in this paper.

We will call a source file which has been de-

veloped and maintained by a single developer, as a

“single-authored file”; we will refer to a source file

which has been developed or maintained by two or

more developers, as a “multi-authored file.”

To statistically compare evaluations of a viola-

tion between single-authored file and multi-authored

one, we cannot use the original IPA—Eq. (1)—since

IPA value can be ∞. Thus, we introduce the normal-

ized IPA (NIPA) as follows:

NIPA(v)

=
{No(v)+Nd(v)}−{Ns(v)+Ni(v)}

No(v)+Nd(v)+Ns(v)+Ni(v)
.

(2)

The range of NIPA value is [−1,1]. A violation

v is evaluated in accordance with its NIPA(v) value

as follows:

(i) NIPA(v) = 1: No(v)+Nd(v) > 0 and Ns(v)+
Ni(v) = 0. There are only cases that program-

mers paid attentions to violation v. In these

cases, violation v must be related to problem-

atic or fully-undesirable code. Such a violation

would be important in the code quality man-

agement.

(ii) NIPA(v) =−1: No(v)+Nd(v) = 0 and Ns(v)+
Ni(v) > 0. This is totally opposite to (i), and

there are only cases that programmers disre-

garded v. Hence, v must be insignificant in the

maintenance of the software product.

(iii) NIPA(v) > 0: No(v)+Nd(v) > Ns(v)+Ni(v).
There are both cases that programmers paid

attentions and disregarded, but the number of

former cases is greater than that of latter cases.

Thus, v would be relatively important.

(iv) NIPA(v) � 0: No(v)+Nd(v) � Ns(v)+Ni(v).
This is opposite to (iii), so v would be rela-

tively disregarded by programmers.

In simple words, if violation v has a positive and

greater NIPA(v) value, v is considered to be more

important for more programmers, and vice versa.

Using the above metric, NIPA, we will analyze

the impact of authoring type—single-authored files

vs. multi-authored ones—on the evaluation of viola-

tions in the following section. To clarify our goals of

empirical study, we set our research questions (RQs)

as follows:

RQ1: Is the authoring type noteworthy in evaluat-

ing coding violations?

RQ2: How many violations are commonly impor-

tant or worthless across projects and authoring

types?

3. Empirical Study

3.1. Aim and Dataset

In order to answer the above RQs, we examine

open source software (OSS) products from the

perspective of not only the coding violation im-

portance (NIPA value) but also the file author-

ship. Table 1 shows the projects surveyed in this

study. These projects are randomly selected from

GitHub. By comparing NIPA values of coding

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

213

Table 1. Surveyed OSS projects.

Project Name Investigation Period

Guava Jan 2010 − Dec 2015

Elasticsearch Feb 2010 − Feb 2016

Spring Framework Dec 2008 − Apr 2016

React Native Mar 2015 − Feb 2016

JabRef Dec 2011 − Jan 2016

JUnit4 Dec 2004 − Dec 2014

Hibernate Jul 2010 − Feb 2016

violations between the sets of single-authored files

and of multi-authored ones, we study an impact of

authorship on the priority of coding violations.

3.2. Data Collection

For each project, we conducted our data collection

in the following procedure:

(1) We cloned the repository on our local disk to an-

alyze the trends of coding violations smoothly.

(2) For each release version, we checked out all files

and performed a static code checking by using

the PMD (ver. 5.4.1) with its all rule sets.

(3) For each file f , we examined who created f or

made changes to f by checking commit logs

which f has been involved in, i.e., author(s).

Then, we counted the unique number of authors

associated with f , and decided if f is a single-

authored file or a multi-authored one. Since

there may be an author who has two or more dif-

ferent names or e-mail addresses, we integrated

duplicated authors by the following rules5:

(i) if two authors have different addresses but

the same name, then we regard them as the

same author.

(ii) if two authors have the same address but

different names, then we regard them as

the same author.

(4) For each single-authored file fs and each vi-

olation v, we traced the change of its occur-

rences over releases and decided its change pat-

tern from 1) one-shot, 2) sticky, 3) decreasing,

4) increasing and 5) other. Similarly, we decided

change patterns of all violations by checking all

multi-authored files as well.

(5) For each violation v appearing in single-

authored files, we obtained No(v), Ns(v), Nd(v)
and Ni(v) by counting the decided patterns in

all files, then computed NIPA(v). Similarly, we

computed NIPA(v) of all violations appearing in

multi-authored files as well.

3.3. Analysis 1 (for RQ1): Comparison of
Violations Appearing in Single-Authored
Files vs. Multi-Authored Files

If the difference in the authoring type—single author

vs. multi authors—has an impact on the coding vio-

lations, there are differences in the sets of violations

or in the NIPA values. That is to say, the former

type is a distinct difference such that the set of vio-

lations appearing in the single-authored files differs

from the set of ones appearing in the multi-authored

files. On the other hand, the latter type of differ-

ence is more complicated: although appearing vio-

lations are common regardless of the authoring type,

there is a discrepancy in their evaluations. Thus, we

checked these two types of differences.

3.3.1. Differences in the Sets of Violations

At first, for each OSS project, we examined the simi-

larity between the sets of violations which appear in

the single-authored files and in the multi-authored

ones, respectively. We compute similarities between

them with using three popular indexes—the Jaccard

index, the Dice index and the Simpson index: Let

Vs and Vm be the sets of violations appearing in the

single-authored files and in the multi-authored ones,

respectively. The Jaccard index, Jac(Vs,Vm), is com-

puted with the following equation:

Jac(Vs,Vm) =
|Vs ∩Vm |
|Vs ∪Vm | . (3)

The Dice index, Dice(Vs,Vm), is obtained with the

following equation:

Dice(Vs,Vm) =
2 |Vs ∩Vm |
|Vs|+ |Vm| . (4)

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

214

The Simpson index, Simp(Vs,Vm), is computed with

the following equation:

Simp(Vs,Vm) =
|Vs ∩Vm |

min{ |Vs|, |Vm| } . (5)

The above three indexes range from 0 to 1: a

higher value corresponds to a pair of sets which are

more similar, i.e., there are more common elements

in those sets. Table 2 shows the similarities.

Table 2. Similarities between violation sets: single-authored
files vs. multi-authored files.

Project Jac Dice Simp
Guava 0.812 0.897 0.952

Elasticsearch 0.791 0.883 0.979

Spring Framework 0.637 0.779 0.975

React Native 0.547 0.707 0.914

JabRef 0.397 0.569 1.000

JUnit4 0.115 0.206 0.929

Hibernate 0.659 0.795 0.992

As the results, there are varieties in the similar-

ity across projects. Most violations appearing in

Guava and Elasticsearch are common between the

sets of single-authored files and of multi-authored

ones, where their similarities are around or higher

than 0.8 in terms of all similarity indexes. That

is to say, about 80% or more violations are com-

mon to both single-authored files and multi-authored

ones. On the other hand, JUnit4 shows low-level

similarities in terms of Jaccard index and Dice in-

dex (0.115 and 0.206). However, its Simpson in-

dex is high (0.929). JabRef shows relatively similar

results—low values in Jaccard and Dice indexes, but

the highest value in Simpson index. If Vs ⊆ Vm, the

Simpson index becomes 1.0; JabRef is in that case.

Indeed, all projects show high Simpson index val-

ues (> 0.9). Thus, their dissimilarities in Jaccard

and Dice indexes seem to be caused because the re-

lationship between Vs and Vm is close to a case that

Vs ⊆Vm, i.e., |Vs| � |Vs ∩Vm| (see Table 3).

Therefore, there are likely to be differences be-

tween the sets of violations appearing in the single-

authored files and of the multi-authored ones, and

the variety of violations in the single-authored files

tend to be more limited than that in the multi-

authored files.

Table 3. Number of elements in Vs, Vm and Vs ∩Vm.

Project |Vs| |Vm| |Vs ∩Vm|
Guava 146 164 140

Elasticsearch 143 174 139

Spring Framework 119 179 116

React Native 70 111 64

JabRef 66 166 66

JUnit4 14 112 13

Hibernate 123 184 122

3.3.2. Differences in NIPA Values

Next, we will examine whether there is a difference

in the trends of violation priorities (NIPA values) in

accordance with the file authorship. Table 4 sum-

marizes the numbers of violations according to their

NIPA values and their authoring types. In the ta-

ble, the number of violations whose NIPA values

are positive—being considered to be important—is

Table 4. Number of violations according to their NIPA values
and authoring types.

Authoring Type

Project NIPA Single Multi

=−1 105 94

Guava ∈ (−1,0] 41 67

∈ (0,1) 1
= 1 2
=−1 66 61

Elasticsearch ∈ (−1,0] 74 110

∈ (0,1) 1
= 1 3 2
=−1 100 86

Spring ∈ (−1,0] 19 91

Framework ∈ (0,1) 1
= 1 1
=−1 46 78

React Native ∈ (−1,0] 20 33

∈ (0,1)
= 1 4
=−1 51 64

JabRef ∈ (−1,0] 12 97

∈ (0,1) 2
= 1 3 3
=−1 14 77

JUnit4 ∈ (−1,0] 34

∈ (0,1)
= 1 1
=−1 55 67

Hibernate ∈ (−1,0] 64 117

∈ (0,1)
= 1 4

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

215

Table 5. Appearing violations whose NIPA values are greater
than zero in single-authored files or multi-authored files.

Spring React

Guava Elasticsearch Framework Native JabRef JUnit4 Hibernate

Violation S M S M S M S M S M S M S M

AddEmptyString 0.587 0.396

AppendCharacterWithChar 1

AvoidCatchingNPE 1

AvoidUsingShortType 1

BadComparison 1

ConfusingTernary 1

DoNotThrowException
1

InFinally

DontImportJavaLang 1

DuplicateImports 1

EmptyStatementNotInLoop 1

ForLoopsMustUseBraces 1

IfStmtsMustUseBraces 1

ImportFromSamePackage 1 1 1

JUnit4TestShouldUse
1

TestAnnotation

MisleadingVariableName 0.143

PositionLiteralsFirstInCase
1 1

InsensitiveComparisons

SimplifyBooleanReturns 1

SingletonClassReturning
1

NewInstance

UnusedImports 0.118

UnusedLocalVariable 1

UseLocaleWith
1

CaseConversions

UseProperClassLoader 1 0.500

TooManyStaticImports 1

(S: Single-authored files; M: Multi-authored files)

expressed in boldface. From the table, we can see

the common trend that most appearing violations are

disregarded (NIPA < 0), and only a few violations

are paid attention by programmer(s) (NIPA> 0).

Table 5 shows violations whose NIPA values are

greater than 0, according to authorships. While there

are 23 violations being considered important (NIPA

> 0) in either the single-authored files or the multi-

authored ones, 21 out of 23 violations appear only

in one of two authoring types. That is to say, impor-

tant violations getting programmers’ attention tend

to differ in accordance with the authorship of source

file; Even if a violations is considered to be impor-

tant at a single-authored file, it may be disregarded

by many other programmers. Such a difference may

come from the preference of programmer.

In Table 5, only two violations (emphasized

in boldface) have positive NIPA values in both of

the authoring types: “UseProperClassLoader” in

Elasticsearch and “ImportFromSamePackage” in

JabRef. The former violation is a recommendation

to replace the invocation of getClassLoarder() with

Thread.currentThread().getContextClassLoader()

because the original code might not work properly

in the J2EE environment. The latter violation says

that that there is no need to import classes within

the same package. Since the former violation seems

to be related to a potential fault, it is natural that

the violation was fixed regardless of the author-

ship. On the other hand, the latter violation would

be on the way of coding and have no relation with

a fault. Hence, making the violation totally de-

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

216

pends on who writes the code: While “ImportFrom-

SamePackage” has also the highest NIPA value in

the single-authored files of Hibernate, it does not ap-

pear in the multi-authored ones of the same project.

In order to examine further correspondence re-

lationships between the sets of violations warned

in single-authored files and in multi-authored ones,

we compared their NIPA values. For each project,

we computed the Spearman rank correlation coeffi-

cient between the sets of NIPA values correspond-

ing to violations warned in both the single-authored

files and the multi-authored ones. Table 6 shows

the results. In Table 6, no strong correlation be-

tween NIPA values is observed in our data. That

is to say, the evaluation of a violation appearing in

single-authored files tends to be independent of that

in multi-authored ones, even when we focus only on

the common violations.
Table 6. Spearman rank correlation coefficients between the set
of single-authored files and that of multi-authored ones in terms
of NIPA value.

Project Correlation Coefficient

Guava 0.492

Elasticsearch 0.339

Spring Framework 0.433

React Native 0.127

JabRef 0.160

JUnit4 0.000

Hibernate 0.344

To understand how two sets of source files differ

in terms of NIPA value, we computed the following

ΔNIPA(v) for each violation v in each project:

ΔNIPA(v) = NIPAsingle(v)−NIPAmulti(v) , (6)

where NIPAsingle(v) and NIPAmulti(v) are the NIPA

value of violation v in the set of single-authored files

and in that of multi-authored one, respectively.

Table 7 shows the distributions of ΔNIPA(v).
While there are a few extreme cases (ΔNIPA(v) =
−2 or 2), ΔNIPA values of most violations are less

than or equal to zero. Figure 2 presents boxplots

of ΔNIPA values, which focus only on around zero.

From Fig. 2, we can see the trend that ΔNIPA values

tend to be negative in many cases. Thus, the degree

of importance of a violation v—NIPA(v)—would

increase from a single-authored file to a multi-

Table 7. Distributions of ΔNIPA(v).

Percentile

Project Min. 25% 50% 75% Max.

G −2.000 −0.082 0 0 0.865

E −0.670 −0.051 −0.0005 0.002 2.000

S −0.371 −0.091 −0.008 0 0.377

R −0.422 −0.098 0 0 2.000

JR −0.958 −0.286 −0.151 −0.053 2.000

J4 −0.383 −0.150 −0.095 −0.036 0

H −0.717 −0.081 −0.014 0 2.000

(G: Guava; E: Elasticsearch; S: Spring Framework;
R: React Native; JR: JabRef; J4: JUnit4; H: Hibernate)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

ΔN
IP

A

Guava Elastic Spring React JabRef JUnit4 Hibenate

Fig. 2. Boxplots of ΔNIPA(v) (focused only on the range

[−0.5,0.5]).

authored file. In other words, even if a violation

in a source file is disregarded by a programmer,

the violation (warning) may be resolved by another

programmer when the source file becomes a multi-

authored type from a single-authored one.

From the all results shown in this subsection

(Sect. 3.3), we can answer to RQ1 as: the difference

in the authoring type has significant impacts on the

trends of violations and their evaluations.

3.4. Analysis 2 (for RQ2): Comparison of
Violations across Projects

Now we introduce another perspective of analysis:

the comparison across the projects.

For violations appearing in single-authored files

and in multi-authored files, we computed similar-

ities among projects with using three indexes—

Jaccard index, Dice index and Simpson index. Ta-

ble 8 shows the results. For violations appearing

in single-authored files, the averages of similari-

ties (excluding the ones with themselves) in terms

of Jaccard index, Dice index and Simpson index

are 0.391, 0.534 and 0.859, respectively; The aver-

ages of similarities in multi-authored files are 0.634,

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

217

Table 8. Similarities of appearing violatins among projects.

(i) in single-authored files (ii) in multi-authored files

Project Index (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

(a) Guava — — — — — — — — — — — —

J 0.606 — — — — — 0.673 — — — — —
(b) Elasticsearch D 0.754 — — — — — 0.805 — — — — —

S 0.762 — — — — — 0.829 — — — — —
J 0.514 0.638 — — — — 0.657 0.783 — — — —

(c) Spring D 0.679 0.779 — — — — 0.793 0.878 — — — —
Framework S 0.756 0.857 — — — — 0.829 0.891 — — — —

J 0.403 0.449 0.443 — — — 0.599 0.575 0.543 — — —
(d) React Native D 0.574 0.62 0.614 — — — 0.749 0.73 0.703 — — —

S 0.886 0.762 0.829 — — — 0.928 0.937 0.919 — — —
J 0.333 0.375 0.445 0.432 — — 0.65 0.735 0.742 0.547 — —

(e) JabRef D 0.5 0.545 0.616 0.603 — — 0.788 0.847 0.852 0.708 — —
S 0.803 0.864 0.864 0.621 — — 0.793 0.867 0.886 0.883 — —
J 0.096 0.098 0.118 0.2 0.176 — 0.533 0.529 0.524 0.517 0.536 —

(f) JUnit4 D 0.175 0.178 0.211 0.333 0.3 — 0.696 0.692 0.687 0.682 0.698 —
S 1 1 1 1 0.857 — 0.857 0.884 0.893 0.685 0.866 —
J 0.573 0.652 0.646 0.462 0.432 0.114 0.665 0.817 0.833 0.545 0.777 0.526

(g) Hibernate D 0.729 0.789 0.785 0.632 0.603 0.204 0.799 0.899 0.909 0.705 0.874 0.689
S 0.797 0.854 0.798 0.871 0.864 1 0.848 0.925 0.922 0.937 0.922 0.911

(J: Jaccard; D: Dice; S: Simpson)

0.771 and 0.877, respectively. Thus, in all three

indexes, the commonalities of violations appearing

in the multi-authored files are higher than those in

the single-authored ones. Indeed, for all pairs of

projects, Jaccard indexes and Dice indexes in multi-

authored files are higher than the ones in single-

authored ones—for example, pair (b)-(c): 0.638 <
0.7834 (in Jaccard index) and 0.779 < 0.878 (in

Dice index). While Simpson indexes show some op-

posite relationships, the reason would be that Simp-

son index tends to have a higher value when there

is a big gap between compared sets in terms of size

(number of elements)—Since JUnit4 has only 14 el-

ements (violations) in its set of violations appearing

in the single-authored files.

Hence, the multi-authored files are more likely

to have a higher commonality of violations than the

single-authored ones across projects. Trends of ap-

pearing violations are possibly generalized through

maintenances by two or more programmers.

Next, we explore which violations are common

across projects. Table 9 presents the numbers of

common violations across projects. While 5 viola-

tions are shown in the “NIPA > 0” row of Table 9, it

does not mean that those violations have always pos-

itive NIPA values in all projects; they are the ones

having NIPA > 0 at least one project.

As shown in Table 9, 71 violations commonly

Table 9. Number of violations common to all projects.

Single-Authored Multi-Authored

NIPA> 0 0 5∗
NIPA� 0 12 66

Total 12 71
∗Number of violations whose NIPA values

are positive at least one project.

appear in the multi-authored files of all projects, and

66 out of 71 violations are always disregarded by

the programmers (NIPA � 0). The remaining 5 vio-

lations are shown in Fig. 3; The figure also presents

the project name in which the violation’s NIPA > 0.

While five violations are considered to be impor-

tant, each of them has a positive NIPA value in only

one project (React Native or JabRef), and these vi-

olations are disregarded in the remaining 6 projects.

That is to say, there are no commonly-important

violation across projects. Figure 4 presents the re-

maining 66(= 71− 5) violations which commonly

appear in all projects and are always disregarded

(NIPA � 0). The all of 12 disregarded violations

AppendCharacterWithChar (JabRef),

AvoidUsingShortType (JabRef),

ConfusingTernary (React Native),

SimplifyBooleanReturns (React Native),

UnusedImports (JabRef)

Fig. 3. Commonly-appearing violations which have NIPA

> 0 in one project.

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

218

AbstractClassWithoutAnyMethod, AbstractNaming,

AccessorClassGeneration, AddEmptyString,

ArrayIsStoredDirectly, AssignmentInOperand,

AtLeastOneConstructor, AvoidCatchingGenericException,

AvoidCatchingThrowable, AvoidDuplicateLiterals,

AvoidFieldNameMatchingMethodName,

AvoidInstantiatingObjectsInLoops, AvoidLiteralsInIfCondition,

AvoidReassigningParameters, AvoidSynchronizedAtMethodLevel,

AvoidThrowingRawExceptionTypes, AvoidUsingVolatile,

BeanMembersShouldSerialize, BooleanGetMethodName,

CallSuperInConstructor,

ClassWithOnlyPrivateConstructorsShouldBeFinal,

CommentDefaultAccessModifier, CommentRequired,

CommentSize, CompareObjectsWithEquals,

ConsecutiveLiteralAppends, ConstructorCallsOverridableMethod,

CyclomaticComplexity, DataflowAnomalyAnalysis,

DefaultPackage, DoNotUseThreads, EmptyCatchBlock,

EmptyMethodInAbstractClassShouldBeAbstract, ExcessiveImports,

ExcessivePublicCount, FieldDeclarationsShouldBeAtStartOfClass,

GodClass, ImmutableField, InefficientStringBuffering,

InsufficientStringBufferDeclaration, LawOfDemeter,

LocalVariableCouldBeFinal, LongVariable, LooseCoupling,

MethodArgumentCouldBeFinal, ModifiedCyclomaticComplexity,

NullAssignment, OnlyOneReturn,

PositionLiteralsFirstInComparisons, PreserveStackTrace,

RedundantFieldInitializer, ShortMethodName, ShortVariable,

SignatureDeclareThrowsException, StdCyclomaticComplexity,

TooManyMethods, UncommentedEmptyConstructor,

UncommentedEmptyMethodBody,

UnnecessaryFullyQualifiedName, UnnecessaryLocalBeforeReturn,

UnusedModifier, UseCollectionIsEmpty, UseConcurrentHashMap,

UseUtilityClass, UseVarargs, UselessParentheses,

VariableNamingConventions

Fig. 4. Commonly-disregarded violations in all projects.

in the single-authored are also included in the list

shown in Fig. 4, and those violations are empha-

sized in boldface. The commonly-disregarded vi-

olations shown in Fig. 4 correspond to about 30%

of all violations. In other words, about 30% of

automatically-warned violations might be worthless

for many programmers. On the other hand, we did

not find any violation having positive NIPA value in

all projects†. These results would mean that critical

violations vary from project to project.

Therefore, we can answer to RQ2 as: while

important violations tend to vary from project to

project and from person to person, about 30% of

violations would be commonly worthless across

projects for many programmers. Thus, we should

prepare a proper rule set of violations in accordance

with the domain and organization of the project.

It seems to dovetail with the previous work saying

the importance of customization (flexibility) in static

code analysis tools6,7.

3.5. Threats to Validity

Since the change pattern of a coding violation is de-

cided using the number of warned parts in a source

file, there might be a change of the violation but the

change was masked as “sticky.” In such a case, both

the increase and the decrease of the same violation

momentarily occurred at that time. However, those

changes were made by the same programmer and it

means that he/she did not paid special attention to

the violation. Hence, such a “sticky” pattern would

not have a serious impact on our results.

While we examined code changes, we are not

sure if the programmers used a static code analy-

sis tool or not during their programming activities.

Thus, our results might not be well-matched with the

programmers’ real trends of regarding/disregarding

violations. There might be latent highly-important

violations or totally-trivial violations. Nonetheless,

no appearance of a violation means that the viola-

tion would be rare, so our method is one of available

ways to observe programmers’ practices. We plan

to enhance our accuracy of evaluation by analyzing

more and more projects in the future.

Because of our tool (PMD) limitation, we ex-

plored Java projects only. Thus, there might be

language-specific trends in our results. While many

of basic coding violations and rules are common

to modern procedural/object-oriented languages, we

will perform similar analyses for other projects

whose development languages are other than Java

in the future, and prove the generality of our results.

4. Related Work

Shen et al.6 proposed to leverage feedbacks from

static code analysis tool’s users for providing rank-

ings of violations which are more suitable for the

users, and improving the true-positive rate. Since

their approach requires feedbacks from tool users,

it would be hard to collect a lot of data in the case

† Although violations presented in Fig. 3 showed positive NIPA value in a certain project, it just means that these violations are “not

commonly disregarded” ones.

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

219

of large-scale software products. On the other hand,

NIPA uses automatically-collected changes of viola-

tions instead of users’ feedbacks.

Lee et al.8 analyzed how the readability of code

is affected by coding violations. While their study is

useful in evaluating violations from the perspective

of code readability, the work missed change history

of violations over time. Kim et al.9 proposed to pri-

oritize violations using their lifetimes, and their fo-

cus is similar to our study. However, Kim et al. did

not consider the change patterns of violations over

releases. The importance of violation having the de-

creasing pattern would be significantly higher than

the one having the increasing pattern even if those

violations have the same lifetime.

5. Conclusion and Future Work

We examined coding violations based on code

changes while considering the authorship of source

file—single author or multi authors. As our criterion

of violation’s priority, we introduced the normalized

index of programmers’ attention (NIPA) which is

based on the previous work4. Through analyses of

data collected from seven OSS projects, we proved

that the difference in the authoring type has sig-

nificant impacts on evaluations of violations: The

variety of violations appearing in single-authored

files may have a big gap with that in multi-authored

files. Moreover, priorities of violations appearing in

single-authored files tend to be lower than the ones

in a multi-authored file. Violations caused by one

programmer may be resolved by another program-

mer through the evolution of product.

We also investigated commonalities of violations

across projects, and showed that about 30% of viola-

tions are commonly disregarded by many program-

mers across projects. On the other hand, we did not

find commonly-important violations across projects,

so important violations tend to vary from project to

project and from person to person.

Our evaluation method, i.e., computing NIPA

values and checking authors, can be automatically

performed on a version control system like Git. By

prioritizing violations based on the proposed method

and the results, static code analysis tools would be-

come more useful helps for more programmers.

Since the difference in programmers’ prefer-

ences may also cause the diversity of violations, we

need to focus on not only the number of developers

but also individual developers in the future. Our fu-

ture work includes: (1) a further analysis with data

of not only Java but also other language; (2) a more

detailed analysis focusing on each programmer and

his/her trend of making violations.

Acknowledgments

This work was supported by JSPS KAKENHI Grant

Number 16K00099 and DIKTI Scholarships, Direc-

torate Generale of higher Education of Indonesia.

References

1. C. Jones, Applied Software Measurement: Global
Analysis of Productivity and Quality, (McGraw-Hill,
New York, 2008).

2. P. C. Rigby and C. Bird, Convergent Contemporary
Software Peer Review Practices, in Proc. 9th Joint
Meeting European Softw. Eng. Conf. & ACM SIG-
SOFT Symp. Foundations Softw. Eng., (St. Petersburg,
Russia, 2013), pp.202–212.

3. B. Johnson, Y. Song, E. Murphy-Hill, and R. Bow-
didge, Why don’t software developers use static anal-
ysis tools to find bugs?, in Proc. 35th Int’l Conf. Softw.
Eng., (San Francisco, 2013), pp. 672–681.

4. A. E. Burhandenny, H. Aman, and M. Kawahara,
Examination of coding violations focusing on their
change patterns over releases, in Proc. 23rd Asia-
Pacific Softw. Eng. Conf., (Hamilton, New Zealand,
2016), pp. 121–128.

5. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan, Mining email social networks, in
Proc. Int’l Workshop Mining Softw. Repositories,
(Shanghai, China, 2006), pp. 137–143.

6. H. Shen, J. Fang, and J. Zhao, EFindBugs: Effective
error ranking for FindBugs, in Proc. 4th Int’l Conf.
Softw. Testing, Verification and Validation, (Berlin,
2011), pp.299–308.

7. C. Boogerd and L. Moonen, Assessing the value
of coding standards: An empirical study, in Proc.
24th Int’l Conf. Softw. Maintenance, (Beijing, China,
2008), pp. 277–286.

8. T. Lee, J. B. Lee, and H. P. In, A study of different
coding styles affecting code readability, Int’l J. Softw.
Eng. & Its App., 7(5) (2013) 413–422.

9. S. Kim and M. D. Ernst, Which warnings should I fix
first? in Proc. 6th Joint Meeting European Softw. Eng.
Conf. & ACM SIGSOFT Symp. Foundations Softw.
Eng., (Dubrovnik, Croatia, 2007), pp. 45–54.

 International Journal of Networked and Distributed Computing, Vol. 5, No. 4 (October 2017) 211–220

220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

