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1. Introduction

In recent years there has been an increased interest in defining new generators for univariate contin-
uous distributions by introducing one or more additional shape parameter(s) to the baseline model.
This induction of parameter(s) has been proved useful in exploring tail properties and also for
improving the goodness-of-fit of the proposed generator family. Such distributions have been con-
structed by adding new parameters to a baseline cumulative distribution function (cdf) to obtain a
new family of asymmetric distributions that are analytically more flexible. Some well-known gen-
erators are the beta-G by Eugene et al. (2002), gamma-G by Zografos and Balakrishanan (2009),
Kumaraswamy-G by Cordeiro and de Castro (2011), McDonald-G by Alexander et al. (2012),
the log-beta generalized half-normal by Pescim et al. (2013), the Zografos-Balakrishnan-G fam-
ily by Nadarajah et al. (2014), flexible models generated by gamma random variables by Ortega et
al.(2015) and generalized Weibull family of distributions by Cordeiro et al. (2015).

First, we introduce a new family of distributions based on the half-Cauchy (HC) distribution.
The Extended Generalized Odd Half-Cauchy-G (“EGOHC-G for short”) generator with two extra
positive parameters α and β is defined by the cdf

F(x;α,β ,ξξξ ) =
2
π

arctan
[

G(x;ξξξ )α

1−G(x;ξξξ )β

]
, (1.1)

where α and β are positive shape parameters and ξξξ is a vector of parameters for the baseline G.
Let g(x;ξξξ ) = dG(x;ξξξ )/dx be the baseline probability density function (pdf). The density func-

tion corresponding to (1.1) is given by

f (x;α,β ,ξξξ ) =
2g(x;ξξξ )G(x;ξξξ )α−1

[
α +(β −α)G(x;ξξξ )β ]

π
{

G(x;ξξξ )2α +
[
1−G(x;ξξξ )β

]2
} . (1.2)

If α = β we obtain as a special case the Generalized Odd Half-Cauchy-G (GOHC-G) fam-
ily (Cordeiro et al., 2017). Furthemore, the basic motivations for using the EGOHC-G family in
practice are the following:

• to make the kurtosis more flexible compared to the baseline model;
• to produce a skewness for symmetrical distributions;
• to construct heavy-tailed distributions that are not longer-tailed for modeling real data;
• to generate distributions with symmetric, left-skewed, right-skewed and reversed-J shaped;
• to define special models with all types of the hazard rate function (hrf);
• to provide consistently better fits than other generated models under the same baseline

distribution.

For a given probability u ∈ (0,1), we obtain the corresponding quantile of X , say Q(u), by
inverting F(x) = u in equation (1.1). Then, for each u, we have to solve numerically the nonlinear
equation given by

G(x;ξξξ )α

1−G(x;ξξξ )β = tan
(π u

2

)
. (1.3)

In practical applications, the response variable is affected by explanatory variables, regression
models can be proposed in different forms in survival analysis. Among them, the location-scale
regression model (Lawless, 2003) is distinguished and it is frequently used in clinical trials. In the
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context, some distributions have been used to analyze censored data. For example, Ortega et al.
(2014) defined a log-linear regression model for the odd Weibull distribution with censored data,
Braga et al. (2016) proposed the odd log-logistic normal distribution with applications in analy-
sis of experiments and da Cruz et al. (2016) proposed the log-odd log-logistic Weibull regression
model. Thus, using the same approach adopted in this work, a distribution obtained from a gen-
erated EGOHC-G family will be expressed in the form of models belonging to the location-scale
models.

Violation of the homogeneity of the error variances can have adverse consequences for the
efficiency of estimators. In this way, we also propose a heteroscedastic regression model on the
basis of the log-EGOHC-G distribution (parameterized in a convenient way), where both location
and dispersion parameters vary across observations through regression structures. The log-EGOHC-
G regression model can be used for modeling problems with censoring and uncensoring data. It
should be mentioned that censored data is very common in lifetime because of time limits and other
restrictions on data collection.

The paper is organized as follows. Section 2 provides some special distributions in the EGOHC
family. In Section 3, we derive explicit expressions for the ordinary and incomplete moments,
moment generating function (mgf) and mean deviations. Some inferential tools are discussed in
Section 4. The performance of the maximum likelihood estimators (MLEs) for a special model is
also investigated by a simulation study. In Section 5, we present a generalization of heteroscedastic
regression models based on the EGOHC family. In Section 6, we fit some EGOHC-G distributions
to three real data sets to prove empirically the potentiality of the new family. Finally, Section 7 ends
with some conclusions.

2. Special EGOHC-G distributions

In this section, we present four special EGOHC-G models. The cdf (1.1) and pdf (1.2) of X will be
most tractable when G(x) and g(x) have simple analytic expressions in all examples below, α and
β are positive shape parameters.

2.1. The EGOHC-W model

Taking G(x) to be the Weibull cdf with scale parameter λ > 0 and shape parameter c > 0, say
G(x) = 1− exp[−(x/λ )c], the EGOHC-W pdf follows as

f (x;α,β ,λ ,c) =
2cxc−1 e−( x

λ )
c
[
1− e−( x

λ )
c
]α−1

{
α +(β −α)

[
1− e−( x

λ )
c
]β

}
λ c π

{[
1− e−( x

λ )
c
]2α

+

{
1−

[
1− e−( x

λ )
c
]β

}2
} . (2.1)

A random variable having pdf (2.1) is denoted by X ∼ GOHC-W(α,β ,λ ,c). For c = 1, we obtain
the generalized odd half-Cauchy-exponential distribution. Plots of the pdf and hrf of the EGOHC-
W model for selected parameter values are displayed in Figure 1. We provide in Figures 2a-b a
numerical investigation to identify how the parameter values change the shapes of the pdf of X for
some parameter ranges. To identify the shapes of the pdf, the signals of the numeric derivatives
were obtained determining whether the pdf is increasing or decreasing in a range, being possible
to determine the modal, bimodal, decreasing and other shapes. Based on these plots, we can obtain
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Fig. 1. The EGOHC-W model: (a) Density functions for β = 4, λ = 1, c = 3 and some values of α . (b) Density functions
for α = 0.4, λ = 1, c = 3 and some values of β . (c) Hazard function for λ = 1 and some values of α, β and c.

bimodal shapes for the pdf of the EGOHC-W distribution for large values of β parameter. However,
large values of β parameter is necessary to obtain this characteristic when the α and c parameters
increases. Similar analyzes can be made with the other new models.
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Fig. 2. The EGOHC-W pdf shapes as functions of α and β for λ = 2 (a) c = 1 and (b) c = 2.

2.2. The EGOHC-Gu model

The cdf of the Gumbel model is given by (for x ∈R) G(x) = exp{−exp[−(x−µ)/σ ]}. The GOHC-
Gu density can be expressed as

f (x;α,β ,µ,σ) =
2exp(−z−αe−z) [α +(β −α)exp(−β e−z)]

σπ {exp(−2α e−z)+ [1− exp(−βe−z)]}
,

where z = (x−µ)/σ , µ ∈R is the location parameter and σ > 0 is the scale parameter. Plots of the
EGOHC-Gu density function for some parameter values are displayed in Figure 3.

2.3. The EGOHC-Ga model

The gamma cdf (for x > 0) with shape parameter a > 0 and scale parameter b > 0 is G(x) =
γ(a,bx)/Γ(a), where Γ(a) =

∫ ∞
0 wa−1 e−w dw is the gamma function and γ(a,x) =

∫ x
0 wa−1 e−w dw
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Fig. 3. The EGOHC-Gu density function: (a) For β = 5, µ = 3, σ = 5 and some values of α . (b) For α = 0.2, σ = 5 and
some values of β and µ .

is the incomplete gamma function. The EGOHC-Ga pdf becomes (for x > 0) is given by

f (x;α,β ,a,b) =
2ba xa−1 e−bxγ(a,bx)α−1

[
α Γ(a)β +(β −α)γ(a,bx)β ]

π Γ(a)α+β
{

γ(a,bx)2α

Γ(a)2α + [Γ(a)β−γ(a,bx)β ]2

Γ(a)2β

} . (2.2)

2.4. The EGOHC-LL model

Consider the log-logistic (LL) distribution with shape parameter a > 0 and scale parameter γ > 0,
where the pdf and cdf (for x > 0) are

g(x) =
γ
aγ xγ−1

[
1+

( x
a

)γ]−2
and G(x) = 1− 1

1+
( x

a

)γ ,

respectively. By inserting these expressions into (1.2) gives the EGOHC-LL density function

f (x;α,β ,a,γ) =
2γ xγα−1

π aγα

α +(β −α)
( x

a

)γβ[
1+

( x
a

)γ]−β

( x
a

)2γα

[
1+

( x
a

)γ]α−1 +

{[
1+

( x
a

)γ]β
−
( x

a

)2γβ}2

[
1+

( x
a

)γ]2β−α−1

. (2.3)

A random variable having pdf (2.3) is denoted by X ∼ GOHC-LL(α,β ,a,γ). Plots of the density
function (2.3) and hrf for some parameter values are displayed in Figure 4.

3. Moments, generating function and other measures

We hardly need to emphasize the necessity and importance of moments in any statistical analysis
especially in applied work. Some of the most important features and characteristics of a distribution
can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis). The useful
relation with the exponentiated class, used in the section, can be obtained directly from the authors.
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Fig. 4. The EGOHC-LL model: (a) Density function for a = 10,γ = 3, β = 4 and some values of α . (b) Density function
for a = 10,γ = 3, α = 0.4 and some values of β . (c) Hazard function for β = 4, a = 10 and some values of α and γ .

3.1. Moments

Henceforth, let Yk+1 ∼exp-G(k+1). The nth moment of X can be expressed as

µ ′
n = E(Xn) =

∞

∑
k=0

vk E(Y n
k+1). (3.1)

Explicit expressions for the moments of several exponentiated distributions are given by Nadarajah
and Kotz (2006). They can be used to produce µ ′

n. Here, we give two examples. First, we consider
the Gumbel distribution with cdf G(x) = 1−exp

{
−exp

( x−µ
σ

)}
. The moments of the exponentiated

Gumbel distribution with power parameter (k+1) can be obtained from Nadarajah and Kotz (2006).
The nth moment of the EGOHC-Gu distribution reduces to

E(Xn) =
∞

∑
k=0

vk (k+1)
n

∑
i=0

(
n
i

)
µn−i (−σ)i

(
∂

∂ p

)i
[
(k+1)−p Γ(p)

]∣∣∣∣∣
p=1

.

Second, we consider the EGOHC-standard logistic (EGOHC-SL) distribution, where G(x) =
(1+ e−x)−1. A result from Prudnikov et al. (1986, Section 2.6.13, equation 4) we obtain

E(Xn) =
∞

∑
k=0

vk

(
∂
∂ t

)n

B(t + k+1,1− t)
∣∣∣∣
t=0

,

where B(a,b) =
∫ 1

0 ta−1 (1− t)b−1dt is the beta function.
When the moments do not exist, for example, for the Cauchy, Lévy and Pareto distributions,

alternative measures for the skewness and kurtosis, based on qfs, are sometimes more appropriate.
Recently, Ramires et al. (2016) studied the skewness and kurtosis of the log-sinh Cauchy distribu-
tion using the Galton’s skewness and Morrs’s kurtosis, respectively. The measures of skewness B
and kurtosis M are given by

B =
Q(6/8)+Q(2/8)−2Q(4/8)

Q(6/8)−Q(2/8)
and M =

Q(7/8)−Q(5/8)+Q(3/8)−Q(1/8)
Q(6/8)−Q(2/8)

,

respectively.
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We illustrate these measures by selecting the EGOHC-W distributions. Figure 5 displays some
plots of the B and M measures as functions of α and β . The additional parameters α and β have
substantial effect on the skewness and kurtosis of X .

(a) (b)

α
β

B

α
β

M

Fig. 5. Effects of the parameters α and β on the measures: (a) B and (b) M for the EGOHC-W(α,β ,1,3) model.

3.2. Generating function and mean deviations

We provide two formulae for the mgf M(t) = E(etX) of X . A first formula for is obtained using the
relation with the exponentiated class as

M(t) =
∞

∑
k=0

vk Mk+1(t),

where Mk+1(t) is the mgf of Yk+1. A second formula for can also be derived using the relation with
the exponentiated class, but in terms of the present qf as

M(t) =
∞

∑
k=0

(k+1)vk ρ(t,k), (3.2)

where ρ(t,a) can be evaluated (at least numerically) by

ρ(t,a) =
∫ ∞

−∞
et x G(x)a g(x)dx =

∫ 1

0
exp{t QG(u)} uadu.

We can obtain the mgfs of several EGOHC-G distributions directly from equation (3.2). For
example, the mgf of the EGOHC-SL distribution (for t < 1) is given by

M(t) =
∞

∑
k=0

(k+1)B(t + k+1,1− t)vk.

The mean deviations about the mean (δ1 =E(|X−µ ′
1|)) and about the median (δ2 =E(|X−M|))

of X can be expressed as

δ1 = 2µ ′
1 F(µ ′

1)−2m1(µ ′
1) and δ2 = µ ′

1 −2m1(M), (3.3)

respectively, where µ ′
1 = E(X), M = Median(X) is the median given in Section 4, F(µ ′

1) is easily
evaluated from (1.1) and m1(z) =

∫ z
−∞ x f (x)dx is the first incomplete moment. To compute δ1 and
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δ2, the expression for m1(z) can be derived from the relation with the exponentiated class as

m1(z) =
∞

∑
k=0

vk Jk+1(z), where Jk+1(z) =
∫ z

−∞
xhk+1(x)dx. (3.4)

Equation (3.4) is the basic quantity to determine the mean deviations of the exp-G distributions.
Hence, the mean deviations in (3.3) depend only on the exp-G mean deviations. As an alternative,
m1(z) can be derived by setting u = G(x) in (3.4)

m1(z) =
∞

∑
k=0

(k+1)vk Tk+1(z), where Tk+1(z) =
∫ G(z)

0
QG(u)uk du. (3.5)

In a similar way, the mean deviations of any EGOHC-G distribution can be determined from
equation (3.5). For example, the mean deviations of the EGOHC-SL distribution are obtained by
using the generalized binomial expansion from the function

Tk+1(z) =
1

Γ(z)

∞

∑
m=0

(−1)m Γ(k+m+1) [1− exp(−mz)]
(m+1)!

.

4. Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the EGOHC-G param-
eters from complete samples only. Let x1, . . . ,xn be a random sample of size n from the EGOHC-
G(α,β ,ξξξ⊤

)⊤ distribution. The log-likelihood function for the vector of parameters θ =(α,β ,ξξξ⊤
)⊤

can be expressed as

l(θ) = n log(2)+
n

∑
i=1

logg(xi;ξξξ )+(α −1)
n

∑
i=1

logG(xi;ξξξ )+
n

∑
i=1

log
[
α +(β −α)G(xi;ξξξ )β

]
−n log(π)−

n

∑
i=1

log
{

G(xi;ξξξ )2α +
[
1−G(xi;ξξξ )β

]2
}
,

where g(xi;ξξξ ) and G(xi;ξξξ ) are defined in Section 2.
The MLE θ̂ of θ can be determined by maximizing the log-likelihood presented in last equa-

tion. Iterative techniques such as the Newton-Raphson type-algorithms are commonly adopted to
estimate θ . We employ the numerical NLMixed in SAS procedure.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain
likelihood ratio (LR) statistics for testing some special models of the proposed family. Tests of the
hypotheses of the type H0 : ψ = ψ0 versus H : ψ ̸= ψ0, where ψ is a subset of parameters of θ ,
can be performed through LR statistics in the usual way.

4.1. Simulation study: EGOHC-W model

An easy way to validate the approximate normal distribution for θ̂ is by simulating a specific distri-
bution of the new family of distribution. Here, the EGOHC-W model is selected as an example. We
use equation (1.3) to simulate the EGOHC-W(α = 0.4,5,β = 0.8,5,c = 3,λ = 5) model by taking
u as a uniform random variable in (0,1) for n = 50, 150 and 300. For each sample size, we evaluate
the MLEs of the parameters. Then, we repeat this process 1,000 times and compute the averages of
the estimates (AEs), biases and mean squared errors (MSEs). The simulation results are reported in
Table 1.
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Table 1. The AEs, biases and MSEs based on 1,000 simulations of the EGOHC-W distribution when α = 0.4,2, β = 0.8,5
c=3 and λ=5, and n=50, 150 and 300.

α = 0.4 and β = 5 α = 2.0 and β = 5
n Parameter AE Bias MSE Parameter AE Bias MSE

50 α 0.4113 0.0113 0.0173 α 2.1502 0.1502 0.6403
β 5.2399 0.2399 2.0056 β 5.2706 0.2706 2.6097
c 3.1544 0.1544 0.4415 c 3.1459 0.1459 0.4631
λ 5.0115 0.0115 0.1982 λ 4.9999 -1e-04 0.1655

150 α 0.403 0.003 0.0048 α 2.0507 0.0507 0.2267
β 5.1892 0.1892 1.4248 β 5.3081 0.3081 2.3582
c 3.0509 0.0509 0.1214 c 3.066 0.0660 0.1486
λ 5.0038 0.0038 0.0784 λ 4.9936 -0.0064 0.0709

300 α 0.4027 0.0027 0.0022 α 2.0439 0.0439 0.1167
β 5.1102 0.1102 0.8070 β 5.2017 0.2017 0.9785
c 3.0287 0.0287 0.0555 c 3.0209 0.0209 0.0697
λ 5.0006 6e-04 0.0402 λ 4.9859 -0.0141 0.0418

α = 0.4 and β = 0.8 α = 2.0 and β = 0.8
n Parameter AE Bias MSE Parameter AE Bias MSE

50 α 0.4076 0.0076 0.0129 α 2.0994 0.0994 0.5502
β 0.9496 0.1496 0.5377 β 1.1029 0.3029 0.4494
c 3.1881 0.1881 0.2841 c 3.2073 0.2073 0.5705
λ 5.0217 0.0217 0.2672 λ 4.8846 -0.1154 0.101

150 α 0.3943 -0.0057 0.0043 α 2.0915 0.0915 0.2273
β 0.8203 0.0203 0.1104 β 0.9401 0.1401 0.1516
c 3.121 0.121 0.1199 c 3.0355 0.0355 0.1854
λ 5.0538 0.0538 0.1301 λ 4.9228 -0.0772 0.0496

300 α 0.392 -0.008 0.0021 α 2.0593 0.0593 0.122
β 0.7888 -0.0112 0.044 β 0.9243 0.1243 0.0846
c 3.0925 0.0925 0.0587 c 3.0124 0.0124 0.0911
λ 5.0571 0.0571 0.0719 λ 4.9185 -0.0815 0.0387

The figures in Table 1 indicate that the MSEs and the biases of α̂ , β̂ , ĉ and λ̂ decay toward zero
when the sample size increases for all settings of α and β , as expected under first-under asymptotic
theory. When n increases, the AEs of the parameters tend to be closer to the true parameter values.
This fact supports that the asymptotic normal distribution provides an adequate approximation to
the finite sample distribution of the MLEs. Figure 6 displays the true densities at selected parameter
values and the density functions evaluated at the average values of the MLEs given in Table 1 for
n = 50. These plots are in agreement with the first-order asymptotic theory for the MLEs and they
show a the fast convergence even for small sample sizes.

5. The heteroscedastic regression model

The last decade is full of works on generalized classes of regression models, which are always pre-
cious for applied statisticians. In many practical applications, the lifetimes are affected by explana-
tory variables such as the cholesterol level, blood pressure, weight and many others. Parametric
models to estimate univariate survival functions and for censored data regression problems are
widely used. A regression model that provides a good fit to lifetime data tends to yield more pre-
cise estimates of the quantities of interest. In the other hand, a standard assumption in regression
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Fig. 6. Density functions of the EGOHC-W distribution at the true parameter values and at the AEs for n = 50, c = 3,
λ = 5 and: (a) α=0.4 and β = 5; (b) α=2 and β = 5; (c) α=0.4 and β = 0.8; (d) α=2 and β = 0.8.

analysis is the homogeneity of the error variances. Violation of this assumption can have adverse
consequences for the efficiency of estimators, and then it is important to check for heteroscedasticity
whenever it is considered a possibility.

Let X be a random variable having the pdf (1.2) with x > 0. A class of heteroscedastic regression
models is characterized by the fact that the random variable Y = log(X) has a distribution wherein
the location µ(v) and scale σ(w) parameters depend only on the explanatory variable vectors v and
w, which may be identical or not. The main idea of heteroscedastic models is to capture the effect of
explanatory variables in the mean and variability of the response variable. If these explanatory vari-
ables affect only the response variable, the class of location regression models appear as a special
case where only the location µ(v) parameter is modeled by explanatory variables.

The heteroscedastic regression model is defined by

Y = µ(v)+σ(w)Z,

where Z has the distribution that does not depend on v and w. The random variable Y (for y ∈ ℜ)
has density function given by

f (y;α,β ,µ,σ) =
2g

(
y−µ(v)
σ(w)

)
Gα−1

(
y−µ(v)
σ(w)

) [
α +(β −α)Gβ

(
y−µ(v)
σ(w)

)]
σ π

{
G2α

(
y−µ(v)
σ(w)

)
+
[
1−Gβ

(
y−µ(v)
σ(w)

)]2
} , (5.1)

where the functions G(·) and g(·) are defined in Section 2.
We refer to equation (5.1) as the Log-extended Generalized Odd Half-Cauchy-G (LEGOHC-G)

family, say Y ∼ LGOHC-G(α,β ,µ,σ). The new family in the form of location and scale is able to
define new regression models, which can be used in survival analysis and reliability.

For illustrative purposes, let X be a random variable having the EGOHC-W density function
defined in Section 2.1. The random variable Y = log(X), re-parameterized in terms of µ = log(λ )
and σ = 1/c, has density function given by

f (y;α,β ,µ,σ) =
2e

y−µ
σ −e(

y−µ
σ )

(
1− e−e(

y−µ
σ ))α−1 [

α +(β −α)
(

1− e−e(
y−µ

σ ))β]
σ π

{(
1− e−e(

y−µ
σ )

)2α
+
[
1−

(
1− e−e(

y−µ
σ )

)β]2
} , (5.2)
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where α > 0 and β > 0 are shape parameters, µ ∈ ℜ is the location parameter and σ > 0 is the
scale parameter. We refer to equation (5.2) as the log-extended generalized odd half-Cauchy-Weibull
(LEGOHC-W) distribution, say Y ∼ LEGOHC-W(α,β ,µ,σ). If X ∼ EGOHC-W(α,β ,λ ,c), then
Y = log(X)∼ LEGOHC-W(α,β ,µ,σ).

The survival function of Y is given by

S(y) = 1− 2
π

arctan


(

1− e−e
y−µ

σ
)α

1−
(

1− e−e
y−µ

σ
)β

 . (5.3)

Now, we define the standardized random variable Z = (Y −µ)/σ having the density function

f (z;α,β ) =
2ez−ez

(
1− e−ez)α−1 [

α +(β −α)
(

1− e−ez)β]
π
{(

1− e−ez)2α
+
[
1−

(
1− e−ez)β]2

} , (5.4)

Next, we propose a linear heteroscedastic regression model linking the response variable yi and
the explanatory variable vectors vT

i = (vi1, . . . ,vip1) and wT
i = (wi1, . . . ,wip2) as follows

yi = µi +σi zi, i = 1, . . . ,n, (5.5)

where the random error zi has density function (5.4), µi = vT
i τ1, σi = exp(wT

i τ2) and τ1 =

(τ11, . . . ,τ1p1)
T , τ2 = (τ21, . . . ,τ2p2)

T , α > 0 and β > 0 are unknown parameters. The parameters µi

and σi are the location and scale parameters of yi, respectively. The location µ = (µ1, . . . ,µn)
T

and scale σ = (σ1, . . . ,σn)
T parameter vectors are represented by linear models µ = Vτ1 and

σ = Wτ2, respectively, where V = (v1, . . . ,vn)
T and W = (w1, . . . ,wn)

T are known model matrices.
The LEGOHC-W model (5.5) opens new possibilities for fitting many different types of data.

Consider a sample (y1,v1,w1), . . . ,(yn,vn,wn) of n independent observations, where each ran-
dom response is defined by yi = min{log(xi), log(ci)}. We assume non-informative censoring such
that the observed lifetimes and censoring times are independent. Let F and C be the sets of indi-
viduals for which yi is the log-lifetime or log-censoring, respectively. Standard likelihood esti-
mation techniques can be applied here. The log-likelihood function for the vector of parameters
θ = (α,β ,τT

1 ,τT
2 )

T from model (5.5) has the form

l(θ) = r[log(2)− log(π)]+ ∑
i∈F

(zi −ui)+(α −1)∑
i∈F

log[1− exp(−ui)]− ∑
i∈F

(wT
i τ2)+

∑
i∈F

log{α +(β −α)[1− exp(−ui)]
β}+∑

i∈C
log

{
1− 2

π
arctan

[
[1− exp(−ui)]

α

1− [1− exp(−ui)]β

]}
−∑

i∈F
log

{
[1− exp(−ui)]

2α +
[
1−{1− exp(−ui)}β

]2
}
,

where ui = exp(zi), zi = (yi − µi)/σi, µi = vT
i τ1, σi = exp(wT

i τ2) and r is the number of uncen-
sored observations (failures). The maximum likelihood estimate (MLE) θ̂ of the vector of unknown
parameters can be determined by maximizing the log-likelihood (5.6). We use the NLMixed proce-
dure in SAS to calculate the estimate θ̂ . Initial values for τ1 are taken from the fit of the log-Weibull
regression model.
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The fit of the LEGOHC-W model gives the estimated survival function for yi

S(yi; α̂, β̂ , τ̂T
1 , τ̂

T
2 ) = log

{
1− 2

π
arctan

[
[1− exp(−ûi)]

α̂

1− [1− exp(−ûi)]β̂

]}
,

where

ûi = exp(ẑi), ẑi =
yi −vT

i τ̂1

exp(wT
i τ̂2)

.

Note that in the healing models already there is heterogeneity in the data because we always
have two subpopulations, one formed by the failure data and another for censored data. However,
we can test the assumption of homogeneity of variance, for the LEGOHC-W regression model
based on the LR statistic. Following (5.5) and (5.6), we generalized the scale parameter σ by σi,
where σi = exp(wT

i τ2) and wi is a vector of explanatory variable values. We assume that there
exists a unique value σ0, then σi = σ0 and Yi′s have constant variance. Hence, the LR test for
the homogeneity of scalar parameter becomes the test of hypothesis expressed by H0 : σi = σ0

against Ha : σi ̸= σ0, which is provided by Λ = 2[ℓ(α̂, β̂ , τ̂1, τ̂2)− ℓ(α̃, β̃ , τ̃1,σ0)]. Here α̃ , β̃ and
τ̃1 denotes the restricted MLEs of α , β and τ1, respectively, obtained from the maximization of
(5.6) under H0 : σi = σ0. We can also use the LR statistic for comparing some special models with
the LEGOHC-W model.

5.1. Simulation study: heteroscedastic LEGOHC-W regression model

Here, we evaluate the performance of the MLEs of the parameters in the heteroscedastic LEGOHC-
W regression model given by (5.5) by means of a simulation study, by taking different sample sizes
n = 50,150 and 300. We consider model (5.5) where the model parameters are: α = 4, β = 5, µ =

−14− 5x1 and σ = 3+ 0.5x1, where the variable x1 is generated from a binomial (n,0.5) distri-
bution. This configuration considers that the response variable Y is affected by the effects of two
groups x1i = 0,1, and each group has different values of the location “µ” and scale “σ” parameters.
The values of the response variable Y , denoted by y1, . . . ,yn, are generated from the LEGOHC-W
distribution using the quantile function (1.3) and, for each configuration of n, all results are obtained
from 1,000 Monte Carlo replications. We present the results, where the location and scale parame-
ters are defined by µi = τ10+τ11 x1i, and σi = exp(τ20+τ21 x1i), respectively. The results of the
Monte Carlo study in Table 2 indicate that the MSEs of the MLEs of the parameters decay toward
zero when the sample size increases, as expected under first-order asymptotic theory.

6. Applications

In this section, we provide three applications to real data to prove empirically the flexibility of the
EGOHC-G family. For the first two examples, the computations are performed using the good-
ness.fit subroutine in the AdequacyModel script of the R package. In the third application for cen-
sored data, the computations are done using the NLMixed subroutine of the SAS software.

6.1. Data: Actuarial sciences

It is important for the Mexican Institute of Social Security (MISS) to study the distributional
behaviour of the mortality of retired people on disability because it enables the calculation of long

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 401–418
___________________________________________________________________________________________________________

412



Table 2. The AEs, biases and MSEs based on 1,000 simulations for the heteroscedastic LEGOHC-W regression model
α = 4, β = 5, τ10=-14, τ11=-5, τ20=3 and τ21=0.5, n=50, 150 and 300.

n = 50 n = 150 n = 300
Parameter AE Bias MSE AE Bias MSE AE Bias MSE

α 4.308 0.308 1.381 4.292 0.292 0.566 4.014 0.014 0.490
β 8.540 3.540 30.327 7.467 2.467 15.689 7.068 2.068 12.197

τ10 -13.820 0.180 14.671 -14.200 -0.200 6.187 -14.067 -0.067 5.246
τ11 -4.666 0.334 20.449 -5.130 -0.130 10.089 -5.084 -0.084 6.431
τ20 2.847 -0.153 0.070 2.913 -0.087 0.020 2.925 -0.075 0.012
τ21 0.516 0.016 0.043 0.499 -0.001 0.014 0.495 -0.005 0.007

and short term financial estimation, such as the assessment of the reserve required to pay the “min-
imum pensions”. The data set refers to 280 lifetimes (in years) of retired women with temporary
disabilities, which are incorporated in the Mexican insurance public system and who died dur-
ing 2004. Recently, Balakrishnan et al. (2009) reported and analysed these data using the mixture
inverse Gaussian (MIG) distribution. Cordeiro et al. (2014c) fitted the Kummer beta generalized
gamma (KBG-GG) distribution to the current data and conclude that it provides a better fit than the
beta generalized gamma (BGG) (Cordeiro et al., 2013), exponentiated generalized gamma (EGG)
(Cordeiro et al., 2011), generalized gamma (GG) and Kumaraswamy generalized gamma (Kw-
GG)(Pascoa et al., 2011) distributions.

Next, we compare the KBG-GG and some of its sub-models with the EGOHC-Ga model to fit
these data. We also present the fit of the special GOCH-Ga model when α = β . Table 3 provides
the MLEs (and the corresponding standard errors in parentheses) of the model parameters and the
values of the statistics AIC and BIC for the fitted models.

Table 3. MLEs of the model parameters for the actuarial data, the corresponding SEs (given in parentheses) and the AIC
and BIC statistics.

Model Estimates AIC BIC
EGOHC-Ga(α ,β ,a,b) 1.324 10.655 21.496 0.540 2095.7 2110.2

(0.777) (7.817) (7.183) (0.138)
GOHC-Ga(α ,a,b) 0.268 42.613 0.703 2118.9 2129.8

(0.160) (21.380) (0.302)
KBG-GG(α ,β ,k,a,b,c) 7.449 1.856 35.679 0.162 0.431 -0.948 2104.0 2125.8

(0.002) (0.002) (0.002) (0.016) (0.028) (0.263)
BGG(α ,β ,k,a,b) 32.724 1.970 3.998 0.987 3.836 2115.1 2133.2

(16.593) (0.874) (10.644) (0.350) (3.133)
EGG(α ,β ,k,a) 33.838 2.818 3.100 0.905 2113.3 2127.9

(30.242) (1.503) (10.773) (0.969)
Kw-GG(α,τ,k,λ ,ϕ ) 33.534 1.429 2.652 2.237 9.210 2114.8 2133.0

(10.897) (0.938) (0.685) (0.768) (7.141)

The values of the AIC and BIC statistics reveal that the EGOHC-Ga model provides the best
fits compared to other nine fitted models. Additional information can be obtained more visually
from the fitted pdf, cdf and the histogram of the data in Figure 7. In fact, for the current data, the
EGOHC-Ga model provides a better fit then the others fitted models.
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Fig. 7. For actuarial data: (a) Estimated EGOHC-Ga density. (b) Estimated EGOHC-Ga cdf and the empirical cdf.

The empirical scaled TTT transform can be used to identify the shape of the hazard function.
The TTT plot for the actuarial data given in Figure 8(a) shows an hrf. On the other hand, Figure
8(b) shows that the estimated hrf of the EGOHC-Ga model is also increasing, indicating that this
distribution is appropriate to fit these data.
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Fig. 8. For the actuarial data: (a) TTT plot; (b) Estimated hrf of the EGOHC-Ga distribution.

6.2. Data: Ozone level

The data correspond to daily ozone level measurements (in ppb = ppm×1000) that were collected
in New York during May-September, 1973. These data were taken from Nadarajah (2008) and have
been provided by the New York State Department of Conservation.

Similar to the previous application, we compare the KBG-GG model and some of its sub-models
with the EGOHC-LL model fitted to the current data. The fit of the special case GOCH-LL model,
when α = β , is also reported. Table 5 provides the MLEs (and the corresponding standard errors
in parentheses) of the model parameters and the values of the statistics AIC and BIC for the fitted
models.

The fitted pdf, cdf given in Figure 9 as well as the TTT plot and estimated hrf presented in
Firure 10 indicates that the EGOHC-LL model provides a good t for these data.
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Table 4. MLEs of the model parameters for the ozone data, the corresponding SEs (given in parentheses) and the AIC
and BIC statistics.

Model Estimates AIC BIC
EGOHC-LL(α ,β ,a,b) 0.830 6.572 22.995 2.647 1062.5 1073.4

(0.278) (3.598) (5.259) (0.472)
GOHC-LL(α ,λ ,c) 0.554 51.496 2.126 1066.6 1074.7

(0.342) (22.286) (0.657)
KBG-GG(α ,β ,k,a,b,c) 3.040 1.076 20.242 0.080 0.159 -0.215 1067.1 1083.6

(0.027) (0.051) (0.010) (0.012) (0.059) (0.413)
BGG(α ,β ,k,a,b) 4.077 1.137 17.593 0.092 0.174 1087.7 1101.5

(0.183) (0.082) (0.266) (0.010) (0.089)
EGG(α ,β ,k,a) 3.703 0.637 4.959 0.728 1090.2 1101.2

(2.156) (0.096) (1.528) (0.371)
Kw-GG(α,τ,k,λ ,ϕ ) 0.600 0.550 11.200 0.405 0.749 1091.9 1105.7

(0.161) (0.022) (1.665) (0.110) (0.463)
GG(α,β ,k) 3.129 0.592 4.344 1088.3 1096.6

(0.567) (0.036) (0.292)
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Fig. 9. For ozone data: (a) Estimated EGOHC-LL density. (b) Estimated EGOHC-LL cdf and the empirical cdf.
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Fig. 10. For the ozone data: (a) TTT plot; (b) Estimated hazard rate function of the EGOHC-LL model.

6.3. Data: Voltage data

Lawless (2003) reports an experiment in which specimens of solid epoxy electrical-insulation were
studied in an accelerated voltage life test. The sample size is n = 60, the percentage of censored
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observations was 10% and are considered three levels of voltage 52.5, 55.0 and 57.5. The variables
involved in the study are: xi - failure times for epoxy insulation specimens (in min); ci - censoring
indicator (0 =censoring, 1 =lifetime observed); vi1 - voltage (kV). Before to propose the regres-
sion model, we present in Figure 11 the box plot for each levels of voltage considering only the
uncensored observations (c = 1), to check the assumption of the homogeneity of variance. We can
conclude that the variability for each voltage level vi1 is different, and then a heteroscedastic model
is required.

52.5 55 57.5

5
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8

levels of voltage

lo
g(

lif
et
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Fig. 11. For the voltage data the box plot for each levels of voltage.

Next, we present results by fitting the heteroscedastic and the location models given by

yi = τ10 + τ11vi1 + exp(τ20 + τ21vi1)zi and yi = τ10 + τ11vi1 +σzi,

respectively, where the random variable Yi follows the LEGOHC-W distribution given in (5.2). For
comparison, we also consider that Yi follows the log-Weibull (LW) distribution. The MLEs of the
model parameters, the asymptotic standard errors of these estimates and the values of the AIC and
BIC measures to compare the LEGOHC-W and LW heteroscedastic and location regression models
are listed in Table 5.

Table 5. MLEs of the parameters to the voltage data for the LEGOHC-W and L-W heteroscedastic and location regression
models, the corresponding SEs (given in parentheses), p-values in [·] and the statistics AIC and BIC.

Model α β τ10 τ11 τ20 τ21 AIC BIC

Heteroscedastic 104557 90428 -126.880 1.934 6.782 -0.080 161.3 173.9
LEGOHC-W (0.001) (0.001) (0.015) (0.049) (0.469) (0.010)

[<0.0001] [<0.0001] [<0.0001] [<0.0001]
Heteroscedastic - - 20.699 -0.250 6.147 -0.115 171.4 179.8

LW - - (3.114) (0.055) (3.171) (0.057)
[<0.0001] [<0.0001] [0.0573] [0.0496]

α β τ10 τ11 σ AIC BIC
Location 936670 1534457 -14.702 -0.184 11.742 165.6 176.1

LEGOHC-W (0.001) (0.001) (4.253) (0.057) (1.185)
[0.001] [0.002]

Location - - 22.000 -0.274 0.845 173.4 179.7
L-W - - (3.046) (0.055) (0.090)

[<0.0001] [<0.0001]
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Based on the figures in Table 5, we conclude that the fitted LEGOHC-W heteroscedastic regres-
sion model has the lower AIC and BIC values than the location regression model. We also conduct
the formal tests to verify the homogeneity assumption, based on the LR statistic described in Sec-
tion 5. Based in the LR statistic, we reject the null hypothesis H0 : τ21 = 0, at 5% of significance
level, in favor of the LEGOHC-W heteroscedastic regression model. The value of the LR statistic is
w = 6.3 with the p-value 0.012.

Finally, Figure 12 provides the plots of the empirical and estimated survival function for the het-
eroscedastic and location regression models. These plots indicate that the heteroscedastic regression
model provides a good fit to these data.
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Fig. 12. Estimated LEGOHC-W survival function for the heteroscedastic and location regression model and empirical
survival for the voltage data considering the voltage levels: (a) vi1 = 52.5; (b) vi1 = 55.0; (c) vi1 = 57.5.

7. Conclusions

We propose a new family of extended generalized odd Half-Cauchy-G (EGOHC-G) distributions
which can include as special cases all classical continuous distributions. For any parent continu-
ous distribution G, we can define the corresponding EGOHC-G distribution with two extra pos-
itive parameters. So, the new family extends several common distributions such as the gamma,
Weibull, Gumbel and log-logistic distributions. The mathematical properties of the new family such
as moments and generating functions are obtained for any EGOHC-G distribution. After, we intro-
duce the called log-extended generalized odd Half-Cauchy-G (LEGOHC-G) distribution. Based
on this distribution, we propose a very suitable heteroscedastic LEGOHC-G regression model for
modeling lifetime data, which allows us to jointly model the location and dispersion parameters.
The new class of regression models can serve as a good alternative for lifetime data analysis and
it is much more flexible than the usual heteroscedastic regression model in analyzing lifetime data
in many practical situations. The potentiality of the proposed family is illustrated by a simulations
study and also using three real data sets. We show that some models in the new family can produce
better fits than those corresponding generated models from the log-logistic, Weibull, gamma and
GOHC families using the same baseline distribution.

Acknowledgment

We are very grateful to a referee and an associate editor for helpful comments that considerably
improved the paper. We gratefully acknowledge financial support from CAPES and CNPq.

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 401–418
___________________________________________________________________________________________________________

417



References
[1] Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia. J.M. (2012). Generalized beta–generated

distributions, Computational Statistics and Data Analysis, 56, 1880-1897.
[2] Balakrishnan, N., Leiva, V., Sanhueza, A. and Cabrera, E. (2009). Mixture inverse Gaussian distribu-

tions and its transformations, moments and applications. Statistics, 43, 91-104.
[3] Braga, A.S., Cordeiro, G.M., Ortega, E.M.M. and da Cruz, J.N. (2016). The odd log-logistic normal dis-

tribution: Theory and applications in analysis of experiments. Journal of Statistical Theory and Prac-
tice, 10, 311-335.

[4] Cordeiro, G.M., Alizadeh, M., Ramires, T.G. and Ortega, E.M.M. (2017). The Generalized Odd Half-
Cauchy Family of Distributions: Properties and Applications. Communications in Statistics-Theory and
Methods, 46, 5685-5705.

[5] Cordeiro, G.M. and de Castro, M. (2011). A new family of generalized distributions. Journal of Statis-
tical Computation and Simulation, 81, 883-898.

[6] Cordeiro, G.M., Ortega, E.M.M. and Silva, G.O. (2011). The exponentiated generalized gamma distri-
bution with application to lifetime data. Journal of statistical computation and simulation, 81, 827-842.

[7] Cordeiro, G.M., Castellares, F., Montenegro, L.C. and de Castro, M. (2013). The beta generalized
gamma distribution. Statistics, 47, 888-900.

[8] Cordeiro, G.M., Pescim, R.R., Demétrio, C.G.B and Ortega, E.M.M. (2014c). The Kummer beta gen-
eralized gamma distribution. Journal of Data Science, 12, 661-698.

[9] Cordeiro, G.M., Ortega, E.M.M. and Ramires, T.G. (2015). A new generalized Weibull family of dis-
tribuitons: mathematical properties and applications. Journal of Statistical Distributions and Applica-
tions, 2, 2-25.

[10] da Cruz, J.N., Ortega, E.M.M. and Cordeiro, G.M. (2016). The log-odd log-logistic Weibull regres-
sion model: modelling, estimation, influence diagnostics and residual analysis. Journal of Statistical
Computation and Simulation, 86, 1516-1538.

[11] Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications, Communica-
tion in Statististics– Theory Methods, 31, 497–512.

[12] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. Wiley: New York.
[13] Nadarajah, S. and Kotz, S. (2006). The exponentiated type distributions. Acta Applicandae Mathemati-

cae, 92, 97-111.
[14] Nadarajah, S. (2008). A truncated inverted beta distribution with application to air pollution data.

Stochastic Environmental Research and Risk Assessment, 22, 285-289.
[15] Nadarajah, S., Cordeiro, G.M. and Ortega, E.M.M. (2014). The Zografos-Balakrishnan-G family of

distributions: Mathematical properties and applications. Communications in Statistics - Theory and
Methods, 44, 186-215.

[16] Ortega, E.M.M., Cordeiro, G.M., Hashimoto, E.M. and Cooray, K. (2014). A log-linear regression
model for the odd Weibull distribution with censored data. Journal of Applied Statistics, 41, 1859-1880.

[17] Ortega, E.M.M., Lemonte, A.J., Silva, G.O. and Cordeiro, GM. (2015). New flexible models generated
by gamma random variables for lifetime modeling. Journal of Applied Statistics, 42, 2159-2179.

[18] Pascoa, M.A., Ortega, E.M.M. and Cordeiro, G.M. (2011). The Kumaraswamy generalized gamma
distribution with application in survival analysis. tatistical methodology, 8, 411-433.

[19] Pescim, R.R., Ortega, E.M.M., Cordeiro, G.M., Demetrio, C.G.B. and Hamedani, G.G. (2013). The
log-beta generalized half-normal regression model. Journal of Statistical Theory and Applications, 12,
330-347.

[20] Prudnikov, A.P., Brychkov, Y.A. and Marichev, O.I. (1986). Integrals and Series, volumes 1, 2 and 3.
Gordon and Breach Science Publishers, Amsterdam.

[21] Ramires, G.R., Ortega, E.M.M., Cordeiro, G.M. and Hens, N. (2016). A bimodal flexible distribution
for lifetime data. Journal of Statistical Computation and Simulation, 86, 2450-2470.

[22] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated dis-
tributions and associated inference. Statistical Methodology, 6, 344-362.

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 401–418
___________________________________________________________________________________________________________

418


