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Abstract 

In a number of situations, for example in biology, psychology and neurosciences, researchers are interested in the 
ratio of two measured quantities. In this paper, we give an overview of different methods to constructing confidence 
limits for the ratios. Then by using the limiting theorems, a pivotal quantity for the ratio of population means will 
be presented. The results will be applied to construct confidence intervals and perform test of hypothesis. Finally, to 
investigate the ability of the proposed method, a modest simulation study is provided. 
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1. Introduction 

In a number of situations, it is of interest to make inference about the ratio of means in two independent 
populations. For example, in biology, psychology and neurosciences, researchers are interested in the ratio of 
two measured quantities [See Refs. 1–4 for more details]. This parameter is more applicable than the 
difference of means in some applications. The advantage of using ratio instead of difference lies in the fact 
that the difference of two small means is also small and has no meaningful description. Fieller's theorem is the 
classic solution to constructing confidence limits for the ratios [See Refs. 5–7 for more details]. Most studies 
in psychology and the cognitive neurosciences require very specific assumptions about the distribution of 
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numerator and denominator of the ratio [See Refs. 8–9 for more details]. If these assumptions are not 
satisfied, the confidence limits are not reliable. Other studies have applied appropriate methods such as 
Fieller, Taylor and special bootstrap methods which we will discussed later. 
 This paper organized as follows: An overview of alternatives to constructing confidence limits for the 
ratios will be studied in Section 2.  In Section 3, by using the limiting theorems, a pivotal quantity for the ratio 
of population means will be presented. It will be applied to construct confidence intervals and to perform test 
of hypothesis. Finally, to investigate the ability of the proposed method, a simulation study is provided in 
Section 4. 

2. Preliminaries and Different Approaches 

Let 𝑋 and 𝑌 be two independent random variables with means 𝜇1 and 𝜇2 and unknown variance 𝜎2. Assume 
𝑋1, … , 𝑋𝑛1 and 𝑌1, … , 𝑌𝑛2 are two independent samples from 𝑋 and 𝑌, respectively. We are interested to make 
inference about the parameter 𝜇 = 𝜇1

𝜇2
 (𝜇2 ≠ 0 ). Tamhane and Logan [10] considered tests of the null-

hypothesis 𝐻0: 𝜇 = 𝜇0, where 𝜇0 is an hypothesized value of  𝜇. 
 Fieller-type (1-𝛼) interval [See Refs. 7, 11 for more details] is presented by 

𝐵
−2𝐴

±
�(𝐵 2⁄ )2 − 𝐴𝐴

𝐴
,                                                                        (2.1) 

where 

𝐴 = (𝑆𝑃2𝐶2 𝑛1⁄ ) − 𝑋�2, 𝐵 = 2𝑋�𝑌,�  𝐶 = (𝑆𝑃2𝑐2 𝑛2⁄ ) − 𝑌�2, 𝑐 = 𝑡1−𝛼 2⁄ (𝑑𝑑), 𝑆𝑃2  is sample pooled variance and 

𝑑𝑑 = 𝑆𝑃
2 𝑛2⁄ +𝜇2𝑆𝑃

2 𝑛1⁄
𝑆𝑃
2 (𝑛22(𝑛2−1))⁄ +𝜇4𝑆𝑃

2/(𝑛12(𝑛1−1))
. 

As can be seen, the confidence limits obtained from the Fieller-type interval depends on the degrees of 
freedom (𝑑𝑑) which depends on the unknown parameter 𝜇. In the test of hypothesis, the degrees of freedom is 
computed under the fixed value 𝜇 = 𝜇0. For confidence interval construction we can plug-in the estimated 

ratio parameter 𝜇̂ = 𝑋�
𝑌�
 to compute the degrees of freedom [See Ref. 12 for more details]. If the denominator 

(𝑌�) is significantly different from zero at a significance level of 𝛼, then we get bounded confidence intervals 
(CIs). But if the denominator is close to zero, the confidence interval (CI) is unbounded.  

2.1. Alternative approaches 

In this subsection we give an overview of alternatives to Fieller's method which are applied in the statistical 
literature and other studies.  

2.1.1. Taylor method 

The Taylor method measures a linear approximation for the sample estimates. The approximate confidence 
limits for the Taylor method are 

𝜇̂ ± 𝑡1−𝛼 2⁄ (𝑑𝑑)|𝜇̂|�𝑆𝑃2 �
1

𝑛1𝑋�2
+

1
𝑛2𝑌�2

�.                                                    (2.2) 
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Although the Taylor approximation has good result, but, like Fieller's method the approximation fails, when 
the denominator is not significantly different from zero. But, if the denominator has small coefficients of 
variation (CV), the Taylor method provides a serious alternative to the Fieller's method [See Refs. 11, 13–14 
for more details]. 

2.1.2. Bootstrap methods 

The bootstrap method is a general method which allows constructing confidence limits in an easy and 
consistent way, even for very complicated statistic [See Ref. 15 for more details]. It uses the measured 
samples as a basis for resampling with the aim of creating an approximation to the population distribution. In 
order to determine confidence limits, we draw a large number of samples (with replacement and every sample 

has the same size as the original sample) with bootstrap methods. Then we calculate the ratio 𝑋
�
𝑌�
 for each 

sample. The empirical distribution of these resampled ratios is used for determining the CIs. In the standard 
bootstrap method, the CIs are the 𝛼/2  and (1- 𝛼/2) percentiles of the empirical distribution. Bootstrap 
methods can provide an alternative to methods, especially in cases where (𝑋, 𝑌) is not normally distributed 
[See Refs. 8–9, 16, 11 for more details]. However, standard bootstrap methods face two problems when 
dealing with ratios [See Refs. 17–18 for more details]: (a) Bootstrap confidence limits can be erroneous if the 
variance of the statistic does not exist as in the case of ratios. (b) Bootstrap confidence limits can be arbitrary 
large deviations from the intended confidence level for ratios. Hwang (1995) solved these problems by 
applying a special bootstrap method [See Ref. 19 for more details]. He performed the bootstrap on the  

𝑇0 =
𝑋� − 𝜇𝑌�

�𝑆𝑃2 �
1
𝑛2

+ 𝜇2 1
𝑛1
�

.                                                                   (2.3) 

The method first uses the bootstrap samples to determine the (1- 𝛼) quantiles of  𝑇0 and then proceeds as the 
Fieller's method does. Therefore, the Hwang bootstrap is more general and better than the standard bootstrap 
method. 

3. Large Samples Inference 

In this section, we give our asymptotic results. We will use a methodology similar to that was applied in [20-
24]. Following theorem that is the main theorem of this article, will be needed to make inference about the 
parameter 𝜇. 
 
Theorem 1. Under the assumptions, 

√𝑛 �
𝑋� − 𝜇𝑌�

�𝜎2(1 + 𝜇2)
�

ℒ
→ 𝑁(0,2) , 𝑎𝑎 𝑛 → ∞  , 

where 𝑛 = 𝑚𝑚𝑚(𝑛1, 𝑛2). 
 
Proof. By using the Central Limit Theorem, we have, 

�𝑛1 �
𝑋� − 𝜇1
𝜎 �

ℒ
→ 𝑁(0,1) ,      
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and 

�𝑛2 �
𝑌� − 𝜇2
𝜎 �

ℒ
→ 𝑁(0,1), 

as 𝑛 → ∞. 
 Since the samples are independent, Slutsky's theorem [See Ref. 25 for more details] gives 

√𝑛

⎝

⎛

𝑋� − 𝜇1
𝜎

𝑌� − 𝜇2
𝜎 ⎠

⎞ ℒ
→ 𝑁�𝟎, �1 0

0 1�� , 𝑎𝑎 𝑛 → ∞. 

Now define 𝑓: ℝ2 → ℝ as 𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝜇𝑥2. Then the gradient function with respect to f is 𝛻𝛻(𝑥1, 𝑥2) =
(1,−𝜇) . Since 𝛻𝛻 is continuous, therefore by Cramer's rule we have 

√𝑛�𝑓 �
𝑋� − 𝜇1
𝜎

,
𝑌� − 𝜇2
𝜎 �� = √𝑛�

𝑋� − 𝜇𝑌�

�𝜎2(1 + 𝜇2)
�

ℒ
→ 𝑁(0,2) , 𝑎𝑎 𝑛 → ∞   .     ∎ 

 
 So we have just proved 

𝑇𝑛 = √𝑛�
𝑋� − 𝜇𝑌�

�2𝜎2(1 + 𝜇2)
�

ℒ
→ 𝑁(0,1)  , 𝑎𝑎 𝑛 → ∞  .                                          (3.1) 

In Sections 3.1 and 3.2, this result is used to construct an asymptotic CI and carry out a test of hypothesis. 

3.1. Asymptotic confidence interval 

Note that 𝑇𝑛 given by Eq. (3.1) depends on the unknown parameters 𝜇 and 𝜎2. So it cannot be used as a 
pivotal quantity for the parameter 𝜇. 
 
Theorem 2. Under the same assumptions as Theorem 1, 

𝑇𝑛∗ = √𝑛 �
𝑋� − 𝜇𝑌�

�2𝑆𝑃2(1 + 𝜇̂2)
�

ℒ
→ 𝑁(0,1) , 𝑎𝑎 𝑛 → ∞ .                                         (3.2) 

Proof. By the Weak Law of Large Numbers, we have 

𝑆𝑃2
𝑝
→𝜎2 , 𝑎𝑎𝑎  𝜇̂

𝑝
→𝜇  as 𝑛 → ∞  . 

The proof is now completed by using Theorem 1 and Slutsky's Theorem .                  ∎ 
 
 Now, 𝑇𝑛∗ can be used as a pivotal quantity to construct asymptotic CI for 𝜇, 

𝑋� ± 𝑍1−𝛼 2⁄ �2𝑆𝑃2(1 + 𝜇̂2)/𝑛
𝑌�

  .                                                                    (3.3) 

3.2. Hypothesis testing 

Hypothesis testing about 𝜇 is important in practice. For instance, the assumption 𝜇 = 1 is equivalent to the 
assumption 𝜇1 = 𝜇2. In general, to test  𝐻0: 𝜇 = 𝜇0, the test statistic can be 
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𝑇0∗ = √𝑛 �
𝑋� − 𝜇0𝑌�

�2𝑆𝑃2(1 + 𝜇02)
�  .                                                                    (3.4) 

By similar methodology which was applied in Theorem 2, it can be shown that under null hypothesis, 𝑇0∗ has 
asymptotic standard normal distribution. 

4. Simulation Study 

In this section, numerous data sets are generated and analyzed to investigate the performance of proposed 
method, for different values of (𝑛1, 𝑛2) and 𝜇. We investigate that Eq. (3.3) and Eq. (3.4) are actually the 
asymptotic CI and hypothesis test statistic. For each parameter setting, the empirical coverage probability 
(percent of runs which Eq. (3.3) contains true 𝜇) is estimated based on 1000 simulation runs. Also for each 
run, the value of test statistic in Eq. (3.4) is computed and then normal Q–Q plots of the test statistic (3.4) are 
plotted. The Shapiro-Wilk’s normality test also is applied to verify normality of test statistic (3.4) 
 
Example 4.1. Exponential populations 

We assume 𝑋  and 𝑌  have Exponential distribution with mean  𝜇1  and 𝜇2 , respectively. The empirical 
coverage probabilities for different parameter setting are summarized in Table 1.  
 The results reveal that the empirical coverage probability of proposed method is very close to the nominal 
level (0.95) as sample size is growing, and so the type I error are asymptotically controlled by method. In 
other words, we can accept Eq. (3.3) is the asymptotic CI for 𝜇. Also Figure 1 and Table 2 show the Q–Q 
plots against the standard normal distribution and the results of Shapiro-Wilk’s normality test for the test 
statistic in Eq. (3.4), respectively.  
 It confirmed that the asymptotic approximation seems to be quite satisfactory in all of the cases considered 
(P-Value is more than 0.05). Therefore our approach is a good alternative to construct a CI and perform a test 
of hypothesis for the ratio of means in two independent populations.  
 

Table 1. The empirical coverage probability (Exponential populations) 

(𝑛1, 𝑛2) 
(𝜇1, 𝜇2) 

(1,1) (1,2) (2,3) (2,5) 

(50, 100) 0.943 0.943 0.944 0.942 

(75, 100) 0.948 0.946 0.947 0.944 

(100, 200) 0.950 0.948 0.950 0.949 

(200, 300) 0.951 0.950 0.951 0.949 

(500, 700) 0.954 0.950 0.956 0.951 

(700, 1000) 0.957 0.958 0.957 0.958 

 

Journal of Statistical Theory and Applications, Vol. 16, No. 3 (September 2017) 366–374
___________________________________________________________________________________________________________

370



 

Figure 1. the Q–Q plots against the standard normal distribution (Exponential populations) 

First row: 
Left: (𝜇1, 𝜇2) = (1,1) and  (𝑛1, 𝑛2) = (50,100), Middle: (𝜇1, 𝜇2) = (1,2) and    (𝑛1, 𝑛2) = (75,100), Right: (𝜇1, 𝜇2) = (1,2) and 
   (𝑛1, 𝑛2) = (100,200). 
Second row: 
Left: (𝜇1, 𝜇2) = (2,3) and    (𝑛1, 𝑛2) = (200,300), Middle: (𝜇1, 𝜇2) = (2,3) and    (𝑛1, 𝑛2) = (500,700), Right: (𝜇1, 𝜇2) = (3,5) 
and    (𝑛1, 𝑛2) = (700,1000). 
 

Table 2. Shapiro-Wilk’s normality test P-Value for the test statistic (Exponential populations) 

(𝑛1, 𝑛2) 
(𝜇1, 𝜇2) 

(1,1) (1,2) (2,3) (2,5) 

(50, 100) 0.219 0.154 0.152 0.596 

(75, 100) 0.253 0.293 0.337 0.598 

(100, 200) 0.398 0.399 0.511 0.607 

(200, 300) 0.403 0.540 0.720 0.649 

(500, 700) 0.489 0.640 0.762 0.741 

(700, 1000) 0.675 0.766 0.871 0.836 
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Example 4.2. Poisson populations 

We assume 𝑋 an d 𝑌 have Poisson distribution with mean  𝜇1  and 𝜇2 , respectively. Table 3 presents the 
empirical coverage probabilities for different parameter setting.  

 
Table 3. The empirical coverage probability (Poisson populations) 

  (𝑛1, 𝑛2) 
(𝜇1, 𝜇2) 

(1,1) (1,2) (2,3) (2,5) 

(50, 100) 0.942 0.942 0.943 0.948 

(75, 100) 0.948 0.946 0.947 0.948 

(100, 200) 0.953 0.949 0.949 0.949 

(200, 300) 0.954 0.951 0.956 0.950 

(500, 700) 0.959 0.959 0.956 0.953 

(700, 1000) 0.960 0.959 0.957 0.954 

 

 As can be seen, in terms of the empirical coverage probability, the proposed method controls the type I 
error. Also Figure 2 and Table 4 show the Q–Q plots against the standard normal distribution and the results 
of Shapiro-Wilk’s normality test for the test statistic in Eq. (3.4), respectively. It appears that our method 
performs well. 

 
Table 4. Shapiro-Wilk’s normality test P-Value for the test statistic (Poisson populations) 

  (𝑛1, 𝑛2) 
(𝜇1, 𝜇2) 

(1,1) (1,2) (2,3) (2,5) 

(50, 100) 0.156 0.179 0.263 0.185 

(75, 100) 0.452 0.211 0.303 0.243 

(100, 200) 0.553 0.701 0.346 0.403 

(200, 300) 0.852 0.731 0.352 0.472 

(500, 700) 0.885 0.893 0.538 0.739 

(700, 1000) 0.887 0.916 0.861 0.928 
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Figure 2. the Q–Q plots against the standard normal distribution (Poisson populations) 

First row: 
Left: (𝜇1, 𝜇2) = (1,1) and    (𝑛1, 𝑛2) = (50,100), Middle: (𝜇1, 𝜇2) = (1,2) and    (𝑛1, 𝑛2) = (75,100), Right: (𝜇1, 𝜇2) = (1,2) and 
   (𝑛1, 𝑛2) = (100,200). 
Second row: 
Left: (𝜇1, 𝜇2) = (2,3) and    (𝑛1, 𝑛2) = (200,300), Middle: (𝜇1, 𝜇2) = (2,3) and    (𝑛1, 𝑛2) = (500,700), Right: (𝜇1, 𝜇2) = (3,5) 
and    (𝑛1, 𝑛2) = (700,1000). 
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