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1. Introduction

A random variable X follows a moment exponential (ME) distribution, denoted as X ∼ ME(β ), if
its probability density function (PDF) is given by

fX(x;β ) =
x

β 2 e−
x
β , x > 0, β > 0, (1.1)

The rth distributional moment associated with the ME distribution is given by

µr = E(X r) = β rΓ(r+2), r = 1,2,3, ... (1.2)

where Γ(α) =
∫ ∞

0 uα−1e−u du is the gamma function. For more details of the ME distribution see
Dara and Ahmad (2012).
Hasnain et al. (2015) introduced an extension of ME distribution called exponentiated moment
exponential distribution. A random variable X follows an exponentiated moment exponential distri-
bution, denoted as X ∼ EME(α,β ), if its probability density function (PDF) is given by

fX(x;α,β ) =
α
β 2

(
1−
(

1+
x
β

)
e−

x
β

)α−1

xe−
x
β , x > 0, β ,α > 0, (1.3)

If α = 1, the exponentiated moment exponential distribution reduces to the classical moment expo-
nential distribution.

Gómez et al. (2007) and Gómez and Venegas (2008) introduced the class of slash-elliptical
distributions. This class of distributions can be regarded as an extension of the class of elliptical
distributions studied in Fang et al. (1990).

A random variable T follows a slash-elliptical distribution with location parameter µ and scale
parameter σ , denoted as T ∼ SEl(t; µ,σ ,q), if it can be represented as

T = σ
X

U1/q +µ, (1.4)

where X ∼ El(0,1,q) and U ∼U(0,1) are independent and q > 0.
This idea also can be applied to positive random variables as can be seen in (Olivares-Pacheco

et al., 2010; Olmos et al., 2012; Iriarte et al., 2014; etc.).
In this work, we introduce an extension of the moment exponential distribution. This extension

is more flexible than the moment exponential distribution in terms of kurtosis of distribution. We
defined a slashed moment exponential random variable by a quotient between two independent
random variables, one (numerator) from the moment exponential family and the other (denominator)
a power of the uniform distribution. The new model can be used as an alternative model to the
moment exponential and exponentiated moment exponential distributions.

The article is organized as follows. In Section 2 we present the stochastic representation, the
density function and some mathematical properties of the new model. In addition, the reliability
function and hazard rate function are derived. In Section 3 we discuss the moment and maximum
likelihood estimations. In addition, we conduct a simulation study to illustrate the behavior of max-
imum likelihood estimates. Section 4 presents two applications to real data sets. Final conclusions
are reported in Section 5.
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2. Slashed moment exponential distribution

In this section we present the stochastic representation, the density function and some mathematical
properties of the new distribution.

2.1. Stochastic representation

Definition 2.1. A random variable T has a slashed moment exponential distribution, denoted as
T ∼ SME(β ,q), if it can be represented as

T =
X

U1/q , q > 0, (2.1)

where X ∼ ME(β ) and U ∼U(0,1) are independent.

2.2. Density function

Proposition 2.1. Let T ∼ SME(β ,q). Then, the density function of T is given by

fT (t;β ,q) = qβ qt−(q+1)γ
(

q+2,
t
β

)
, t > 0, (2.2)

where β ,q > 0 and γ(α,x) =
∫ x

0 uα−1e−u du is the incomplete gamma function.

Proof. By using the stochastic representation in (2.1) and the Jacobian method, we have the pdf of
T , which can be expressed as

fT (t;β ,q) =
∫ 1

0

q
β 2 twq+1e−

tw
β dw.

Now, by letting u = tw
β , the density function fT (t;β ,q) reduces to

fT (t;β ,q) = qβ qt−(q+1)
∫ t/β

0
uq+1e−u du

= qβ qt−(q+1)γ
(

q+2,
t
β

)
2.

Figure 1 depicts some of the shapes that the slashed moment exponential distribution can take for
different values of the parameter q.

2.3. Some properties

In this subsection some basic properties of the slashed moment exponential distribution are consid-
ered.
Let T ∼ SME(β ,q), then

(1) lim
q→∞

fT (t;β ,q) =
x

β 2 e−
x
β ,
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Fig. 1. Plot of the slashed moment exponential distribution, SME(β = 1,q).

(2) FT (k;β ,q) = 1−
(

1+
k
β

)
e−

k
β − k

q
fT (k;β ,q).

Remark 2.1. Property 1 reveals that as q → ∞ the slashed moment exponential converges to the
ordinary moment exponential distribution.

2.4. Reliability analysis

The reliability function RT (t), which is the probability of an item not failing prior to some time t, is
defined by RT (t) = 1−FT (t). The reliability function of a slashed moment exponential distribution
is given by

RT (t) =
(

1+
t
β

)
e−

t
β +

t
q

fT (t;β ,q), (2.3)

where fT (t;β ,q) is given in (2.2). An interesting characteristic of a random variable is its hazard
rate function defined by hT (t) =

fT (t)
1−FT (t)

which is an important quantity, characterizing the life-time
of a certain phenomenon. It can be loosely interpreted as the conditional probability of failure at
time t, given it has survived to time t. The hazard rate function for a slashed moment exponential
random variable is given by

hT (t) =
fT (t;β ,q)(

1+ t
β

)
e−

t
β + t

q fT (t;β ,q)
, (2.4)

where fT (t;β ,q) is given in (2.2). Figure 2 displays some plots of the reliability function and the
hazard rate function of a slashed moment exponential distribution.
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Fig. 2. Plot of the reliability function and hazard function for a slashed moment exponential distribution, SME(β = 1,q).

2.5. Moments and related measures

In this subsection we derive, distributional moments of the slashed moment exponential distribution,
an important requirement in any statistical analysis. Some of the important features and character-
istics of a distribution can be studied through moments, which can be used to derive asymmetry and
kurtosis coefficients.

Proposition 2.2. Let T ∼ SME(β ,q). Then, for r = 1,2, ... and q > r it follows that r-th moment is
given by

µr = E(X r) =
qβ r

q− r
Γ(r+2), (2.5)

where Γ(α) =
∫ ∞

0 uα−1e−u du is the gamma function.

Proof. Using the stochastic representation for the distribution given in (2.1), we have that

µr = E (T r) = E
((

X

U
1
q

)r)
= E (X r)E

(
U− r

q

)
,

where it follows that E
(

U− r
q

)
= q

q−r , q > r and E (X r) = β rΓ(r+2) are the moments for the
distribution ME(β ) 2.

Corollary 2.1. Let T ∼ SME(β ,q), then it follows that

E(T ) =
2qβ
q−1

, q > 1, and Var(T ) = qβ 2
[

6
q−2

− 4q
(q−1)2

]
, q > 2.

Corollary 2.2. If T ∼ SME(β ,q), then the coefficients of asymmetry (
√

β1) and kurtosis (β2) are,
respectively,
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√
β1 =

(q−2)1/2A
(2q)1/2(q−3)C3/2 , q > 3,

and β2 =
(q−2)B

q(q−3)(q−4)C2 , q > 4,

where

A = 12(q−1)3(q−2)−18q(q−1)2(q−3)+8q2(q−2)(q−3),

B = 30(q−1)4(q−2)(q−3)−48q(q−1)3(q−2)(q−4)+36q2(q−1)2(q−3)(q−4)
− 12q3(q−2)(q−3)(q−4),

C = 3(q−1)2 −2q(q−2).

Remark 2.2. Notice that as q → ∞ the asymmetry and kurtosis coefficients take the values
√

2
and 6, respectively, which are the corresponding coefficients for the moment exponential distribu-
tion. Figure 3 depicts plots for the asymmetry and kurtosis coefficients, respectively, of the slashed
moment exponential distribution.
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Fig. 3. Plot of the asymmetry and kurtosis coefficients for a slashed moment exponential distribution, SME(β ,q).

3. Inference

In this section we discuss moment and maximum likelihood estimation for parameters β and q
for the slashed moment exponential distribution. Additionally, we conduct a small scale simulation
study illustrating the ML estimations behavior for parameters β and q in small and moderate sample
sizes.
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3.1. Moment estimators

Proposition 3.1. Let T1, . . . ,Tn a random sample for the random variable T ∼ SME(β ,q). Then,
moment estimators for θ = (β ,q), are given by

β̂M =
T (q̂−1)

2q̂
and q̂M = 1+

(
2T 2

2T 2 −3T 2

)1/2

, i f 2T 2 > 3T 2
,

where T is the sample mean, and T 2 is the sample mean for square of the sample units.

Proof. Using (2.5), it follows that

E(T ) =
2qβ
q−1

and E(T 2) =
6qβ 2

q−2
, i f q > 2, (3.1)

and replacing E(T ) by T and E(T 2) by T 2 in (3.1), we obtain a system of equations for which the
solution leads to the moment estimators (β̂M, q̂M) for (β ,q) 2.

3.2. Maximum likelihood estimators

For a random sample T1, . . . ,Tn from the distribution SME(β ,q), the log-likelihood function can be
written as

ℓ(β ,q) = n log(q)+nq log(β )− (q+1)
n

∑
i=1

log(ti)+
n

∑
i=1

γ
(

q+2,
ti
β

)
, (3.2)

so that the maximum likelihood equations are given by

n

∑
i=1

γ1

(
q+2, ti

β

)
γ
(

q+2, ti
β

) =−nq
β
, (3.3)

n

∑
i=1

log(ti)−
n

∑
i=1

γ2

(
q+2, ti

β

)
γ
(

q+2, ti
β

) =
n
q
+n log(β ), (3.4)

where γ(α,x) =
∫ x

0 uα−1e−u du is the incomplete gamma function and

γ1

(
q+2,

ti
β

)
=

∂
∂β

γ
(

q+2,
ti
β

)
=−

tq+2
i

β q+3 e−
ti
β ,

γ2

(
q+2,

ti
β

)
=

∂
∂q

γ
(

q+2,
ti
β

)
=
∫ ti/β

0
uq+1 log(u)e−u du.

It is well known that as the sample size increases, the distribution of the MLE tends (under regularity
conditions) to normal distribution with mean (β ,q) and covariance matrix equal to the inverse of
the Fisher (expected) information matrix. Due to the complexity of the likelihood function it is
not possible to obtain its analytical expression. It is possible, however, to work with the observed
information matrix, which is a consistent estimator for the expected information matrix.
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3.3. Observed information matrix

The observed information matrix follows from the Hessian matrix, replacing unknown parameters
by their MLEs. Some algebraic manipulation yields the following Hessian matrix:
Let T ∼ SME(β ,q), so that the observed information matrix is given by

In(β ,q) =


∂ 2l(β ,q)

∂β 2
∂ 2l(β ,q)

∂β∂q

∂ 2l(β ,q)
∂q∂β

∂ 2l(β ,q)
∂q2

 ,

such that

∂ 2l(β ,q)
∂β 2 = − nq

β 2 +
n

∑
i=1

γ11

(
q+2, ti

β

)
γ
(

q+2, ti
β

) −
n

∑
i=1

γ2
1

(
q+2, ti

β

)
γ2
(

q+2, ti
β

) ,
∂ 2l(β ,q)

∂q∂β
=

n
β
+

n

∑
i=1

γ12

(
q+2, ti

β

)
γ
(

q+2, ti
β

) −
n

∑
i=1

γ1

(
q+2, ti

β

)
γ2

(
q+2, ti

β

)
γ2
(

q+2, ti
β

) ,

∂ 2l(β ,q)
∂β∂ q

=
n
β
+

n

∑
i=1

γ21

(
q+2, ti

β

)
γ
(

q+2, ti
β

) −
n

∑
i=1

γ1

(
q+2, ti

β

)
γ2

(
q+2, ti

β

)
γ2
(

q+2, ti
β

) ,

∂ 2l(β ,q)
∂q2 = −n

q
+

n

∑
i=1

γ22

(
q+2, ti

β

)
γ
(

q+2, ti
β

) −
n

∑
i=1

γ2
2

(
q+2, ti

β

)
γ2
(

q+2, ti
β

) ,

where γ1 and γ2 are given in previous subsection, and

γ11

(
q+2,

ti
β

)
=

∂
∂β

γ1

(
q+2,

ti
β

)
=

tq+2
i

β q+4 (q+3− ti)e
− ti

β ,

γ12

(
q+2,

ti
β

)
=

∂
∂q

γ1

(
q+2,

ti
β

)
=−

tq+2
i

β q+3 log
(

ti
β

)
e−

ti
β ,

γ21

(
q+2,

ti
β

)
=

∂
∂β

γ2

(
q+2,

ti
β

)
=−

tq+2
i

β q+3 log
(

ti
β

)
e−

ti
β ,

γ22

(
q+2,

ti
β

)
=

∂
∂q

γ2

(
q+2,

ti
β

)
=
∫ ti/β

0
uq+1 log2(u)e−u du.

3.4. Simulation study

In this subsection, simulation is performed to illustrate the behavior of the ML estimators for param-
eters β and q. We generate 1000 random samples of sizes n = 50, n = 100 and n = 200 from the
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distribution SME(β ,q) for fixed values of the parameters. Random numbers T ∼ SME(β ,q) can be
generated as

(1) Generate Y ∼Uni f orm(0,1)
(2) Set X =−b

(
W−1(

Y−1
e )+1

)
(3) Generate U ∼Uni f orm(0,1)
(4) Set T = XU−1/q.

where W−1 is the negative branch of the LambertW function, see Corless et al. (1996). Measures and
empirical standard deviations(SD) are presented in Table 1. Here, the parameters are well estimated
and the estimates are asymptotically unbiased.

Table 1. Maximum likelihood estimators for samples generated for several values of the parameters β and q.

Maximum Likelihood Estimators
Parameters n = 50 n = 100 n = 200
β q β̂ (SD) q̂ (SD) β̂ (SD) q̂ (SD) β̂ (SD) q̂ (SD)

0.5 0.5 0.559 (0.130) 0.548 (0.107) 0.531 (0.090) 0.523 (0.063) 0.521 (0.061) 0.514 (0.043)
1.0 0.527 (0.121) 1.091 (0.311) 0.519 (0.076) 1.050 (0.178) 0.507 (0.054) 1.023 (0.119)
1.5 0.531 (0.111) 1.720 (0.596) 0.518 (0.072) 1.634 (0.394) 0.503 (0.052) 1.536 (0.233)

1.0 1.0 1.048 (0.240) 1.084 (0.306) 1.024 (0.158) 1.049 (0.180) 1.010 (0.108) 1.016 (0.115)
1.5 1.064 (0.227) 1.744 (0.696) 1.028 (0.147) 1.595 (0.376) 1.011 (0.102) 1.547 (0.234)
2.0 1.065 (0.226) 2.342 (0.971) 1.019 (0.150) 2.182 (0.666) 1.018 (0.106) 2.127 (0.433)

2.0 1.5 2.111 (0.446) 1.745 (0.690) 2.041 (0.304) 1.598 (0.455) 2.024 (0.208) 1.555 (0.238)
2.0 2.108 (0.433) 2.287 (0.924) 2.057 (0.308) 2.241 (0.789) 2.037 (0.212) 2.134 (0.469)
2.5 2.099 (0.408) 2.741 (0.950) 2.058 (0.310) 2.770 (0.899) 2.030 (0.214) 2.701 (0.711)

4. Illustrations

In this section we analyze two real data sets using slashed moment exponential distribution. In
addition, we analyze the data sets using the moment exponential and exponentiated moment expo-
nential distributions. In each illustration, we deliver evidence that the slashed moment exponential
distribution can present a better fit to the data than the other distributions.

4.1. Illustration 1

The first data set corresponds to the stress-rupture life of Kevlar 49/epoxy which is subject to con-
stant pressure at 90% stress level until failure, so we have complete data with the exact failure times.
For previous studies with this data set, see Andrews and Herzberg (1985), Barlow et al. (1984).
Table 2 shows some descriptive statistics from the dataset, where b1 and b2 are sample skewness
and kurtosis coefficients, respectively.

Table 2. Summary statistics for data set.

n X s2 b1 b2

101 1.024 1.252 2.957 16.379

From the results in Subsection 3.1, the moment estimates for the parameters of the SME distribution
are β̂M = 2.510 and q̂M = 2.155. Using these estimates as starting values for the Newton-Raphson
procedure, maximum likelihood estimates were computed. Table 3 depicts parameter estimates with
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the respective standard errors for SME, EME and ME models using the maximum likelihood (ML)
approach. Standard errors (SE) were computed using the inverse of the Hessian matrix. The results
of the SME fitting were compared to those provided by the ME and EME distributions. We consider
the usual Akaike information criterion (AIC) introduced by Akaike (1974) and Bayesian infor-
mation criterion (BIC) proposed by Schwarz (1978), which are defined as AIC=2k − 2logL and
BIC=k logn−2logL, respectively, where k is the number of parameters in the model, n is the sam-
ple size and logL is the maximized value of the likelihood function. Table 3 shows the corresponding
AIC and BIC values for each fitted distribution. For these data, AIC and BIC show that the SME
model provides a better fit. Figure 4 presents the histogram for the data with the fitted densities.

Table 3. Maximum likelihood estimates for SME, EME and ME models and AIC and BIC values for the data set.

Parameters SME (SE) EME (SE) ME (SE)
β 2.310 (0.308) 6.488 (0.694) 4.682 (0.292)
α - 0.570 (0.067) -
q 1.851 (0.381) - -

logL -411.7963 -414.5258 -426.7965
AIC 827.592 833.051 855.593
BIC 833.296 838.755 858.445
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Fig. 4. Left panel: Models fitted by the maximum likelihood approach for data set. Right panel: Plots of the tails for the
models.
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4.2. Illustration 2

The second data set was previously analyzed in Chhikara and Folks (1977). It corresponds to the
46 active repair times (in hours) for an airborne communication transceiver. Table 4 shows some
descriptive statistics from the dataset.

Table 4. Summary statistics for data set.

n X s2 b1 b2

46 3.607 24.445 2.888 11.803

Based on the sample above, using the results from Subsection 3.1, we calculate the moment estima-
tors for the parameters of the SME model: β̂M = 0.769 and q̂M = 1.822. Using these estimates as
starting values for the Newton-Raphson procedure, maximum likelihood estimates were computed.
Table 5 shows the corresponding AIC and BIC values for each fitted distribution. For these data,
AIC and BIC show that the SME model provides a better fit. Figure 5 presents the histogram for the
data with the fitted densities.

Table 5. Maximum likelihood estimates for SME, EME and ME models and AIC and BIC values for the data set.

Parameters SME (SE) EME (SE) ME (SE)
β 0.528 (0.130) 2.799 (0.541) 1.705 (0.177)
α - 0.452 (0.087) -
q 1.215 (0.334) - -

logL -97.81989 -103.3944 -112.8952
AIC 199.6398 210.7888 227.7904
BIC 203.2971 214.4461 229.619
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Fig. 5. Left panel: Models fitted by the maximum likelihood approach for data set. Right panel: Plots of the tails for the
models.
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5. Concluding remarks

This article introduces an extension of the moment exponential distribution discussed in Dara and
Ahmad (2012). The extension is called the slashed moment exponential distribution. This distri-
bution arises from the ratio between two independent random variables: the moment exponential
distribution in the numerator and the power of uniform random variable in the denominator. The
resulting model potentially has a larger kurtosis coefficient than the moment exponential distribu-
tion. Moment estimators for the new distribution are obtained explicitly and can be used as ini-
tial values for the computation of the maximum likelihood estimators which requires numerical
procedures such as the Newton-Raphson algorithm. The derivation of the asymmetry and kurto-
sis coefficients illustrates the fact that the new distribution is able to fit data sets for which the
moment exponential distribution is adequate but with excessive kurtosis. Applications to real data
demonstrate that the new distribution can present a better fit than distributions such as the moment
exponential and exponentiated moment exponential.
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