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The problem of estimating the ratio of coefficients of variation of two independent lognormal populations is
considered. We propose two closed-form approximate confidence intervals (CIs), one is based on the method
of variance estimate recovery (MOVER), and another is based on the fiducial approach. The proposed CIs are
compared with another CI available in the literature. Our new confidence intervals are very satisfactory in terms
of coverage properties even for small samples, and better than other CIs for small to moderate samples. The
methods are illustrated using an example.
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1. Introduction

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean, and
is a popular measure of variation because it is not affected by the units of measurement. The use of
the CV as an index of reliability or variability in the clinical practice in the context of diagnostic
tests, and biochemical laboratory assays has been noted by Orit [13]. This author has also provided
examples of use of the CV as a measure of reliability or variability. For the normal case, the problem
of interval estimating the CV or comparison of two coefficients of variation has been well addressed
in the literature. See [1], [15], [5], [4], [3], [14] and [10] and the references therein. The problem of
comparing two or more coefficients of variation of two different distributions arises in many prac-
tical situations. The CV is used to judge the precision of measurements or index of reliability, and
two measurement methods are compared on the basis of their respective coefficients of variation.
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In financial analysis, the CV has been used as a measure of relative risk, and a test for equality of
the coefficients of variation of two stocks is useful to determine whether they involve similar risk;
see [11].

In some applications, such as exposure/polution data analysis, measurements are often right-
skewed, and lognormal models are commonly postulated for data analysis. To understand the simi-
larity of the problems of estimating the CV of a lognormal distribution and that of estimating normal
parameters, let us consider a random variable X that has a lognormal distribution with parameters
µ and σ2 so that

mean(X) = exp(µ +σ
2/2) and var(X) = exp(σ2)[exp(σ2)−1]exp(2µ). (1.1)

The coefficient of variation is given by

τ =

√
var(X)

mean
=
√

exp(σ2)−1. (1.2)

We see from the above expression that the problem of estimating the lognormal CV τ simplifies
to the problem of estimating the normal variance based on log-transformed data. Since a log-
transformed sample can be regarded as a sample from a normal distribution with mean µ and vari-
ance σ2, a CI for τ can be obtained in a straightforward manner. On the other hand, the problem of
estimating the ratio of two lognormal coefficients of variation is not a trivial task. Consider two log-
normal distributions with parameters (µ1,σ

2
1 ) and (µ2,σ

2
2 ). The ratio of the coefficients of variation

of these two distributions is given by

Rτ =

{
exp(σ2

1 )−1
exp(σ2

2 )−1

} 1
2

=
τ1

τ2
, (1.3)

where τi =
√

exp(σ2
i )−1, i = 1,2. It is clear from (3) that testing Rr > 1 simplifies to the prob-

lem of testing σ2
1 /σ2

2 > 1, and an F test based on log-transformed samples can be used to test the
variance ratio. However, such test can not be transformed to obtain a confidence interval (CI) for
Rτ . The problem of finding a CI for the ratio of two lognormal coefficients of variation is addressed
in [12]. These authors provided some large sample methods for obtaining CIs for the ratio of coeffi-
cients of variation, and an example where two estrogen level measuring methods are compared with
respect to coefficient of variation (see Sec. 5).

In this article, we shall propose two simple methods of finding CIs for the ratio of two lognormal
coefficients of variation. In the following section, we describe the method of variance estimate
recovery (MOVER) in a general setup, and then propose a MOVER CI that is obtained by modifying
the CI in [12]. In Sec. 3, we describe the fiducial CI which can be calculated by Monte Carlo
simulation or numerically. The accuracy of the CIs and the Nam-Kwon CI are evaluated via Monte
Carlo simulation in Sec. 4. Simulation studies indicate that the new CIs are very satisfactory even
for small samples. In Sec. 5, the proposed interval estimation methods are illustrated using a real
example given in [12]. Some concluding remarks are given in Sec. 6.

2. MOVER Confidence Intervals

We shall first describe two approximate CIs based on the MOVER (method of variance estimate
discovery) and the fiducial approach. As the MOVER is relatively new, we shall first describe this
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approach as given in [17], [18], and [19]. Consider a set of parameters θ1, ....,θg. Let θ̂i be an
unbiased estimate of θi, i = 1, ...,g. Assume that θ̂1, ..., θ̂g are independent. Furthermore, let (li,ui)

denote the 100(1−α)% confidence interval for θi, i = 1, ...,k. The 100(1−α)% MOVER confi-
dence interval (L,U) for ∑

k
i=1 ciθi can be expressed as

L =
g

∑
i=1

ciθ̂i−

√
g

∑
i=1

c2
i

(
θ̂i− l∗i

)2
, with l∗i =

{
li if ci > 0,
ui if ci < 0,

(2.1)

and

U =
g

∑
i=1

ciθ̂i +

√
g

∑
i=1

c2
i

(
θ̂i−u∗i

)2
, with u∗i =

{
ui if ci > 0,
li if ci < 0.

(2.2)

Graybill and Wang [6] first obtained the above confidence interval for a linear combinations variance
components. Zou and co-authors gave a different argument so as to justify the validity of the above
confidence interval for any set parameters.

2.1. MOVER Confidence Intervals for Rτ

Nam–Kwon CI for Rτ Nam and Kwon [12] have proposed several large sample CIs for the ratio of
coefficients of variation Rτ , and recommended the following MOVER CI that can be obtained from
the one for lnRτ = lnτ1− lnτ2. To obtain the MOVER CI for lnτ1− lnτ2, these authors have used
the asymptotic CI for lnτi given by

(li,ui) = ln τ̂i± z1−α/2

√
v̂ar(ln τ̂i), i = 1,2, (2.3)

where zp is the 100p percentile of the standard normal distribution, and

v̂ar(ln τ̂i) =
σ̂2

i
(
1+ τ̂2

i
)

2niτ̂
4
i

, i = 1,2,

with σ̂2
i = (ni−1)S2

i /ni, the maximum likelihood estimate (MLE) of σ2
i , i = 1,2. The CIs in (2.3)

were obtained using the Wald approach, and they are valid for large samples. In terms of these CIs
for lnτi, the 100(1−α)% MOVER CI for lnτ1− lnτ2 can be obtained from (2.1) and (2.2) as

L = ln τ̂1− ln τ̂2−
√

(ln τ̂1− l1)
2
+(ln τ̂2−u2)

2 (2.4)

and

U = ln τ̂1− ln τ̂2 +

√
(ln τ̂1−u1)

2
+(ln τ̂2− l2)

2
. (2.5)

A 100(1−α)% for Rτ on the basis of (L,U) is given by (exp(L), exp(U)).
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2.2. An Alternative MOVER CI for Rτ

Notice that Nam and Kwon [12] have used an approximate CIs for τi to find the CI in (2.4) and (2.5)
for the ratio of coefficients of variation. Instead, we could use the exact CI (l∗i ,u

∗
i ) for τ2

i given by

l∗i = exp

[
(ni−1)S2

i

χ2
ni−1;α

]
−1 and u∗i = exp

[
(ni−1)S2

i

χ2
ni−1;1−α

]
−1,

where χ2
m;p denotes the 100p percentile of the chi-square distribution with degrees of freedom m.

Letting τ̂2
i = exp(S2

i )−1, we can express the MOVER CI (L∗,U∗) for ln(τ1/τ2)
2 as

L∗ = ln τ̂
2
1 − ln τ̂

2
2 −
√(

ln τ̂2
1 − ln l∗1

)2
+
(
ln τ̂2

2 − lnu∗2
)2 (2.6)

and

U∗ = ln τ̂
2
1 − ln τ̂

2
2 +

√(
ln τ̂2

1 − lnu∗1
)2

+
(
ln τ̂2

2 − ln l∗2
)2
. (2.7)

In terms of (L∗,U∗), the 1−2α CI for the ratio τ1/τ2 is given by

(√
exp(L∗),

√
exp(U∗)

)
. (2.8)

3. Fiducial Confidence Intervals

Consider a sample Y1, ...,Yn from a lognormal distribution with parameters µ and σ2. Let Xi = ln(Yi),
i = 1, ...,n, so that Xi’s are independent N(µ,σ2) random variables. Define

X̄ =
1
n

n

∑
i=1

Xi and S2 =
1

n−1

n

∑
i=1

(Xi− X̄)2. (3.1)

Since the CV of a lognormal distribution is a function of σ2 only, it is enough to obtain fiducial

quantity (FQ) for σ2 only. Towards this, we first note that S2 d
= σ2 χ2

n−1
n−1 , where χ2

m denotes the chi-

square random variable with degrees of freedom (df) m and the notation “ d
=” means “distributed

as.” Let s be an observed value of S. Solving the above equation for σ2, and replacing S with s, we
obtain the fiducial quantity for σ2 as

Qσ2 =
(n−1)s2

χ2
n−1

. (3.2)

Notice that, for a fixed s2, the fiducial distribution of σ2 does not depend on any unknown parame-
ters. A fiducial quantity for a real-valued function, say, f (σ2) can be obtained by simple substitution
as f (Qσ2) . For the present problem, let s2

i be an observed value of S2
i , i = 1,2. Then a FQ for τ2

i
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can be expressed as

Q
τ2

i
= exp(Q2

σ )−1 = exp

(
(ni−1)s2

i

χ2
ni−1

)
−1, i = 1,2. (3.3)

A FQ for R2
τ = τ2

1/τ2
2 can be obtained by substitution, and is given by

QR2
τ
=

exp
(

Q
τ2

1

)
−1

exp
(

Q
τ2

2

)
−1

=
exp
[
(n1−1)s2

1/χ2
n1−1

]
−1

exp
[
(n2−1)s2

2/χ2
n2−1

]
−1

. (3.4)

For a given (s2
1,s

2
2), the distribution of QR2

τ
does not depend on any parameters, and so the percentiles

of QR2
τ

can be estimated by Monte Carlo simulation. The lower α quantile and the upper α quantile
of QR2

τ
form a 1−2α CI for R2

τ , from which a CI for Rτ can be readily obtained.
To avoid using simulation to estimate the percentiles of QR2

τ
, we could use the modified normal-

based approximation given in [9]. To apply this approximation, let

Ti = exp

[
(ni−1)s2

i

χ2
ni−1

]
−1, and Ti;α = exp

[
(ni−1)s2

i

χ2
ni−1;1−α

]
−1, i = 1,2,

where 0<α < 1. The lower α quantile L′ and the upper α quantile U ′ of lnQR2
τ

can be approximated
as

L′ = lnT1;.5− lnT2;.5−
√

(lnT1;.5− lnT1;α)+(lnT2;.5− lnT2;1−α)2 (3.5)

and

U ′ = lnT1;.5− lnT2;.5 +
√

(lnT1;.5− lnT1;1−α)2 +(lnT2;.5− lnT2;α)2. (3.6)

It should be noted that approximation proposed by Krishnamoorthy [9] involves expectations of the
random variables rather than medians as given in L′ and U ′. For our present set up, evaluation of
E(Ti) is essentially the same as that for the moment generating function of an inverted chi-square
random variable, which does not exist. So E(ln(Ti)) does not exist. Instead of expectations, we use
the median of lnTi, and later verify its validity in terms of coverage probabilities of CIs based on
(L′,U ′). After finding (L′,U ′), we can express the 1−2α CI for the ratio τ1/τ2 as(√

exp(L′),
√

exp(U ′)
)
, (3.7)

and we shall refer to this CI as approximate fiducial CI.

4. Simulation Studies

To judge the performance of the proposed CIs in the preceding sections, we estimated the cover-
age probabilities for some assumed values of parameters (σ1,σ2) and sample sizes varying from
small to moderate. In practical applications, the values of (σ1,σ2), which are standard deviations
of log-transformed variables, are usually small, and so we consider small values of (σ1,σ2) in our
simulation studies. For each interval estimation method, the coverage probabilities were estimated
using simulation consisting of 100,000 runs.
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Table 1. Coverage probabilities and tail error rates of 95% CIs as function of parameters

ERL = error rates on left; CP = coverage probability; ERR = error rates on right
(σ1,σ2) = (.1, .3) (σ1,σ2) = (.3, .7) (σ1,σ2) = (.4,1.2) (σ1,σ2) = (.5,1.6)

(n1,n2) CI ERL CP ERR ERL CP ERR ERL CP ERR ERL CP ERR
(4,8) 1 2.2 86.5 11.3 2.5 87.7 9.8 3.9 90.5 5.6 6.2 91.9 1.9

2 2.2 95.5 2.3 2.0 95.6 2.4 1.8 95.5 2.7 1.8 95.4 2.8
3 2.5 95.0 2.5 2.3 95.1 2.6 2.1 95.0 2.9 2.1 94.9 3.0

(5,10) 1 2.1 88.5 9.4 2.4 89.6 8.0 3.8 91.7 4.4 5.9 92.7 1.4
2 2.3 95.4 2.3 2.1 95.5 2.4 2.0 95.2 2.8 2.9 95.2 2.8
3 2.5 95.0 2.5 2.3 95.1 2.6 2.2 94.8 2.9 2.2 94.9 2.9

(10,5) 1 10.1 88.2 1.7 11.2 88.0 0.8 14.7 85.3 0.0 18.9 81.0 0.0
2 2.3 95.3 2.4 2.3 95.0 2.7 2.2 94.7 3.1 2.3 94.6 3.1
3 2.4 94.9 2.7 2.4 94.7 2.9 2.3 94.8 2.9 2.4 94.6 3.0

(7,12) 1 2.3 91.0 6.7 2.7 91.7 5.5 4.3 93.2 2.5 6.5 92.8 0.1
2 2.2 95.5 2.3 2.2 95.4 2.4 2.0 95.3 2.7 2.1 94.8 3.0
3 2.4 95.1 2.5 2.4 95.1 2.5 2.2 94.9 2.8 2.3 94.8 2.5

(10,10) 1 4.0 92.2 3.7 4.7 92.6 2.7 7.0 92.4 0.6 10.0 89.9 0.1
2 2.2 95.4 2.4 2.2 95.3 2.6 2.2 94.8 3.1 2.2 94.8 3.0
3 2.5 95.0 2.5 2.3 95.0 2.7 2.2 94.6 3.1 2.4 94.7 2.9

(10,15) 1 2.5 92.5 4.9 2.9 92.9 4.2 4.6 93.6 1.7 6.6 93.0 0.4
2 2.3 95.4 2.3 2.2 95.3 2.6 2.2 95.0 2.8 2.1 94.9 3.0
3 2.4 95.1 2.5 2.3 95.0 2.7 2.3 94.8 2.9 2.2 94.9 2.7

(20,20) 1 3.2 93.6 3.2 3.7 94.0 2.3 5.2 93.8 1.0 7.2 92.5 0.3
2 2.3 95.2 2.5 2.4 95.0 2.6 2.1 95.0 2.9 2.3 94.8 2.9
3 2.5 95.0 2.5 2.4 95.0 2.6 2.3 94.8 2.9 2.3 94.9 2.9

1Nam and Kwon CI in (2.4) and (2.5)
2The modified MOVER CI in (2.8)
3Approximate fiducial CI in (3.7)

The estimated coverage probabilities of 95% CI by the Nam-Kwon method given in (2.4) and
(2.5), the enhanced MOVER CI in (2.8) and the approximate fiducial CI (3.7) are reported in Tables
1 and 2. We also tabulated tail-error rates for all three CIs along with coverage probabilities. Exami-
nation of coverage probabilities and tail-error rates clearly indicate that the large sample CIs by Nam
and Kwon [12] are accurate only for very large samples. For large samples, the coverage probabil-
ities of Nam-Kwon CIs are close to the nominal level, but the tail-error rates are not balanced, and
error rate in one tail is larger than the one in the other tail. For example, when (n1,n2) = (20,20), the
error rates on the left tail are larger than those in the right tail when σ1 is considerably smaller than
σ2. See also error rates for (n1,n2) = (30,40) in Table 2. On the other hand, the enhanced MOVER
CI (2.8) and the approximate fiducial CI (3.7) control the coverage probabilities very close to the
nominal level .95 for all sample sizes and parameter configurations considered. Even for sample
sizes (5,5) (see Table 2), the error rates on tails are not appreciably different and the coverage prob-
abilities are very close to the nominal level. Between the MOVER CI (2.8) and the fiducial CI (3.7),
the latter one controls the coverage probabilities and error rates on both tails better than the former.
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Table 2. Coverage probabilities and tail error rates of 95% CIs as function of sample sizes

ERL = error rates on left; CP = coverage probability; ERR = error rates on right
(n1,n2) = (5,5) (n1,n2) = (10,10) (n1,n2) = (10,20) (n1,n2) = (30,40)

(σ1,σ2) CI ERL CP ERR ERL CP ERR ERL CP ERR ERL CP ERR
(.1,.7) 1 7.3 88.8 3.8 5.0 92.5 2.5 2.4 92.7 4.8 2.9 94.4 2.7

2 2.0 95.4 2.6 2.2 95.3 2.5 2.2 95.3 2.5 2.3 95.1 2.6
3 2.2 95.1 2.7 2.3 95.0 2.7 2.3 95.1 2.6 2.3 95.0 2.6

(.3,.9) 1 8.0 89.4 2.6 5.5 92.7 1.8 2.6 93.1 4.3 3.1 94.5 2.4
2 2.0 95.4 2.6 2.1 95.2 2.7 2.1 95.3 2.6 2.2 95.1 2.7
3 2.3 94.8 2.9 2.2 95.0 2.8 2.3 95.0 2.7 2.3 95.0 2.7

(.5,1.4) 1 11.5 88.0 0.5 8.0 91.8 0.2 3.8 94.4 2.8 4.4 94.5 1.1
2 2.0 95.0 3.0 2.0 95.0 3.0 2.1 95.0 2.9 2.3 94.9 2.8
3 2.2 94.6 3.2 2.3 94.7 3.0 2.1 94.9 2.8 2.2 95.0 2.8

(.3,1.5) 1 13.3 86.4 0.1 9.5 90.4 0.1 4.9 94.0 1.1 5.0 94.1 0.9
2 2.0 94.6 3.4 2.1 94.7 3.1 2.1 94.8 1.1 2.1 94.9 2.8
3 2.2 94.2 3.6 2.1 94.7 3.1 2.3 94.7 3.0 2.3 94.9 2.8

(.9,1.8) 1 13.6 86.3 0.0 9.7 90.3 0.0 4.5 94.7 0.8 5.0 94.4 0.6
2 2.1 95.3 2.6 2.1 95.1 2.8 2.1 95.2 2.7 2.3 94.9 2.6
3 2.3 95.0 2.7 2.3 95.0 2.7 2.5 95.0 2.5 2.4 95.0 2.6

(.4,.5) 1 5.8 89.0 5.2 4.0 92.5 3.5 1.7 92.4 5.9 2.5 94.2 3.2
2 2.1 95.7 2.2 2.3 95.4 2.3 2.3 95.2 2.4 2.4 95.1 2.5
3 2.4 95.1 2.5 2.4 95.1 2.5 2.5 95.0 2.5 2.5 95.0 2.5

1Nam and Kwon CI in (2.4) and (2.5)
2The modified MOVER CI in (2.8)
3Approximate fiducial CI in (3.7)

Overall, on the basis of simplicity and coverage probabilities, the approximate fiducial CI (3.7) is
preferable to other two CIs for applications.

5. An Example

To illustrate interval estimation methods described in the preceding sections, we shall use the exam-
ple given in [12]. The radioimmuno assay (RIA) method has been routinely used for its efficiency
and low cost in measuring estrogen metabolites in blood and urine. Faupel-Badger et al. [2] have
compared concentrations of estrogen metabolites by RIA with the concentrations obtained using a
novel and high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). For
the purpose of illustration, Nam and Kwon have used the quality control data of 16 measurements by
RIA method from each of 3 postmenopausal women, and 28 measurements from a postmenopausal
woman using LC-MS/MS, and 25 measurements obtained from another postmenopausal woman
using LC-MS/MS. The estrogen measurements by RIA were obtained in (micrograms/liter), and
those by LC-MS/MS were obtained in picagram per 0.05 milliliter. These two methods are com-
pared with respect to the coefficient variation, which is an index of reliability of an the assay method.
The method with a smaller CV is more reliable than the one with a larger CV. It is commonly
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assumed that estrone measurements follow log normal models, and so all measurements were log-
transformed. The calculated statistics for these two sets of log-transformed measurements are as
follows.

RIA: n1 = 48, s2
1 = 0.029065, τ̂1 = 0.17173

LC-MS/MS: n2 = 53, s2
2 = 0.0032192, τ̂2 = 0.05678

It should be noted that the reported point estimates τ̂∗1 = .1699 and τ̂∗2 = .0562 in Nam and Kwon’s
paper are based on the MLEs σ̂1 = .1687 and σ̂2 = .0562.

Nam and Kwon’s (2016) 95% MOVER CI formed by (2.4) and (2.5) for the ratio of coefficients
of variation is (2.29, 3.99). To find the new MOVER CI on the basis of (2.6) and (2.7), we found

χ
2
47;.025 = 29.9562, χ

2
47;.975 = 67.8207, χ

2
52;.025 = 33.9681, and χ

2
52;.975 = 73.8099.

Using these percentiles in (2.6) and (2.7), we calculated the MOVER CI in (2.8) as (2.28,4.04).
The approximate fiducial CI (3.7) is computed similarly, and is (2.28, 4.03). As the sample sizes are
considerably large, all three methods produced similar CIs. All these CIs indicate that the CV for
RIA is about two to four times larger than the CV for LC-MS/MS, and so the LC-MS/MS method
is highly reliable compared to the RIA.

6. Concluding Remarks

In this article, we have provided two simple CIs for the ratio of coefficients of variation from log-
normal distributions. One CI is based on the MOVER, which is a new general method, and the other
CI is based on the fiducial approach. Even though the fiducial approach was introduced in 1930s, it
was not a popular approach until publication of the papers [16], [7] and [8]. These authors have pro-
moted the fiducial approach by noting fiducial solutions to problems where the standard approach
fail to produce accurate results. We have provided fiducial solution to yet another problem of practi-
cal importance. Finally, we note that the fiducial CI is very simple, and they can be calculated using
a scientific calculator or R in a straightforward manner.
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