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Abstract 

In the present paper, we study functional varying coefficient model in which both the response and the 
predictor are functions. We give estimates of the intercept and the slope functions in the case that the 
observations are sparse and noise-contaminated longitudinal data by using least squares representation 
of the model parameters. To estimate the parameter functions involved in the representation, we use a 
regularization method in some reproducing kernel Hilbert spaces. As we will see, our procedure is easy 
to implement. Also, we obtain the convergence rates of the estimators in the 𝐿2-sense. These 
convergence rates establish that the procedure performs well, especially, when sampling frequency or 
sample size increases. 

Keywords: Functional varying coefficient model; Longitudinal data Analysis; Rate of convergence; Regularization; 
Reproducing kernel Hilbert space; Sparsity. 
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1. Introduction 

Nowadays, due to development of science and technology, it is possible to collect data which are infinite 
dimensional. Functional data analysis deals with such observations. See Ramsay and Silverman (2002; 2005) 
for an overview of methods and applications of functional data analysis. See also Ferraty and Vieu (2006) 
and, Horváth and Kokoszka (2012).  
   An extension of parametric regression models, commonly known as varying coefficient models, were 
introduced by Cleveland et al. (1991) and, Hastie and Tibshirani (1993). These models allow its regression 
coefficients to vary in respect to some predictors of interest. A collection of available methods is provided by 
Fan and Zhang (2008). The estimation approaches given in Fan and Zhang (2008) are based on polynomial 
spline, smoothing splines and local polynomial smoothing. Other references include Hoover et al. (1998), Wu 
et al. (1998), Kauermann and Tutz (1999), Wu and Chiang (2000), Chiang et al. (2001) and Huang et al. 
(2002; 2004). Most of these approaches are not applicable for sparse designs. In the case of sparse designs, 
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see for example Şentürk and Müller (2008), Noh and Park (2010), Şentürk and Müller (2010), Sentürk and 
Nguyen (2011), Chiou et al. (2012), and Şentürk et al. (2013).  
   In this paper, we consider the following functional varying coefficient model  
 𝑌(𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑋(𝑡) + 𝑍(𝑡),  𝑡 ∈ 𝑇 (1.1) 
   
where 𝑇 ⊂ ℝ is a compact set, 𝑌(𝑡) and 𝑋(𝑡) are square integrable response and predictor processes, 
respectively, 𝛽0(𝑡) and 𝛽1(𝑡) are smoothed intercept and slope functions, respectively, and 𝑍(𝑡) is a mean 
zero random process, independent of 𝑋(𝑡). We want to estimate functions 𝛽0(𝑡) and 𝛽1(𝑡) in the situation 
that the observations are sparse and irregular longitudinal data and combined with some measurement errors. 
Following Yao et al. (2005), we model this situation as follows. Let 𝑈𝑖𝑖 and 𝑉𝑖𝑖 denote the observations of the 
random functions 𝑋𝑖 and 𝑌𝑖 respectively at the random times 𝑇𝑖𝑖, contaminated with measurement errors 𝜀𝑖𝑖 
and 𝜖𝑖 𝑗 respectively, which are assumed to be independent and identically distributed with means zero and 
variances 𝜎𝑋2 and 𝜎𝑌2 respectively, and independent of the random functions. We may represent the observed 
data as  

 
𝑈𝑖𝑖 = 𝑋𝑖(𝑇𝑖𝑖) + 𝜀𝑖𝑖 ,  𝑗 = 1,  … ,  𝑚𝑖;  𝑖 = 1,  … ,  𝑛 ,
𝑉𝑖𝑖 = 𝑌𝑖(𝑇𝑖𝑖) + 𝜖𝑖𝑖,  𝑗 = 1,  … ,  𝑚𝑖;  𝑖 = 1,  … ,  𝑛 .  (1.2) 

   Consider the population least squares representation for (𝛽0(𝑡),𝛽1(𝑡)) in model (1.1) as  

(𝛽0(𝑡),𝛽1(𝑡)) = arg min
(𝜃0(𝑡),𝜃1(𝑡))

{𝐸[𝑌(𝑡) − 𝜃0(𝑡) − 𝜃1(𝑡)𝑋(𝑡)]2}. 

The solutions are  

 𝛽0(𝑡) = 𝜇𝑌(𝑡) − 𝛽1(𝑡)𝜇𝑋(𝑡),  𝛽1(𝑡) =
𝐶𝑋𝑋(𝑡, 𝑡)
𝐶𝑋𝑋(𝑡, 𝑡)

 (1.3) 

where 𝜇𝑋(𝑡) = 𝐸[𝑋(𝑡)] and 𝜇𝑌(𝑡) = 𝐸[𝑌(𝑡)] are mean functions of 𝑋 and 𝑌 respectively, and 𝐶𝑋𝑋(𝑠, 𝑡) =
cov(𝑋(𝑠),𝑋(𝑡)) and 𝐶𝑋𝑋(𝑠, 𝑡) = cov(𝑋(𝑠),𝑌(𝑡)) are respectively covariance function of 𝑋 and cross-
covariance function of 𝑋 and 𝑌.  
   In the present paper, we use some regularization methods to estimate the parameter functions involved in 
representation (1.3). In addition, by assuming that the sample paths of 𝑋 and 𝑌 are 𝛼 times differentiable, we 
obtain convergence rates of the estimators. The obtained results show that our proposed method performs 
well.  
   The paper is organized as follows. In section 2, we review some basic facts of RKHS which are important 
concepts in the sequel. Section 3 contains our estimation methods and, finally, convergence rates of our 
estimators are obtained under some certain regularity assumptions in section 4. 

2. Reproducing Kernel Hilbert Spaces 

In this section, we will review, without proof, some basic facts about reproducing kernel Hilbert spaces 
(RKHSs). Verification of these results as well as more detailed discussions of RKHS theory can be found, for 
example, in Aronszajn (1950) and Wahba (1990).  
   Let ℋ be a Hilbert space of functions on some set 𝑇 and denote by <⋅,⋅>ℋ and ∥⋅∥ℋ, respectively, the inner 
product and the norm in ℋ. A bivariate function on 𝑇 × 𝑇 is said to be a reproducing kernel for ℋ if for 
every 𝑡 ∈ 𝑇 and every𝑓 ∈ ℋ,  
  (i) 𝐾(⋅, 𝑡) ∈ ℋ,  
  (ii) 𝑓(𝑡) =< 𝑓,𝐾(⋅, 𝑡) >ℋ.  
When (i) and (ii) hold, ℋ is said to be an RKHS with reproducing kernel 𝐾. Relation (i) is called the 
reproducing property of 𝐾. If 𝐾 is a reproducing kernel then it is symmetric, nonnegative definite and unique. 
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Conversely, if 𝐾 is a nonnegative definite function on 𝑇 × 𝑇, a unique RKHS of functions on 𝑇 with 𝐾 as its 
reproducing kernel can be constructed.   
   In the sequel, we will denote the Hilbert space with reproducing kernel 𝐾 by ℋ(𝐾). Also the correspond 
inner product and norm will be denoted by <⋅,⋅>ℋ(𝐾) and ∥⋅∥ℋ(𝐾), respectively.  
   According to properties of inner product and by using properties (i) and (ii), for any 𝑁,𝑁′ ∈ ℕ, 
𝛼1, … ,𝛼𝑁,𝛼1′ , … ,𝛼𝑁′

′ ∈ ℝ and 𝑡1, … , 𝑡𝑁 , 𝑡1𝑚𝑚 , … , 𝑡𝑁′
′ ∈ 𝑇, we have  

< �𝛼𝑖

𝑁

𝑖=1

𝐾(⋅, 𝑡𝑖),�𝛼𝑗′
𝑁′

𝑗=1

𝐾(⋅, 𝑡′𝑗) >ℋ(𝐾)= ��𝛼𝑖

𝑁′

𝑗=1

𝑁

𝑖=1

𝛼𝑗′ < 𝐾(⋅, 𝑡𝑖),𝐾(⋅, 𝑡′𝑗) >ℋ(𝐾) 

 = ��𝛼𝑖

𝑁′

𝑗=1

𝑁

𝑖=1

𝛼𝑗′𝐾(𝑡𝑖, 𝑡′𝑗). (2.1) 

 
   Now, let ℋ1 and ℋ2 be two Hilbert spaces of real-valued functions with, respectively, inner products 
<⋅,⋅>ℋ1 and <⋅,⋅>ℋ2. The tensor product space of ℋ1 and ℋ2, ℋ1 ⊗ℋ2, is defined in the following fashion. 
For 𝑓1 ∈ ℋ1 and 𝑔1 ∈ ℋ2 define the bilinear form 𝑓1 ⊗ 𝑔1:ℋ1 × ℋ2 → ℝ by  

[𝑓1 ⊗ 𝑔1](𝑓2,𝑔2) =< 𝑓1,𝑓2 >ℋ1< 𝑔1,𝑔2 >ℋ2 ,  (𝑓2,𝑔2) ∈ ℋ1 × ℋ2. 

Let ℋ0 be the set of all finite linear combinations of such bilinear forms. An inner product, <⋅,⋅>ℋ0 on ℋ0 
can be defined as follows:  

 < 𝑓1 ⊗ 𝑔1,𝑓2 ⊗ 𝑔2 >ℋ0=< 𝑓1,𝑓2 >ℋ1< 𝑔1,𝑔2 >ℋ2 , (2.2) 

where  𝑓1,𝑓2 ∈ ℋ1 and 𝑔1,𝑔2 ∈ ℋ2. Then the tensor product space ℋ1 ⊗ℋ2 is defined as the completion of 
ℋ0 under the inner product <⋅,⋅>ℋ0 defined in (2) and it is shown that it is a Hilbert space.  
   For an RKHS ℋ(𝐾), consider the tensor product space ℋ(𝐾⊗𝐾): = ℋ(𝐾) ⊗ℋ(𝐾). It can be shown 
that ℋ(𝐾⊗𝐾) is an RKHS with reproducing kernel  

(𝐾⊗𝐾)((𝑠1, 𝑡1), (𝑠2, 𝑡2)) = 𝐾(𝑠1, 𝑠2)𝐾(𝑡1, 𝑡2). 

To define our regularization method, we use RKHS. 

3. Estimation Procedures 

In the present section, we estimate the parameter functions involved in (1.3). Suppose the sample paths of 
random functions 𝑋 and 𝑌 belong to the same, without loss of generality, RKHS ℋ(𝐾) almost surely, such 
that  

 𝐸 ∥ 𝑋 ∥ℋ(𝐾)
2 < ∞,  𝐸 ∥ 𝑌 ∥ℋ(𝐾)

2 < ∞. (3.1) 

A result in Cai and Yuan (2010) shows that if condition (3.1) holds then 𝜇𝑋, 𝜇𝑌 ∈ ℋ(𝐾) and 𝐶𝑋𝑋 ∈ ℋ(𝐾⊗
𝐾). In addition, Mostafaiy et. al. (2014) have shown condition (3.1) implies that 𝐶𝑋𝑋 ∈ 𝐻(𝐾⊗𝐾). These 
results let us to define some regularization methods to estimate the parameter functions.  
   First, we estimate mean function of 𝑋. Notice that, mean function of 𝑌 can be estimated in the same way by 
using 𝑉𝑖𝑖’s instead of 𝑈𝑖𝑖’s in the following procedure.  
   Consider the following regularization method:  

 𝜇̂𝑋 = arg min
𝑓∈ℋ(𝐾)

�ℓ1(𝑓) + 𝜆1   ∥ 𝑓 ∥ℋ(𝐾)
2 � (3.2) 

where  
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ℓ1(𝑓) =
1
𝑛
�

1
𝑚𝑖

�(
𝑚𝑖

𝑗=1

𝑈𝑖𝑖 − 𝑓(𝑇𝑖𝑖))2
𝑛

𝑖=1

 

and 𝜆1 ≥ 0 is a smoothing parameter that balances the fidelity to the data measured by ℓ1 and the smoothness 
of the estimate measured by the squared RKHS norm.  
According to the so-called representer lemma (see Wahba 1990), the solution of the minimization problem 
(3.2) can be expressed as  

 𝜇̂𝑋,𝒂(𝑡) = ��𝑎𝑖𝑖

𝑚𝑖

𝑗=1

𝑛

𝑖=1

𝐾(𝑡,𝑇𝑖𝑖) (3.3) 

for some coefficient vector 𝒂 = [𝑎11, … ,𝑎1𝑚1 ,𝑎21, … ,𝑎𝑛𝑚𝑛]′ ∈ ℝ𝑁1 with 𝑁1 = ∑ 𝑚𝑖
𝑛
𝑖=1 . This result 

demonstrates that although the minimization in (3.2) is taken over aninfinite dimensional space, the solution 
can be found in a finite dimensional subspace, and it suffices to evaluate coefficient vector 𝒂 in (3.3). To do 
this, let 𝑷 be an 𝑁1 × 𝑁1 matrix defined by  

𝑷 = �

𝑷11 𝑷12 𝑷13 ⋯ 𝑷1𝑛
𝑷21 𝑷22 𝑷23 ⋯ 𝑷2𝑛
⋮ ⋮ ⋱ ⋮ ⋮

𝑷𝑛1 𝑷𝑛2 𝑷𝑛3 … 𝑷𝑛𝑛

� 

where  
𝑷𝑖1𝑖2 = �𝐾�𝑇𝑖1𝑗1 ,𝑇𝑖2𝑗2��1≤𝑗1≤𝑚𝑖1 , 1≤𝑗2≤𝑚𝑖2

,  1 ≤ 𝑖1, 𝑖2 ≤ 𝑛. 

 
By using (2.1), we have  

∥ 𝜇̂𝑋,𝒂 ∥ℋ(𝐾)
2 =< � � 𝑎𝑖1𝑗1

𝑚𝑖1

𝑗1=1

𝑛

𝑖1=1

𝐾�𝑡,𝑇𝑖1𝑗1�, � � 𝑎𝑖2𝑗2

𝑚𝑖2

𝑗2=1

𝑛

𝑖2=1

𝐾�𝑡,𝑇𝑖2𝑗2� >ℋ(𝐾) 

= � � � � 𝑎𝑖1𝑗1

𝑚𝑖2

𝑗2=1

𝑛

𝑖2=1

𝑚𝑖1

𝑗1=1

𝑛

𝑖1=1

𝑎𝑖2𝑗2𝐾(𝑇𝑖1𝑗1 ,𝑇𝑖2𝑗2) 

= 𝒂′𝑷𝑷                                                           
Notice that  

ℓ1(𝜇̂𝑋,𝒂) =∥ 𝑼 − 𝑷𝑷 ∥ℓ2
2 , 

where ℓ2 is the space of square summable sequences and 𝑼 = [𝑈11, … ,𝑈1𝑚1 ,𝑈21, … ,𝑈𝑛𝑚𝑛]′.  
Therefore we have  
 ℓ1(𝜇̂𝑋,𝒂)+∥ 𝜇̂𝑋,𝒂 ∥ℋ(𝐾)

2 =∥ 𝑼 − 𝑷𝑷 ∥ℓ2
2 + 𝒂′𝑷𝑷 (3.4) 

The right hand side of (4) is quadratic in 𝒂 and so it is not hard to see that the minimizer of it is  

 𝒂 = (𝑷 + 𝑁𝜆1𝑰)−1𝑼 (3.5) 

where 𝑰 is an 𝑁1 × 𝑁1 identity matrix.  
To estimate 𝐶𝑋𝑋 and 𝐶𝑋𝑋, let  

𝐶𝑋𝑋,𝑖�𝑇𝑖𝑗1 ,𝑇𝑖𝑗2� = �𝑈𝑖𝑗1 − 𝜇̂𝑋�𝑇𝑖𝑗1���𝑈𝑖𝑗2 − 𝜇̂𝑋�𝑇𝑖𝑗2��, 

𝐶𝑋𝑋,𝑖(𝑇𝑖𝑗1 ,𝑇𝑖𝑗2) = �𝑈𝑖𝑗1 − 𝜇̂𝑋(𝑇𝑖𝑗1)��𝑉𝑖𝑗2 − 𝜇̂𝑌(𝑇𝑖𝑗2)� 
 
and define the following regularization methods:  
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𝐶̂𝑋𝑋 = arg min
𝐶∈ℋ(𝐾)⊗ℋ(𝐾)

�ℓ2(𝐶) + 𝜆2 ∥ 𝐶 ∥ℋ(𝐾)⊗ℋ(𝐾)
2 �, 

𝐶̂𝑋𝑋 = arg min
𝐶∈ℋ(𝐾)⊗ℋ(𝐾)

�ℓ3(𝐶) + 𝜆3 ∥ 𝐶 ∥ℋ(𝐾)⊗ℋ(𝐾)
2 � 

where  

ℓ2(𝐶) =
1
𝑛
�

1
𝑚𝑖(𝑚𝑖 − 1)

𝑛

𝑖=1

� �𝐶𝑋𝑋,𝑖�𝑇𝑖𝑗1 ,  𝑇𝑖𝑗2� − 𝐶�𝑇𝑖𝑗1 ,  𝑇𝑖𝑗2��
2

1≤𝑗1≠𝑗2≤𝑚𝑖

, 

ℓ3(𝐶) =
1
𝑛
�

1
𝑚𝑖
2

𝑛

𝑖=1

� ��𝐶𝑋𝑋,𝑖(𝑇𝑖𝑗1 ,  𝑇𝑖𝑗2) − 𝐶(𝑇𝑖𝑗1 ,  𝑇𝑖𝑗2)�2
𝑚𝑖

𝑗2=1

𝑚𝑖

𝑗1=1

 

 
and 𝜆2 and 𝜆3 are smoothing parameters. By representer lemma, we have  

𝐶̂𝑋𝑋(𝑠, 𝑡) = � � � 𝑏𝑖𝑗1𝑗2

𝑚𝑖

𝑗2=1

𝑚𝑖

𝑗1=1

𝑛

𝑖=1

𝐾(𝑠,𝑇𝑖𝑗1)𝐾(𝑡,𝑇𝑖𝑗2), 

for some 𝒃 = [𝑏111,⋯ , 𝑏11𝑚1 ,𝑏121,⋯ , 𝑏𝑛𝑚𝑛𝑚𝑛] ∈ ℝ𝑁2 with 𝑁2 = ∑ 𝑚𝑖
2𝑛

𝑖=1 , and  

𝐶̂𝑋𝑋(𝑠, 𝑡) = � � � 𝑐𝑖𝑗1𝑗2

𝑚𝑖

𝑗2=1

𝑚𝑖

𝑗1=1

𝑛

𝑖=1

𝐾(𝑠,𝑇𝑖𝑗1)𝐾(𝑡,𝑇𝑖𝑗2), 

for some 𝒄 = [𝑐111,⋯ , 𝑐11𝑚1 , 𝑐121,⋯ , 𝑐𝑛𝑚𝑛𝑚𝑛] ∈ ℝ𝑁2.  
Coefficient vectors 𝒃 and 𝒄 can be evaluated in the same manner as coefficient vector 𝒂 in the estimation 
procedure of 𝜇𝑋.  
Now, from (1.3) the plug-in estimates of 𝛽0 and 𝛽1 are given by  

 𝛽̂1(𝑡) =
𝐶̂𝑋𝑋(𝑡, 𝑡)
𝐶̂𝑋𝑋(𝑡, 𝑡)

,  𝛽̂0(𝑡) = 𝜇̂𝑌(𝑡) − 𝛽̂1(𝑡)𝜇̂𝑋(𝑡). (3.6) 

Notice that the above estimators depend on smoothing parameters 𝜆1, 𝜆2 and 𝜆3. In practice these smoothing 
parameters can be chosen by some optimization criteria such as cross-validation. 

4. Rates of Convergence 

In this section, we obtain convergence rates of the estimators in terms of integrated squared errors. To do this, 
we assume the following conditions. These conditions also have been adopted by Cai and Yuan (2010). Let 
ℱ(𝛼;𝑀, 𝑐) be the collection of probability measures defined on (𝑋,𝑌) such that  

a) The sample paths of 𝛼 time differentiable 𝑋 and 𝑌 belong to ℋ(𝐾) almost surely and there exits 
constant 𝑀 > 0 such that 𝐸�∥ 𝑋 ∥ℋ(𝐾)

2 � < 𝑀 and 𝐸�∥ 𝑌 ∥ℋ(𝐾)
2 � < 𝑀. 

b) 𝐾 is a Mercer kernel with eigenvalues, 𝜌𝑘, satisfying 𝜌𝑘 ≍ 𝑘−2 𝛼, where for two positive sequences 𝑟𝑛 
and 𝑠𝑛, 𝑟𝑛 ≍ 𝑠𝑛 means that 𝑟𝑘/𝑠𝑘 is bounded away from 0 and ∞ as 𝑘 → ∞, that is,  

0 < lim inf
𝑘→∞

( 𝑟𝑘/𝑠𝑘) ≤ lim sup
𝑘→∞

( 𝑟𝑘/𝑠𝑘) < ∞ . 

c) For 𝑍 being either 𝑋 or 𝑌, there exists a constant 𝑐 > 0 such that  

𝐸[𝑍4(𝑡)] ≤ 𝑐 (𝐸[𝑍2(𝑡)])2 for all 𝑡 ∈ 𝑇,  
and  
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𝐸 ��𝑍
𝑇

(𝑡) 𝑓(𝑡) 𝑑𝑑�
4

≤ 𝑐  �𝐸 ��𝑍
𝑇

(𝑡) 𝑓(𝑡) 𝑑𝑑�
2

�
2

, 

for any 𝑓 ∈ 𝐿2(𝑇).  
 
The condition (a) imposes smoothness of the processes 𝑋 and 𝑌. The boundedness requirement 𝐸�∥
𝑋 ∥ℋ(𝐾)

2 � < 𝑀 and 𝐸�∥ 𝑌 ∥ℋ(𝐾)
2 � < 𝑀 in (a) is a technical condition. The condition (b) guaranties the 

smoothness of the kernel function 𝐾. As shown in Micchelli and Wahba (1981), the Sobolev space 𝒲2
𝛼 

satisfies the condition (b). Finally, the condition (c) concerns the fourth moment of a linear functional of 𝑍. 
This condition is satisfied with 𝑐 = 3 for a Gaussian process because ∫ 𝑍𝑇 (𝑡)𝑓(𝑡)𝑑𝑑 is normally distributed.  
   Let 𝑚 be the harmonic mean of 𝑚1, . . . ,𝑚𝑛, that is,  

𝑚: = �
1
𝑛
�

1
𝑚𝑖

𝑛

𝑖=1

�
−1

. 

For the smoothing parameters we assume  

 
𝜆1 ≍ (𝑛𝑛)−

2𝛼
2𝛼+1,  𝜆2,  𝜆3 ≍ �

𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1
. 

(4.1) 

 
   Given a sequence 𝑐𝑛 of positive constants, we shall use 𝑂𝑝(𝑐𝑛) to denote random variable 𝑅𝑛 which 
satisfies  

lim
𝐷→∞

lim sup
𝑛→∞

sup
𝐹∈ℱ(𝛼;𝑀,𝑐)

𝑃𝐹 {|𝑅𝑛| > 𝐷𝑐𝑛} = 0. 

 
   The following result gives the rates of convergence for the regularized estimators 𝜇̂𝑋 and 𝜇̂𝑌.  
Theorem 1. Assume that 𝑇𝑖𝑖’s are independent and identically distributed with a density bounded away from zero on 𝑇. 
Suppose the smoothing parameter 𝜆1 satisfies (4.1). Then  

 ∥ 𝜇̂𝑍 − 𝜇𝑍 ∥𝐿2
2 = 𝑂𝑝 �𝑛−1 + (𝑛𝑛)−

2𝛼
2𝛼+1� ,  𝑓𝑓𝑓 𝑍 = 𝑋 𝑜𝑜 𝑌. (4.2) 

 
Proof. The proof is given in  Cai and Yuan (2011).  
 
The following theorem gives convergence rates of 𝐶̂𝑋𝑋 and 𝐶̂𝑋𝑋.  
Theorem 2. Assume that 𝐸(𝜀4) < ∞, 𝐸(𝜖4) < ∞ and 𝑇𝑖𝑖’s are independent and identically distributed with a density 
bounded away from zero on 𝑇. Suppose the smoothing parameters 𝜆1, 𝜆2 and 𝜆3 satisfy (4.1). Then  

∥ 𝐶̂𝑋𝑋 − 𝐶𝑋𝑋 ∥𝐿2
2 = 𝑂𝑝 �

1
𝑛

+ �
𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1
� 

and  

∥ 𝐶̂𝑋𝑋 − 𝐶𝑋𝑋 ∥𝐿2
2 = 𝑂𝑝 �

1
𝑛

+ �
𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1
�. 

 
Proof. The proof is given in Cai and Yuan (2010), and Mostafaiy et. al. (2014).  
 
   The convergence rates of 𝛽̂0 and 𝛽̂1 are established in the following theorem.  
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Theorem 3. Under the conditions of Theorem 2, the varying coefficient estimators (3.6) satisfy  

∥ 𝛽̂𝑘 − 𝛽𝑘 ∥𝐿2
2 = 𝑂𝑝 �

1
𝑛

+ �
𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1
� ,  for  𝑘 = 0,1. 

 
Proof. The proof follows from (3.6) and Theorems 1, 2.                

5. Conclusions and Extensions 

We have shown that the convergence rates for the proposed estimators of the slope and the intercept functions 

in the 𝐿2-sense are 1
𝑛

+ �𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1. When 𝑚 is small, that is 𝑚 ≪ 𝑛
1
2𝛼 log 𝑛, the convergence rates are 

determined by factor �𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+1 which depend jointly on the values of both 𝑚 and 𝑛. On the other hand, 

when 𝑚is large, that is 𝑚 ≫ 𝑛
1
2𝛼 log 𝑛, the rates turn to 1

𝑛
 regardless of 𝑚.  

   In the present paper, we have focused on stochastic processes defined on a compact subset 𝑇 of the real line 
ℝ. We note that this assumption can be extended for more general compact domains. For example, for 

𝑇 = [0,1]𝑟, it is not hard to show that the convergence rates become 1
𝑛

+ �𝑙𝑙𝑙 (𝑛)
𝑛𝑛

�
2𝛼

2𝛼+𝑟. 
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