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for generalized order statistics in terms of the dynamic cumulative residual quantile entropy order. We also
prove that when the minimum of random vectors of generalized order statistics is increasing mean residual
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1. Introduction

Order statistics and record values have found important applications in several fields of science
and engineering; see for example, [5] and [6]. Since there exist some intimate relations among
distributional, structural and dependence properties of some types of ordered random variables,
it is interesting to introduce a general model containing them as special cases. To this end, the
concept of generalized order statistics is introduced in [21] and [22] which includes random vec-
tors of order statistics, record values, k-records, Pfeifer’s records, sequential order statistics and
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progressively censored order statistics, as particular cases. Ordinary order statistics and the corre-
sponding sample spacings play important roles in many areas of statistics such as goodness-of-fit
test, auction theory, life testing and reliability. Interested readers may refer to [5], [6], [33] and [31]
for discussions on this issue. Stochastic comparisons between ordinary order statistics and sample
spacings are interesting topics investigated in the literature by various authors. We refer the readers
to [28] and [7] for reviews of the recent developments on the topic of stochastic comparisons of
order statistics and sample spacings. Because of generality of generalized order statistics, several
results on stochastic comparisons of ordinary order statistics and the corresponding sample spacings
have been extended to generalized order statistics and their spacings. Interested readers may refer
to [17], [9], [20], [25], [16], [34], [39], [40] and [10] for a brief review. In this paper, we follow this
idea and try to generalize some ordering results in the literature from ordinary order statistics and
their sample spacings to generalized order statistics and the corresponding spacings. A new stochas-
tic order, called dynamic cumulative residual quantile entropy order, is introduced in [23]. some
characterizations, closure and reversed closure properties of this new order is also obtained in [23].
For ordinary order statistics, in [26] and [27] is shown that if the first order statistics has an increas-
ing mean residual life function, then (i) the corresponding sample spacings also have increasing
mean residual life functions; (ii) they can be ordered with respect to mean residual life and variance
orders; and (iii) the covariance between the successive spacings is nonnegative. The generalized
spacings of ordinary order statistics are compared in one-sample and two-sample problems in [19].
In particular, the mean residual life order between the normalized spacings of X- and Y - samples is
proved in [19]. The purpose of this paper is to generalize some results on order statistics obtained
by [26], [27], [19] and [23] to the case of generalized order statistics. The organization of this paper
is as follows: In Section 2, we briefly review some concepts that will be used later. In Section 3,
we present several results concerning the comparison of generalized order statistics in terms of the
dynamic cumulative residual quantile entropy order and provide a general result when the dynamic
cumulative residual quantile entropy order of the minimums of random vectors of generalized order
statistics implies the dynamic cumulative residual quantile entropy order of populations. We also
prove that the dispersive and the convex transform orders of populations implies the dynamic cumu-
lative residual quantile entropy order between rth generalized order statistics from corresponding
populations. Finally, in Section 4, we prove that under suitable conditions, the simple spacings of
generalized order statistics are ordered by variance and that the covariance between successive sim-
ple spacings of generalized order statistics is nonnegative. We also study the preservation of the
mean residual life order between the normalized spacings of generalized order statistics based on
two different distributions and give examples to illustrate situations in which the theorems in this
section are applicable.
Throughout this paper, the terms ”increasing” and ”decreasing” mean ”non-decreasing” and ”non-
increasing”, respectively. All integrals and expectations are implicitly assumed to exist whenever
they are written. Also, all distribution functions under consideration are restricted to be absolutely
continuous with support in the positive real line R+.

2. Preliminaries

In this section, we first briefly review the definition of generalized order statistics, given by [21], [22]
and then recall some stochastic orders and ageing notions. Finally, we state one proposition and two
lemmas given in [37], [40] and [8], respectively, which will be needed later.
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2.1. Generalized order statistics

Generalized order statistics have been of interest in the past twenty years because they are more
flexible in reliability theory, statistical modeling and inference; see, e.g., [32], [24], [18] and [15].
Uniform generalized order statistics are defined via some joint density function on a cone of the Rn.
Generalized order statistics based on an arbitrary distribution function F are defined by means of
the inverse function of F .

Definition 2.1. ( [21]). Let n ∈ N , k ≥ 1, m1, · · · ,mn−1 ∈ R, be parameters such that γn,n = k,

γr,n = k+
n−1
∑
j=r

(m j +1)≥ 1, for r = 1, · · · ,n−1 and let m̃n = (m1, · · · ,mn−1) if n≥ 2 (m̃n arbitrary if

n = 1). If the random variables U(r,n,m̃n,k),r = 1, · · · ,n possess a joint density of the form

fU(1,n,m̃n,k),··· ,U(n,n,m̃n,k)
(u1, · · · ,un) = k(

n−1

∏
j=1

γ j,n)(
n−1

∏
i=1

(1−ui)
mi)(1−un)

k−1 ,

on the cone 0≤ u1 ≤ u2 ≤ ·· · ≤ un < 1 of Rn, they are called uniform generalized order statistics.
If F is an arbitrary distribution function, then the random variables

X(r,n,m̃n,k) = F−1(U(r,n,m̃n,k)) , r = 1, · · · ,n ,

are called the generalized order statistics based on F , where F−1 is the inverse of F defined by
F−1(u) = sup{x : F(x)≤ u} for u ∈ [0,1].

In the particular case m1 = · · ·= mn−1 = m, we write U(r,n,m,k) and X(r,n,m,k), r = 1, · · · ,n, respec-
tively.
If F is absolutely continuous with density function f , the marginal density and distribution functions
of rth generalized order statistics, X(r,n,m̃n,k), for r = 1, · · · ,n are given by

fX(r,n,m̃n,k)
(x) = cr−1,n f (x)

r

∑
i=1

ai(1−F(x))γi,n−1 ,

and

FX(r,n,m̃n,k)
(x) = 1− cr−1,n

r

∑
i=1

ai

γi,n
(1−F(x))γi,n ,

where ai = ∏
r
j=1, j 6=i

1
γ j,n−γi,n

and cr−1,n = ∏
r
j=1 γ j,n. These functions for X(r,n,m,k) have closed forms

as follows:

fX(r,n,m,k)(x) = φr:n(F(x)) f (x) ,

and

FX(r,n,m,k)(x) = ψr:n(F(x)) ,

where

φr:n(u) =
cr−1,n

(r−1)!
(1−u)γr,n−1[δm(u)]r−1 ,u ∈ [0,1] ,
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ψr:n(u) = 1−
r−1

∑
i=0

ci−1,n

i!
(1−u)γi+1,n [δm(u)]i, u ∈ [0,1] .

Here, the function δm : [0,1)−→ R, m ∈ R is defined by

δm(x) =
{ 1

m+1

[
1− (1− x)m+1

]
, m 6=−1 ,

− ln(1− x) , m =−1 .

Generalized order statistics provide an unified approach for examining distributional and moment
properties of many models of ordered random variables, which can actually be regarded as special
cases. For example, ordinary order statistics of a random sample from a distribution F are a partic-
ular case of generalized order statistics when k = 1 and mr = 0 for all r = 1, · · · ,n−1. When k = 1
and m1 = · · · = mn−1 = −1, then we get the first n record values from a sequence of random vari-
ables with distribution F . Choosing the parameters appropriately, the model of generalized order
statistics also yields order statistics with non-integral sample size, k-record values, sequential order
statistics, Pfeifer’s records, progressive Type II censored order statistics, order statistics under mul-
tivariate imperfect repair, etc., as special cases. For more details, one may refer to [22], [4] and [9].
It is well-known that generalized order statistics from a continuous distribution form a Markov chain
with transition probabilities

P
[
X(r,n,m̃n,k) > t|X(r−1,n,m̃n,k) = s

]
=

[
F(t)
F(s)

]γr,n

, (2.1)

for t ≥ s and r = 2, · · · ,n.
Let X and Y be two nonnegative random variables with associated distribution functions F and G,
and let {X(i,n,m̃n,k), i = 1, · · · ,n} and {Y( j,m,m̃m,k), j = 1, · · · ,m}, be generalized order statistics based
on F and G, respectively. The random variables Ui,n =X(i,n,m̃n,k)−X(i−1,n,m̃n,k) and Ũi,n = γi,nUi,n, i=
1, · · · ,n, with X(0,n,m̃n,k) ≡ 0, are the simple spacings and the normalized spacings of the generalized
order statistics {X(i,n,m̃n,k), i= 1, · · · ,n}. Similarly, define Vj,m =Y( j,m,m̃m,k)−Y( j−1,m,m̃m,k) and Ṽj,m =

γ j,mVj,m for j = 1, · · · ,m, where Y(0,m,m̃m,k) ≡ 0.
The conditional survival function of [X − y|X > y], where X is a nonnegative random variable with
distribution function F is denoted by Fy(x) =

F(y+x)
F(y) for x ∈ R+.

2.2. Some ageing notions and stochastic orders

The exact distribution of the life of an unit or a system is often unavailable in practice, but nonpara-
metric ageing classes of life distributions, such as increasing (decreasing) failure rate and increasing
(decreasing) mean residual life have been found to be quite useful in maintain policy and system
analysis.
Some stochastic orders and classes of the life distributions have defined in [37] as follows. Let X
and Y be two nonnegative random variables with absolutely continuous distribution functions F and
G and densities f and g, respectively. Also, denote their respective survival functions by F = 1−F
and G = 1−G and their mean residual life functions by µX(t) and µY (t), respectively.

Definition 2.2. A random variable X is said to have an increasing (decreasing)

(i) failure rate (IFR (DFR)), if the hazard rate function of X , i.e. rX(t) =
f (t)
F(t) is increasing

(decreasing) in t > 0.
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(ii) mean residual life (IMRL (DMRL)), if the mean residual life of X , i.e.

µX(t) = E(X− t|X > t) =

∫
∞

t
F(u)du

F(t)
,

is increasing (decreasing) in t.

It is well known (see [8]) that

IFR(DFR) =⇒ DMRL(IMRL).

Definition 2.3. A random variable X is smaller than a random variable Y in the

(i) mean residual life order (denoted by X ≤mrl Y ), if EX and EY exist and µX(t)≤ µY (t) for
all t.

(ii) harmonic mean residual life order (denoted by X ≤hmrl Y ), if[
1
t

∫ t

0

1
µY (x)

dx
]−1

≤
[

1
t

∫ t

0

1
µX(x)

dx
]−1

,

for all t > 0.
(iii) excess wealth order (denoted by X ≤ew Y ), if∫

∞

F−1(p)
F(x)dx≤

∫
∞

G−1(p)
G(x)dx ,

where F−1 is the inverse of F defined by F−1(u) = sup{x : F(x) ≤ u} for u ∈ [0,1) and p
belong to (0,1).

(iv) dispersive order (denoted by X ≤disp Y ), if F−1(β )−F−1(α) ≤ G−1(β )−G−1(α) when-
ever 0 < α ≤ β < 1, where F−1 and G−1 are the right-continuous inverse of F and G,
respectively.

(v) convex transform order (denoted by X ≤c Y ) if G−1[F(x)] is convex, or equivalently,
f (x)/g[G−1(F(x))] is increasing in x > 0.

(vi) increasing convex order (denoted by X ≤icx Y ) if and only if∫
∞

t
F(x)dx≤

∫
∞

t
G(x)dx , f or all t .

For a nonnegative random variable X with survival function F , a new dynamic measure of
uncertainty, called the dynamic cumulative residual quantile entropy (DCRQE), is proposed in [23]
which is defined as follows:

φX(p) =−
∫

∞

F−1(p)

F(x)
1− p

ln
F(x)
1− p

dx, f or all p ∈ (0,1) .

Also a new stochastic order based on DCRQE function was introduced in [23]. The definition of
this order is given in the following.

Definition 2.4. Let X and Y be two nonnegative absolutely continuous random variables with
DCRQE functions φX(p) and φY (p), respectively. X is said to be smaller than Y in the dynamic
cumulative residual quantile entropy order (denoted by X ≤DCRQE Y ), if φX(p) ≤ φY (p) for all
p ∈ (0,1).
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It was proved that X ≤DCRQE Y if, and only if,∫
∞

t
F(x) ln

[
F(t)
F(x)

][
f (x)

g[G−1(F(x))]
−1
]

dx≥ 0 , f or all t ≥ 0 . (2.2)

For more details see [23].
The relationship between the above orderings are shown in the following diagram:

X ≤c Y, f (0)
g(0) ≥ 1⇒ X ≤DCRQE Y⇐ X ≤disp Y

⇑
X ≤ew Y ⇒ X ≤icx Y

(2.3)

and

X ≤mrl Y⇒X ≤hmrl Y .

See [37] and [23] for more details on their interrelationships and properties. The next proposition
is due to [37] (Theorem 3.C.6), and shows that the mean residual life order can be characterized by
the excess wealth order.

Proposition 2.1. Let X and Y be two random variables with distribution functions F and G, respec-
tively. If X ≤mrl Y and if either X or Y or both are IMRL, then X ≤ew Y .

The following lemma will be used in deriving the main results in Section 4.

Lemma 2.1. ( [40]). Let X(1,n,m̃n,k), · · · ,X(n,n,m̃n,k) be generalized order statistics based on F, where
mi ≥−1 for each i, and denote m̃∗r,n = (mr+1, · · · ,mn−1) for r = 1, · · · ,n−2.

(i) If X(1,n,m̃n,k) is IMRL (DMRL), then X(1,n−r,m̃∗r,n,k) is IMRL (DMRL) for each r.
(ii) If X(1,n,m̃n,k) is IMRL, then Ur,n is IMRL for each r.

Some of the results of the paper are based on the following technical lemma which is essentially
due to [8].

Lemma 2.2. Let W (x) be a Lebesgue-Stieltjes measure, not necessarily positive and let h(x) be a

nonnegative real function. If h is increasing and
∫

∞

t
dW (x)≥ 0, for all t ∈R, then

∫
∞

−∞

h(x)dW (x)≥
0.

3. Comparison of generalized order statistics in the dynamic cumulative residual
quantile entropy order

In this section, we obtain some results concerning the dynamic cumulative residual quantile entropy
order of generalized order statistics. The following theorem provides a general result when the
dynamic cumulative residual quantile entropy order of the minimums of random vectors of gener-
alized order statistics implies the dynamic cumulative residual quantile entropy order of the popu-
lations. This theorem generalizes Theorem 3.2 in [23] from ordinary order statistics to generalized
order statistics.

Theorem 3.1. Let {X(r,n,m̃n,k),r = 1, · · · ,n} and {Y(r,n,m̃n,k),r = 1, · · · ,n} be generalized order
statistics based on absolutely continuous distribution functions F and G, respectively. If
X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k), then X ≤DCRQE Y .
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Proof. Suppose assumption X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k) holds. From (2.2), we have

∫
∞

t
FX(1,n,m̃n,k)

(x) ln

[
FX(1,n,m̃n,k)

(t)

FX(1,n,m̃n,k)
(x)

] fX(1,n,m̃n,k)
(x)

gY(1,n,m̃n,k)

[
G−1

Y(1,n,m̃n,k)
(FX(1,n,m̃n,k)

(x))
] −1

dx≥ 0 , (3.1)

for all t ≥ 0. We know that FX(1,n,m̃n,k)
(x) = (F(x))γ1,n , fX(1,n,m̃n,k)

(x) = γ1,n(F(x))γ1,n−1 f (x), and simi-
larly gY(1,n,m̃n,k)

(x) = γ1,n(G(x))γ1,n−1g(x). It is obvious that

G−1
Y(1,n,m̃n,k)

(x) = G−1
(

1− (1− x)
1

γ1,n

)
,

so,

G−1
Y(1,n,m̃n,k)

(FX(1,n,m̃n,k)
(x)) = G−1(F(x)) .

Therefore,

fX(1,n,m̃n,k)
(x)

gY(1,n,m̃n,k)

[
G−1

Y(1,n,m̃n,k)
(FX(1,n,m̃n,k)

(x))
] = f (x)

g[G−1(F(x))]
. (3.2)

But

ln

[
FX(1,n,m̃n,k)

(t)

FX(1,n,m̃n,k)
(x)

]
= γ1,n ln

[
F(t)
F(x)

]
. (3.3)

Substituting (3.2) and (3.3) in (3.1), we have

∫
∞

t
γ1,n[F(x)]γ1,n−1F(x) ln

[
F(t)
F(x)

][
f (x)

g[G−1(F(x))]
−1
]

dx≥ 0 . (3.4)

The function

h(x) =
[
γ1,n(F(x))γ1,n−1]−1

, (3.5)

is nonnegative and increasing in x ≥ 0, because γ1,n ≥ 1 and F(x) is decreasing in x ≥ 0. By (3.4),
(3.5) and Lemma 2.2, we see that

∫
∞

t
F(x) ln

[
F(t)
F(x)

][
f (x)

g[G−1(F(x))]
−1
]

dx≥ 0, f or all t ≥ 0 ,

holds, which proves the theorem. �
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Remark 3.1. Counterexample 3.1 in [23] shows that

X ≤DCRQE Y;X1:n ≤DCRQE Y1:n, X1:n ≥DCRQE Y1:n .

In the following, we consider this Counterexample to show that

X ≤DCRQE Y;Xr:n ≤DCRQE Yr:n, f or r = 2, · · · ,n−1 .

Example 3.1. Let X and Y be two nonnegative continuous random variables with distribution func-
tions

F(x) = x, x ∈ (0,1), and G(x) =
{

2x , x ∈ [0, 1
4) ,

2
3 x+ 1

3 , x ∈ [1
4 ,1) ,

respectively. We have FXr:n(x) = Dr:n(F(x)) and fXr:n(x) = f (x)Er:n(F(x)), where

Dr:n(u) =
n

∑
k=r

(
n
k

)
uk(1−u)n−k , and Er:n(u) = n

(
n−1
r−1

)
ur−1(1−u)n−r .

It is obvious that for all x≥ 0,

fXr:n(x)
gYr:n [G

−1
Yr:n

(FXr:n(x))]
=

f (x)
g[G−1(F(x))]

.

We want to show that X2:4 �DCRQE Y2:4. Therefore

Is(t) =
∫

∞

t
FX2:4(x) ln

[
FX2:4(t)
FX2:4(x)

][
fX2:4(x)

gY2:4 [G
−1
Y2:4

(FX2:4(x))]
−1

]
dx

=
∫ 1

t
(1− x)3(1+3x) ln

[
(1− t)3(1+3t)
(1− x)3(1+3x)

][
f (x)

g[G−1(F(x))]
−1
]

dx .

If t ∈ [0, 1
2), then

Is(t) = −
1
2

∫ 1
2

t
(1− x)3(1+3x) ln

[
(1− t)3(1+3t)
(1− x)3(1+3x)

]
dx

+
1
2

∫ 1

1
2

(1− x)3(1+3x) ln
[
(1− t)3(1+3t)
(1− x)3(1+3x)

]
dx

=
1

4050
[−177.186ln

(
(1− t)3(1+3t)

)
+2104.064

+ 972(1− t)5−1620(1− t)4−180(1− t)3

− 360(1− t)2−960(1− t)−1280ln(1+3t)] .

If t ∈ [1
2 ,1), then

Is(t) =
1
2

∫ 1

t
(1− x)3(1+3x) ln

[
(1− t)3(1+3t)
(1− x)3(1+3x)

]
dx

=
1
2
[
−1774.456−972(1− t)5 +1620(1− t)4

+ 180(1− t)3 +360(1− t)2 +960(1− t)+1280ln(1+3t)
]

≥ 0 .
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Therefore for t = 0, Is(t) =−43.936
4050 < 0 and for t ∈ [1

2 ,1), Is(t)≥ 0, i.e.

X2:4 �DCRQE Y2:4, and X2:4 �DCRQE Y2:4 .

Remark 3.2. Using Remark 3.1 and Example 3.1, we conclude that:

X ≤DCRQE Y;X(r,n,m̃n,k) ≤DCRQE Y(r,n,m̃n,k), f or r = 1, · · · ,n−1 .

The following result is concerning to the minimum from two vectors of generalized order statis-
tics.

Theorem 3.2. Let {X(r,n,m̃n,k),r = 1, · · · ,n} and {Y(r,n,m̃n,k),r = 1, · · · ,n} be generalized order statis-
tics based on continuous distribution functions F and G, respectively, with parameter γ1,n =

k +
n−1
∑
j=1

(m j + 1). Similarly, let {X
(r,n′,m̃′n′ ,k)

,r = 1, · · · ,n′} and {Y
(r,n′,m̃′n′ ,k)

,r = 1, · · · ,n′} be gen-

eralized order statistics based on F and G, respectively, with parameter γ ′1,n′ = k+
n′−1
∑
j=1

(m′j +1). If

γ1,n ≤ γ ′1,n′ and X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k), then X
(1,n′,m̃′n′ ,k)

≤DCRQE Y
(1,n′,m̃′n′ ,k)

.

Proof. From (2.2) and (3.2), the condition X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k) is equivalent to∫
∞

t
γ1,n(F(x))γ1,n ln

[
F(t)
F(x)

][
f (x)

g[G−1(F(x))]
−1
]

dx≥ 0 .

Since h(x)=
γ ′1,n′
γ1,n

(F(x))γ ′1,n′−γ1,n is a nonnegative and increasing function, from Lemma 2.2, it follows
that ∫

∞

t
γ
′
1,n′(F(x))γ ′1,n′ ln

[
F(t)
F(x)

][
f (x)

g[G−1(F(x))]
−1
]

dx≥ 0 . (3.6)

The survival function of X
(1,n′,m̃′n′ ,k)

and Y
(1,n′,m̃′n′ ,k)

are given by FX
(1,n′,m̃′n′ ,k)

(x) = (F(x))γ ′1,n′ and

GY
(1,n′,m̃′n′ ,k)

(x) = (G(x))γ ′1,n′ , respectively. So, we have

fX
(1,n′,m̃′n′ ,k)

(x)

gY
(1,n′,m̃′n′ ,k)

[
G−1

Y
(1,n′,m̃′n′ ,k)

(FX
(1,n′,m̃′n′ ,k)

(x))
] =

f (x)
g[G−1(F(x))]

.

Therefore (3.6) is equivalent to X
(1,n′,m̃′n′ ,k)

≤DCRQE Y
(1,n′,m̃′n′ ,k)

. �

Theorem 3.3. Let X and Y be two nonnegative random variables with corresponding absolutely
continuous distribution functions F and G and let X(r,n,m̃n,k) and Y(r,n,m̃n,k), r = 1, · · · ,n be generalized
order statistics based on F and G, respectively. If X ≤disp Y , then

X(r,n,m̃n,k) ≤DCRQE Y(r,n,m̃n,k) .

Proof. Based on theorem 3.12 of [9], X ≤disp Y implies X(r,n,m̃n,k) ≤disp Y(r,n,m̃n,k). Furthermore, the
dispersive order implies the DCRQE order (see [23]).This proves the theorem. �
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Under the dispersive order between F and G, the random vectors of generalized order statistics
based on F and G are ordered by dispersive order (see [9]). From (2.3), we have the next corollary.

Corollary 3.1. Let X and Y be random variables with absolutely continuous distribution functions
F and G, respectively, and let X = (X(1,n,m̃n,k), · · · ,X(n,n,m̃n,k)) and Y = (Y(1,n,m̃n,k), · · · ,Y(n,n,m̃n,k)) be
random vectors of generalized order statistics based on F and G, respectively. If X ≤disp Y , then
X≤DCRQE Y.

Theorem 3.4. Let {X(r,n,m̃n,k), r = 1, · · · ,n} and {Y(r,n,m̃n,k), r = 1, · · · ,n} be the generalized
order statistics based on absolutely continuous distribution functions F and G, respectively. If
X(1,n,m̃n,k) ≤ew Y(1,n,m̃n,k), then X ≤DCRQE Y .

Proof. Suppose that X(1,n,m̃n,k) ≤ew Y(1,n,m̃n,k). From relation (2.3), we have

X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k) .

Therefore by Theorem 3.1, we conclude that X ≤DCRQE Y . So, the desired result is obtained. �

In the following theorem we consider the special case of generalized order statistics when
mi, i = 1, · · · ,n are equal.

Theorem 3.5. Let {X(r,n,m,k), r = 1, · · · ,n} and {Y(r,n,m,k), r = 1, · · · ,n} be m-generalized order
statistics based on absolutely continuous distribution functions F and G, respectively. If X ≤c Y
and f (0)

g(0) ≥ 1, then X(r,n,m,k) ≤DCRQE Y(r,n,m,k).

Proof. According to the definition of convex order, we have

f (x)
g[G−1(F(x))]

≥ f (0)
g(0)

≥ 1 . (3.7)

Since GY(r,n,m,k)(x) = ψr:n(G(x)), then G−1
Y(r,n,m,k)

(x) = G−1(ψ−1
r:n (x)). Therefore

G−1
Y(r,n,m,k)

(FX(r,n,m,k)(x)) = G−1
[
ψ
−1
r:n (FX(r,n,m,k)(x))

]
= G−1 [

ψ
−1
r:n (ψr:n(F(x)))

]
= G−1 [F(x)] .

But

gY(r,n,m,k)

[
G−1

Y(r,n,m,k)
(FX(r,n,m,k)(x))

]
= gY(r,n,m,k)

[
G−1 (F(x))

]
= φr:n (F(x))g

[
G−1 (F(x))

]
.

Thus

fX(r,n,m,k)(x)

gY(r,n,m,k)

[
G−1

Y(r,n,m,k)
(FX(r,n,m,k)(x))

] = f (x)
g [G−1 (F(x))]

≥ 1 , (3.8)

where the last inequality follows from (3.7). We must now prove that

∫
∞

t
FX(r,n,m,k)(x) ln

[
FX(r,n,m,k)(t)

FX(r,n,m,k)(x)

] fX(r,n,m,k)(x)

gY(r,n,m,k)

[
G−1

Y(r,n,m,k)
(FX(r,n,m,k)(x))

] −1

dx≥ 0 , (3.9)
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From (3.8), we have  fX(r,n,m,k)(x)

gY(r,n,m,k)

[
G−1

Y(r,n,m,k)
(FX(r,n,m,k)(x))

] −1

≥ 0 .

Since the survival function is nonnegative and decreasing, we see that FX(r,n,m,k)(x) ln
[

FX(r,n,m,k)
(t)

FX(r,n,m,k)
(x)

]
≥ 0

for each x > t. Now we see that the inequality (3.9) is valid, therefore the proof is complete. �

4. Stochastic comparisons between spacings of generalized order statistics

Here, we state conditions on distributions and parameters required for comparisons between the
simple (normalized) spacings of generalized order statistics based on a common distribution as well
as based on two distributions.
In view of Theorem 3.1 of [11] and diagram (2.3), we have the following corollary.

Corollary 4.1. Let {X(r,n,m̃n,k), r = 1, · · · ,n} and {Y(r,n,m̃n,k), r = 1, · · · ,n} be the generalized order
statistics based on strictly increasing continuous distribution functions F and G, respectively. If
mi ≥−1, for each i and X(1,n,m̃n,k) ≤DCRQE Y(1,n,m̃n,k), then

Ui,n ≤icx Vi,n, f or i = 1, · · · ,n .

In the following, we prove a useful lemma.

Lemma 4.1. Let {X(r,n,m̃n,k),r = 1, · · · ,n} be generalized order statistics based on an absolutely
continuous distribution function F. Further, let µ1,n(t) denote the mean residual life function of
X(1,n,m̃n,k). If F is DMRL (IMRL), then µ1,n(t)≥ (≤) µ(t)

γ1,n
, ∀t, where µ(t) denotes the mean residual

life function of X.

Proof. We know that the survival function of X(1,n,m̃n,k) is given by

FX(1,n,m̃n,k)
(x) = [F(x)]γ1,n . (4.1)

Since γ1,n ≥ 1, the desired result is obtained by a proof similar to the proof of Lemma 2.5 in [19].
�

The following theorem provides sufficient conditions for ordering the variance of simple spac-
ings of generalized order statistics. This theorem generalizes the results given in [26] in Theorem 3
(a) and (b) [taking into account [27]].

Theorem 4.1. Let X(1,n,m̃n,k), · · · ,X(n,n,m̃n,k) be generalized order statistics based on an absolutely
continuous distribution function F, where mi ≥−1 for each i. If X(1,n,m̃n,k) is IMRL and E(X2)< ∞,
then

(i) var(Ur+1,n)≥ var(Ur,n), if m1 ≥ ·· · ≥ mn.
(ii) cov(Ur,n,Ur+1,n)≥ 0.
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Proof. (i) follows immediately from Lemma 2.1 (ii), Theorem 3.1 and Lemma 2 in [40] and [26],
respectively.
To prove (ii), let µ1,n−i(.) denote the mean residual life function of X(1,n−i,m̃∗i,n,k). Then

E(X(i+1,n,m̃n,k)−X(i,n,m̃n,k)|X(i,n,m̃n,k) = t)

=
∫

∞

0
P
(
X(i+1,n,m̃n,k)−X(i,n,m̃n,k) > x|X(i,n,m̃n,k) = t

)
dx

=
∫

∞

0
P(X(i+1,n,m̃n,k) > x+ t|X(i,n,m̃n,k) = t)dx

=
∫

∞

0

(
F(x+ t)

F(t)

)γi+1,n

dx

=

∫
∞

t
(F(x))γi+1,ndx

(F(t))γi+1,n

= µ1,n−i(t) ,

where the third and fourth equalities follow from (2.1) and substituting x for x+ t, respectively.
Since the survival function of X(1,n−i,m̃∗i,n,k) is given by

FX(1,n−i,m̃∗i,n,k)
(x) = (F(x))γi+1,n , (4.2)

the last equality follows from (4.2) and the definition of a mean residual life function. The rest of
the proof is similar to that of Theorem 3 in [26] and hence omitted. This completes the proof. �

The following theorem generalized Theorem 4 (a) in [26] (see also [27]) that concerns variances
of successive generalized order statistics.

Theorem 4.2. Let X(1,n,m̃n,k), · · · ,X(n,n,m̃n,k) be generalized order statistics based on absolutely con-
tinuous distribution function F, where mi ≥−1 for each i. Further, suppose that X(1,n,m̃n,k) is IMRL
and E(X2)< ∞, then

var(X(i+1,n,m̃n,k))≥ var(X(i,n,m̃n,k)) .

Proof. Suppose that X(1,n,m̃n,k) is IMRL. As in the proof of Theorem 4 part (a) of [26], we have

var(X(i+1,n,m̃n,k)) = var(X(i+1,n,m̃n,k)−X(i,n,m̃n,k))

+ var(X(i,n,m̃n,k))+2cov(X(i+1,n,m̃n,k)−X(i,n,m̃n,k),X(i,n,m̃n,k)) ,

but

cov(X(i,n,m̃n,k),X(i+1,n,m̃n,k)−X(i,n,m̃n,k))

= cov(X(i,n,m̃n,k),E(X(i+1,n,m̃n,k)−X(i,n,m̃n,k)|X(i,n,m̃n,k)))

= cov(X(i,n,m̃n,k),µ1,n−i(X(i,n,m̃n,k)))

≥ 0 . (4.3)

Since X(1,n,m̃n,k) is IMRL, by Lemma 2.1(i), we conclude that X(1,n−i,m̃∗i,n,k) is also IMRL. Therefore
µ1,n−i(t) is increasing in t. Since the covariance between two increasing functions of a random
variable is nonnegative, the inequality (4.3) is obtained. So, the theorem is proved. �
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Theorem 4.3. Let X(1,n,m̃n,k), · · · ,X(n,n,m̃n,k) be generalized order statistics based on absolutely con-
tinuous distribution function F. If F is IMRL (DMRL) and E(X2)< ∞, then

var(X(1,n,m̃n,k))≤ (≥) 1
γ2

1,n
var(X) .

Proof. It is similar to Theorem 4 (b) of [26] [taking into account [27]] and hence is omitted. �

In replacement and repair strategies, although the shape of the hazard rate function plays an
important role, the mean residual life function is found to be more relevant than the hazard rate
function because the former summarizes the entire residual life function, whereas the latter involves
only the risk of instantaneous failure at some time t. Therefore, in some situations, it may be more
appropriate to use the mean residual life function to compare the lifetime of two devices. For a
comprehensive review on mean residual life function and its various applications in parametric as
well as nonparametric contexts the reader is referred to [29] and references therein. The following
theorem establishes the mean residual life order among normalized spacings of two samples of
generalized order statistics, when the distribution functions are ordered by mean residual life order
and one of them has an increasing mean residual life function while the other has a decreasing mean
residual life function. This theorem generalizes Theorem 3.3 in [19].

Theorem 4.4. Let X ≤mrl Y and X and Y are IMRL and DMRL, respectively; Then

Ũi,n ≤mrl Ṽj,m , f or i = 1, · · · ,n, j = 1, · · · ,m .

Proof. For each i, let ηX
i,n(t) and ζ X

i,n(t) denote the mean residual life function of Ui,n and Ũi,n

at t ∈ R+, respectively. Also let µX
1,n−i(t) denote the mean residual life function of X(1,n−i,m̃∗i,n,k)

at t ∈ R+, where m̃∗i,n = (mi+1, · · · ,mn−1). The corresponding notations for random variable Y are
ηY

j,m(t), ζY
j,m(t) and µY

1,m− j(t). As shown in [40],

η
X
i,n(t) = E

[
µ

X
1,n−i+1(t +U1)

]
, t ∈ R+ ,

η
Y
j,m(t) = E

[
µ

Y
1,m− j+1(t +U2)

]
, t ∈ R+ ,

where U1 and U2 are random variables. Then

ζ
X
i,n(t) = γi,n η

X
i,n

(
t

γi,n

)
,

and

ζ
Y
j,m(t) = γ j,m η

Y
j,m

(
t

γ j,m

)
.

The rest of the proof is similar to that of Theorem 3.3 in [19] and hence omitted. �

The following corollary follows from Theorem 4.4 and Proposition 2.1.

Corollary 4.2. Under the same conditions as in Theorem 4.4, if, in addition, X(1,n,m̃n,k) or Y(1,m,m̃m,k)
or both are IMRL, then

Ũi,n ≤ew Ṽj,m , f or i = 1, · · · ,n, j = 1, · · · ,m .

Remark 4.1. If X is DFR(IFR), then X(1,n,m̃n,k) is IMRL(DMRL).
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In many practical applications such as biological science, physics, engineering and manufacture,
the available data can be interpreted as lifetimes and it is important to predict future observations.
So probability distributions are often used in survival analysis for modeling data, because they offer
insight into the nature of various parameters and functions.
The following examples illustrate some situations where Theorems 4.1-4.4 and Corollary 4.2 are
applicable.

• The generalized modified Weibull distribution (GMW(α,γ,λ ,β )) is introduced in [12]
that contains, as special sub-models, the Weibull, exponentiated exponential, exponentiated
Weibull, generalized Rayleigh, modified Weibull and some other distributions. For γ ≥ 1
and 0 < β < 1 (0 < γ < 1 and β > 1), this distribution is IFR (DFR).

• A new DFR lifetime distribution is introduced in [13] by combining a power series distri-
bution truncated at zero with some exponential distributions and is named the exponential-
power series (EPS) distribution. This distribution includes as special cases, lifetime dis-
tributions presented in [1], [30] and [38]. The hazard rate function is decreasing for all
elements of the power series distributions.
• A new lifetime class with decreasing failure rate, called the Poisson lifetime distribution

(PL), is introduced in [2]. It is obtained by compounding truncated Poisson distribution and
a lifetime distribution fY (y).

• The exponential-Weibull distribution is proposed in [14] which is denoted by EW(α,β ,γ)

and for γ < 1 (γ > 1) is DFR (IFR).
• The exponentiated exponential-Poisson distribution (EEP (β ,λ ,α)) is introduced in [35].

The hazard rate function is decreasing (increasing) for 0 < α ≤ 1 (α > 1 and 0 < λ <

1−1/α).
• A general family of continuous lifetime distributions is obtained by compounding any

continuous distribution function G(.) and the Poisson-Lindley distribution. This family
is named PoissonLindley-G distribution and introduced in [3]. If the hazard rate func-
tion of G(.), i.e. hg(x) = g(x)/[G(x)] is decreasing, then the hazard rate function of it is
also decreasing. The Weibull PoissonLindley (WPL) distribution, the Burr PoissonLindley
(BPL) distribution, the exponentiated Weibull PoissonLindley (EWPL) distribution and the
Dagum PoissonLindley (DPL) distribution are some special cases of this distribution.
• The generalized linear failure rate distribution (GLFRD(a,b,θ)) is introduced in [36]. The

Linear failure distribution, Generalized exponential distribution and Generalized Rayleigh
distribution are some special cases of this distribution. One can easily verify that: (i) if
θ = 1, the hazard function is either increasing (if b > 0) or constant (if b = 0 and a > 0);
(ii) when θ > 1, the hazard function is always increasing; and (iii) if θ < 1, then the hazard
function will be either decreasing if b = 0 or bathtub if b > 0.

5. Concluding remarks

Generalized order statistics have been of interest in reliability theory, statistical modelling and infer-
ence because of their flexibility. They unify the study of several cases of ordered random variables.
In this paper, we have obtained several results concerning the comparison of generalized order
statistics in terms of the dynamic cumulative residual quantile entropy order and proved that when
X(1,n,m̃n,k) is IMRL, the spacings of generalized order statistics are ordered by variance, and that the
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covariance between successive spacings is nonnegative. We also compared the variance of succes-
sive generalized order statistics. Finally, we compared the normalized spacings of generalized order
statistics based on different distribution functions in terms of the mean residual life order and gave
examples to illustrate situations where the theorems are applicable.
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