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Abstract 

Although conventional multi-objective evolutionary optimization algorithms (MOEAs) are proven to be effective in 
general, they are less superior when applied to solve a large-scale combinational real-world optimization problem 
with tightly coupled decision variables. For the purpose to enhance the capability of MOEAs in such scenarios, one 
may consider the importance of interaction topology in information exchange among individuals of MOEAs. From 
this standpoint, this article proposes a non-dominated sorting genetic algorithm II with dynamic topology 
(DTNSGAII), which applies a dynamic individual interaction network topology to improve the crossover operation. 
The dynamic topology and inter-individual interaction are determined by the solution spread criterion in the 
objective space as well as the solution relationships and similarities in the decision space. The combination of two 
aspects contributes to the balance of the exploitation and exploration capability of the algorithm. Finally, as an 
example to real-world applications, the DTNSGAII is used to solve a network-wide flight trajectory planning problem, 
which demonstrates that the application of dynamic topology can improve the performance of the NSGA-II. 
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1. Introduction 

Effective optimization algorithms are constantly in great 
need as optimization problems are pervasive in both the 
fields of science and industry. Many of these real-world 
problems require a “quality” vector that is usually 
composed of distinct attributes such as cost and 
performance. However, these attributes are often in 
mutual conflict. Because of the conflicting objectives 
and complicated decision space, it is commonly 
impossible to find a single optimal solution for such 
multi-objective problems, but rather a set of solutions 
known as the Pareto front. Evolutionary algorithms 

(EAs), being stochastic population-based search 
methods that simulate the process of evolution, are 
recognized to be suitable for multi-objective 
optimization problems (MOP) with the idea of 
reproduction, recombination, and selection1-3. 

For multi-objective evolutionary algorithms 
(MOEAs), the optimality of solutions should be a 
minimization of the distance between the solution set 
and the true Pareto front, while a thorough exploration 
of the search space should be guaranteed by finding a 
set of solutions as diverse as possible in the objective 
space. A series of works has been carried out to 
investigate the methods to balance the goal of 
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convergence and diversity. However, most of them kept 
eyes on using the features of the objective vector to 
control the selection operator by Pareto based rank 
assignment or sorting schemes, like niche sharing4, 
hyper grid5, crowding distance6, or based on 
performance indicators7-9. In fact, a careful design of 
genetic operators in MOEAs could facilitate the 
exchange of information between individuals, introduce 
genetic diversity into the chromosomal pool and 
convergence to the optimum10. In order to achieve this 
goal, most works tend to dynamically adjust the 
probability of genetic operations as e.g. in Ref. 10. 
Nonetheless, modifying the scheme of mating selection 
is one of the latest areas to pursue11-14.  

In recent studies, complex network structural 
properties were employed to represent the interaction 
structure among individuals in EAs15-17, which results in 
outstanding performance on the benchmarks for one 
objective optimization problems. However, it has not 
been verified in more complicated real-world problems. 
To overcome the weakness of conventional genetic 
operators in MOEAs that ignore the feature of 
individual solutions and the interaction structure among 
them especially when dealing with the real-world 
problems, this paper proposes a modified crossover 
mechanism considering the dynamic individual 
interaction network topology determined by the 
problem-specific features. This new algorithm is named 
the non-dominated sorting genetic algorithm II with 
dynamic topology (DTNSGAII), whose individuals are 
connected into a directed irregular network. The 
network degree of individual interaction topology varies 
dynamically depending on the spread criterion of 
population in the objective space. Furthermore, 
DTNSGAII conducts inter-individual interactions 
according to their relationships and similarities in the 
decision space.   

For empirical study, a network-wide flight trajectory 
planning (NFTP) problem in China is given to verify the 
efficacy and the practicability of the DTNSGAII for 
solving the multi-objective real-world problem. The 
NFTP aims to reconcile the spatio-temporal 
contradiction of safety and efficiency existing in current 
air traffic management systems18. It tries to generate 
flight trajectory plans over the whole air traffic network 
with a minimum number of conflicts as well as a 
minimum amount of trajectory adjustment cost. 
Considering the large scalability, high complexity, 

nonlinear and discontinuous characteristics of this 
specific type of strategic flight planning problems19,20, 
DTNSGAII is equipped with a problem-specific 
heuristic to form individual topology. Finally, it is 
demonstrated that the optimization results obtained by 
DTNSGAII are more promising than traditional NSGA-
II.  

The rest of the paper is organized as follows: In 
Section 2, the basic NSGA-II for the multi-objective 
optimization problem is briefly explained, and an 
overview of related works that inspire this modified 
algorithm is given. The next section is devoted to 
describe our proposed DTNSGAII which utilize the 
complex networks structural properties. In the 4th 
section, DTNSGAII is tailored for the optimization of 
the NFTP problem. We also demonstrated the efficacy 
of the dynamic topology and the superiority of 
DTNSGAII over NSGA-II in this section. Finally, in 
Section 5 the results are summarized.  

2. Evolutionary Algorithm For the Multi-
objective Optimization Problem 

The target of a MOP is to optimize several conflicting 
objective functions simultaneously. It can be expressed 
as 
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where Ω  is the decision (variable) space, : mf X → R  
consists of m  real-valued objective functions and mR  
is called the objective space. 

MOEAs seek out the Pareto optimal solutions 
through its stochastic population-based search features 
and has obvious advantages of addressing 
discontinuous, non-differential, and non-convex 
problems in the real-world applications. A number of 
MOEAs have been developed in the past decades, 
among whom the NSGA-II6 proposed by Deb et al. is 
one of the most widely used methods. It uses non-
dominated sorting, crowded-comparison approach and 
elitism selection to greatly reduce the computational 
complexity, as well as to improve the diversity of the 
solutions and ensure the convergence. However, the 
deficiency of NSGA-II is caused by the limitation of the 
improvement for crossover and mutation operators 
when dealing with the real-world problems. 
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The focus of this paper is on the improvement of 
crossover operations. In relation to this issue, several 
articles, like Ref. 10, have proposed to investigate the 
dynamic crossover probability instead of a fixed 
crossover probability, by first exploring and then 
exploiting the searching space. This idea reflects the 
design of a trade-off between convergence and diversity, 
however, it somehow ignores the interaction structure 
and the relationship among the populations. To 
overcome this disadvantage, methods proposed in Refs. 
11, 13 and 14 divide the objective space of the 
optimization problem into fixed sub-regions, and use 
these partitions as a mating restriction scheme to select 
the pairs of mating parents. Sun and Shen12 used three 
different measures of variable distances to control the 
mating selection. In reality, the decision and objective 
spaces can be highly complicated, so that merely relying 
on a single relation between individuals can hardly 
affect the optimization performance. Therefore, the 
features of individual, individual relationships and the 
interaction structure among them, both in the decision 
space and objective space of the problem, should be 
taken into consideration. Besides, algorithms that can 
dynamically solve the problem according to the 
problem-specific knowledge are necessary when dealing 
with real-world problems.  

3. Non-dominated Sorting Genetic Algorithm II 
with Dynamic Topology (DTNSGAII)  

Crossover is the main new individual generator in 
the solution space for conventional genetic algorithms. 
The crossover operator randomly selects two different 
individuals pair-by-pair to be mating parents from the 
crossover pool, and the crossover probability is used to 
determine whether these parents should be combined. 
The gene information from parents are crossed and 
combined, then the good characteristics can be passed 
down to their child. These inter-individual interactions 
in the population can be interpreted as a complex 
network, in which the individuals are represented as 
nodes and when two of them are selected for crossover.  
The nodes of two as nodes individuals, which are 
selected for crossover, are then connected by an edge, 
representing the possible interaction. The produced 
child will naturally replace one of the parent nodes. The 
canonical genetic algorithm defines that the crossover 
could be executed between any two individuals, and the 

interaction structure can be represented by an undirected 
fully-connected topology without network node 
inheritance. This high-density individual interaction 
network has high average node degree which means, 
that the produced children have relatively satisfactory 
spread. However, due to the high randomness, an 
improvement of quality among the children regarding 
the target space cannot be guaranteed. A ring-like 
network with low-density topology might limit the 
demission of the diversity information but could benefit 
from the simple connections. Once the selected parent 
crossover with fit mates, it is more possible to produce 
offspring of good quality. 

Based on the influence of network topology on the 
produced offspring, the multi-objective genetic 
algorithm with dynamic topology (DTNSGAII) first 
uses the spread of solutions in the objective space to 
control the crossover operation. Afterwards, it decides 
how many possible information interactions that one 
individual could make to trade off the exploration and 
exploitation throughout the optimization process. The 
algorithm uses the feedback of a spread criterion of the 
population along the evolution process to modify the 
node-degree of the network.  

The spread criterion is defined as following: 

 ( )
1

1

1

Pop
ii

d
Pop

Pop

−

=∆ =
−
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where Pop  is the evaluated population, Pop  is the 
number of solutions in Pop , and id  is the Euclidean 
distance between the i th left and the ( i +1)th left 
solution values in Pop . High values of ( )Pop∆  
indicate a good distribution of solutions in the objective 
space.  

The value of network node degree D  varies along 
with the value of ( )Pop∆ . When the spread criterion is 
likely to be small in one generation, we apply the 
strategy of improving the node degree with the purpose 
to make the population scattered in future generations. 
Conversely, if the current population has a satisfactory 
spread, D  will be reduced and the exploitation 
capability will be emphasized. Briefly speaking, D  will 
vary inversely with ( )Pop∆  and can be expressed as 
shown in Eq. (2): 

 
( )

2
1

Pop
D b

a Pop
 

= + × ×D − 
, (2) 

where a , b  are weighting factors, defined by the user.  
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Network node degree only decides the size of the 
mating pool of each parent individual. The individual 
interaction network formulated by the aforementioned 
scheme is simply a nearest-neighbor coupled network 
(Fig. 1(a))15 with all nodes sharing the same degree. 
DTNSGAII can also decide the mating candidates for 
each parent according to the features and the similarity 
of solutions in the decision space. To tackle a real-world 
problem, which always have large-scale and tightly 
coupled combinatorial decision variables, the coupling 
relationship and problem-specific knowledge of 
decision variables can be used to locate the connected 
neighbors of individuals in the interaction network. A 
user defined problem-specific mapping procedure 

:M Ω→Ψ  could map any n  dimensional variable 
vector ( )T

1 2, , nx x x= ∈Ωx 2  to a k  dimensional 

information vector space Ψ , with the expression 
( )M=z x .  ( )1 2, , T

kz z z= … ∈Ψz  is the information 
vector and normally has k n<  to reduce the problem 
dimensionality. In this way, the burden of describing the 
relationship among variable vectors is transferred to the 
information space. Normally speaking, the mapping 
procedure :M Ω→Ψ  is more capable of describing the 
proximity or similarity of the variable vectors when 
using the distances between information vectors. The 
user can denote all the individuals of the population as 

1 2, , Pop…z z z  in the information space. According to the 
definition of :M Ω→Ψ , the user can then determine the 
adjacent relationship 

i j
λz z between individuals in the 

individual interaction network. Generally, parent 
individuals tend to connect to mates with radical 
differences. Therefore, the chances are increased to 
combine distinctive genes in the subsequent generation 
and avoid inbreeding. Furthermore, the possibility of 
passing down hybrid vigor to the children is improved. 

So far, the interaction network is converted to an 
irregular network as shown in Fig. 1(b) with the same 
network density. Noted that the out-degree of an  
irregular network is OD D= , and the in-degree of each 
node on the other hand may be diverse  but   . Two 
solution spaces that influence the crossover performance 
have been both taken into consideration to form a 
dynamic directed interaction network and thus to 
control the crossover operation. An improvement of the 
NSGA-II for a better exploration and exploitation 
capability aiming at real-world problem is realized. 

Finally, Fig. 2 lists the pseudo-code of improved 
crossover operation of the DTNSGAII. 

4. Real-world Application: Network-wide Flight 
Trajectory Planning 

The optimization of a network-wide flight trajectory 
planning (NFTP) is used in this section as an example to 
demonstrate the performance of the proposed 
DTNSGAII for solving a practical engineering problem. 
The NFTP problem is a constrained MOP which has the 
characteristics of large scalability, non-linearity and 
discontinuity, and thus challenging for the conventional 
MOEAs.19 This particular NFTP problem relates to an 
air route network (ARN) with the aim of adjusting all 
the strategic trajectories to operate in a safe environment 
with the least costs. Traffic management initiatives 
(TMI), including ground holding, rerouting and flight 

(a) (b)  

Fig. 1.  Illustration of an interaction network, consisting of 12 
individuals. (a) Nearest-neighbor coupled network with 

4D = . (b) Directed irregular network with O 4D D= = . 

 

Fig. 2.  The pseudo-code of improved crossover operator of 
DTNSGAII. 

Input: Parent population parentPop , OD , 
i j

λz z , crossover 

probability cP  
Process: 
1. For

parent1:i Pop= do 

2. Sort Pop  population according to 
i j

λz z based on any user 

defined order and record the population in an array [ ]iID ; 
3.    If ( crand(0,1) P< ) do 
4.         For O1:j D= do 

5.            Neighbor container [ ] [ ]( ). ;i pushback jNeighbor ID  

6.         End for 
7.         Randomly choose one from set [ ]p i= Neighbor apply 

( ) [ ]Crossover , childreni p Pop i ; 
8.        Else  
9.         [ ] [ ]childrenPop i Pop i= ; 
10.  End if 
11. End for  
Output: Children population childrenPop  
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level allocation, are used in our model to distribute the 
trajectories induced by traffic demands evenly over time 
and the 3D airspace. Optimized planning should also 
guarantee that all airports and flights satisfy their 
capacity and performance limitations. In this section, we 
first introduce the model of the NFTP problem. 
Subsequently, DTNSGAII is adapted to solve the NFTP 
problem, equipped with a problem-specific heuristic to 
form the dynamic individual interaction network. The 
optimization results obtained by DTNSGAII are 
subsequently shown and analyzed. 

 Optimization Model for the NFTP problem 4.1.

The ARN trajectory planning problem considered 
can be represented as a layered structure as shown in 
Fig.3. In the vertical plane, it is divided into several 
flight levels define within the set L . For each flight 
level, the horizontal plane is a directed graph ( , )N A  
where N  is the set of nodes (airports and crossing 
waypoints CW  are surround by conflict region CR  
surrounded, which are depicted as red circles in Fig.3), 
while A  is the set of arcs (air routes).21 The set CW 
includes all airborne waypoints. Any CW constitutes a 
CR, but the radius of CRs are different. A reasonable 
value for the size of a CR is determined in dependency 
of various factors, like e.g. the separation standard or 
the angle of intersecting routes.  Besides, a temporal 
discretization has been applied to the problem model. 
The sampling duration sT  of discrete time-slots in set T  
is defined by users. Once the ARN is given as well as 
flight f  along with its route fr , departure time f

dt , 
flight level fl , and the constant cruising speed, the 
flight trajectory in the network can be calculated and be 
expressed by the 3D coordinates and the time-slot when 
flight arriving each conflict region CR . Particularly, 

the 0-1 variable defined in Eq. (3) is used to better 
explain the model: Particularly the variable , ,

f
t n lx , which 

is defined in Eq. (3), is appropriate to gain a better 
understanding of the model: 

, ,

1, if flight  is in  at level  at time 
=

0,
nf

t n l

f CR l t
x

otherwise




, (3) 

for all the f  in the flight set F , l  in the level set L , 
n in N , and t  in the set of time steps T . 

The intersecting or overlapping trajectories may 
induce conflicts when aircraft are close to each other in 
the same CR. The main target in safe ATFM is the 
minimization of potential airborne conflicts. 

, ,

 2 , , , ,
1

( 1)
2t n l

t n l t n l
K

L N T L N T

K K
Obj C

−
= =∑∑∑ ∑∑∑ . (4) 

, , , ,
f

t n l t n lF
K x= ∑ , which is the number of flights in CR 

n   at level l  at time-slot t .  
To avoid as many potential conflicts with other 

aircraft as possible, the reference trajectory of a flight 
could be significantly modified by TMIs thus deviating 
far from the original plan. However, the cost of solving 
potential conflicts also needs to be evaluated from an 
economical perspective. Essentially, we propose to 
minimize a combination of three trajectory modification 
cost components and maintain equity among the 
modified flights. The objective function can be 
expressed as 

 2 min( )p q
GH AH FLObj Cost Cost Cost= + + , (5) 

where the three parts are
GH f f

GH d origdF
Cost W t t= ⋅ −∑ , 

( ( ))AH f f f f
AH a origa d origdF

Cost W t t t t= ⋅ − − −∑ , 

FL f
FL f origF

Cost W l l= ⋅ −∑ . f
origdt , f

origat , f
origl  are, 

respectively, the original departure, arrival, and flight 
level of flight f . Imposing airborne holding or flight 
level changes causes more fuel cost than applying no 
adjustment. In this paper, ground holding and airborne 
holding costs GHCost  and AHCost  are positively 
proportional to the holding time. Flight level cost 

FLCost   is defined to be positively proportional to the a 
change of flight level. Besides, although each part of the 
cost has a different definition, decision makers could 
make them normalized to the same cost unit and their 

 

Fig. 3.  Illustration of the ARN. 
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cost proportions close to the reality by utilizing the 
exponential proportional factors p , q  and weights sW  
(all are positive integers). 

Considering efficiency, equity, and aircraft 
performance, each element in a trajectory should be as 
close as possible to their scheduled value. The model's 
constraints sets are as follows: 

 ,f fr R f F∈ ∀ ∈  (6) 

 , ,f f f f
f orig FL orig FLl l N l N L f F ∈ − + ∈ ∀ ∈   (7) 

 , ,f f f f f
d origd GH origd GHt t T t T T f F ∈ − + ∈ ∀ ∈   (8) 

 ( ) ,f f f f f
a origa d origd AHt t t t T f F− − − < ∀ ∈  (9) 

 , ,0 , ,f n airport
t n t

f F
x Ca n N t T

∈

≤ ∀ ∈ ∀ ∈∑  (10) 

The constraints set in Eq. (6) claim that the range of 
route changes for flight f  should be within fR , which 
is the set of routes available, and note that the original 
route is normally the shortest route for f . The 
constraints set in Eq. (7) stipulate that each flight can 
change its level at most f

FLN  levels. The two sets of 
constraints (8) and (9) ensure that ground and airborne 
holding times will not exceed the bounds f

GHT  and f
AHT

. In Eq. (10) the airport capacity constraints are defined. 

A binary , ,
f

t n lx  with 0l =  means that flight f  is either 
departing from or arriving at airport n  at time t . The 
number of all the flights at airport n  at time t  will not 
exceed airport capacity n

tCa . 

 Full Details of DTNSGAII for the NFTP 4.2.

The problem-specific mapping procedure :M Ω→Ψ  
of DTNSGAII first transforms each combination of 
decision variables into an information variable. For the 
NFTP problem model, the interaction between flights 

if  and jf , i.e., ijφ , is defined as follows: 

 
, , , ,

, ,

ji

j

ff
t n l t n l

L N T
ij f

t n l
L N T

x x

x
f =

∑∑∑
∑∑∑

 (11) 

Note that jiφ  and ijφ  may not be equal, i.e., the 

matrix. Matrix 
*ij F F

φ =  Φ  is asymmetric. Summation 

over row i  of matrix Φ  represents a measurement of 
the total spatial-temporal overlap degree between flight 

if  and all the other flights, defined as TI value 

\{ }
i ij

j F i
φ

∈

F = ∑ . Since the decision variables are directly 

encoded into a solution chromosome for the NFTP 
problem, a chromosome of length F  represents an 

operational plan for all trajectories in the airspace and a 
gene on the chromosome represents a flight trajectory 
plan. Thus, as shown in Fig.4, a vector of variables can 
be transformed into a single variable based on TI. 

Next, each individual can be mapped to a point in a 
F -dimensional information vector space Ψ as a 

vector ( )1 2, ,...i i i FF F F . The distance ijd  between 

points describes the similarity of two individuals in the 
variable space, which are regarded as 

i j
λz z  in 

DTNSGAII. For any given individual i , all other 
individuals are sorted in descending order according to 

ijd . 

Unfortunately, there can be no certainty that 
genetic operators always generate feasible 
solutions. If any violation happens on a 
particular gene, it will be set to a closest 
boundary value of the corresponding set 
according to Eqs. (6)-(9) in DTNSGAII. 

 Optimization Performance 4.3.

 Two parts of computational experiments are 
hierarchically carried out to demonstrate the 
contribution of this paper for solving the NFTP problem 
in this subsection. The influence of the dynamic degree 

d
fτ

fr

fl

1
dτ

1r
1l

1R

1L

1T
fT

fR
fL

Trajecτories 
Inτeracτion 

value 1Φ ΦΦfΦ

d
Φτ

Φr
Φl

 

Fig. 4.  Exemplary encoding of the encoding of a chromosome 
and the vector in information space. 
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of individual interaction network alone on the 
performance of the optimization are shown firstly. Next, 
the effectiveness of integrated DTNSGAII with the 
directed dynamic network is verified. The domestic 
flight plan data of China we used for the experiments 
were extracted from an existing flight schedule database 
(data courtesy: Aviation Data Communication 
Corporation, Beijing) of December 3rd, 2015 from 
0800-1200 a.m.  

For all test cases in the following comparisons, a 
constant population of randomly generated 100 
individuals is used and the optimization process is 
continued for up to 200 evolution generations. The 
values for the crossover and mutation probability are 0.9 
and 0.1, respectively. Due to the stochastic nature of the 
algorithm, each test problem is solved 10 times and the 
averaged performance metrics are compared. 

The algorithms were all implemented in C++, and 
the experiments were performed on a Windows Server 
with 2.10GHz CPU and 16GB of RAM. All the 
outcomes were collected on the basis of 20 independent 
runs. To normalize each part of Eq. (5) which has 
different definitions for the same cost unit, the problem 
parameters are set as 1p = , 3q = , 2GHM = ,

2AHM = , 3FLM = , 20sT s=  to adapt the model 
optimally to the conditions of the Chinese airspace and 
the survey of airline costs21. 

4.3.1. The effect of DTNSGAII with dynamic nearest-
neighbor coupled network topology 

Three experimental cases with different ARN sizes 
and operation scales are: 

Case 1: Small size ARN with 20 airports, around 

500 CWs; 156 flights which depart during 0800-1100 
a.m. 

Case 2: Medium size ARN with 50 airports, more 
than 700 CWs; 334 flights which depart during 0800-
1200 a.m. 

Case 3: Large size ARN with 115 airports, more 
than 1600 CWs; 536 flights which depart during 0800-
0900 a.m. 

The most favorable indicator called the 
Hypervolume indicator ( HI )22 for assessing MOEAs is 
used to quantitatively evaluate the compared cases and 
the proposed algorithm. The metric HI  takes into 
account both the convergence and diversity situation, 
reflecting an overall quality of the obtained non-
dominated set. To better exhibit the optimization 
performance for the NSGA-II with different interaction 
network node degree, normalized HI  are computed for 
the three cases in Fig. 5. Because of the randomness of 
the crossover operation and the effect of selection of 
NSGA-II, no fixed best value of D  exists for all the 
cases, which matches the feature of stochastic 
optimization. However, according to the distribution of 
relatively high HI  values, reasonable weighting factors 

a , b  are chosen for fitting the dynamic function in Eq. 
(2) for different cases. The dynamic results of the three 
cases turns out to outperform the fixed results. The node 
degree D  controlled by the varying diversity measure 
accomplishes a better HI  due to the fact that a dynamic 
D  affects the convergence of the population and retains 
the diversity  to a certain extent. 

Taking case 1 as an example to verify this 
observation, the curves depicting the variation of the 

    
Fig. 5.  Average normalized HI  from 10 independent runs of 
three cases with different network node degree as well as 
dynamic degree. 

  
Fig. 6. Evolution curves of the average ∆  from 10 
independent runs when 2D = , 100D =  and network degree is 
dynamic, as well as the variation of average dynamic degree. 
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average spread values throughout the evolution for 
2D = (ring network), 100D = (fully-connected 

network) and for D  based on a dynamic function with  
0.0055a = , 141b = . One of the curves in Fig. 6 also 

shows the variation of average dynamic D . When D  
is large, information is disseminated too fast in the 
initial period of evolution and an optimum area is 
quickly located, but the exploitation reduces the spread 
of the whole population in the middle and late phases of 
the evolution. When D  is small, the spread value 
remains at a stabilized level since better genes are not 
totally disseminated and copied, and thus may lead to 
unsatisfactory convergence results. A dynamic D  finds 
a balance between these two characteristics and 
moderated the information transmission speed of the 
individual interaction network. In the beginning of the 
evolution, the initial population is spread well out in the 
objective space. The node degree D  should be reduced 
to moderate the exploration and exploitation. The 
diversity of the population is decreasing along with the 
evolution process; the optimization converges to the 
Pareto front but might converge to the wrong area. To 
fix this phenomenon, the value of D  is increased to 

improve the distribution of the population. Clearly this 
process feedbacks to control the spread changing 
through the evolution and finally influences the quality 
of the solutions as shown in Fig. 5. 

4.3.2. The effect of DTNSGAII with directed irregular 
dynamic network topology 

The contribution of DTNSGAII has two aspects. 
The aforementioned analysis of dynamic D  only 
checks the influence of the different quantities of 
possible crossover individuals. An integrated individual 
interaction network needs to be a directed irregular 
network with dynamic OD  which also lists the specific 
crossover individuals according to their relationship in 
the decision space. As long as the information comes 
from both the decision and objective space, DTNSGAII 
demonstrates a more superior performance. In Fig.7, 
triangle solutions are non-dominated solutions of a 
simplified version of DTNASGII, where the interaction 
network is a nearest-neighbor coupled network that does 
not contain complicated adjacent relationship between 
each individual. Compared to NSGA-II, the algorithm 
considering individual interaction relationship 
outperforms the others on effectiveness for fitter 
solutions. Without the limitation of the nearest-neighbor 
coupled network topology, the non-dominated solutions 
would be better. 

Besides the direct perception from Fig.7, the 
efficiency of the three algorithms also has been 
analyzed. The growth curves of  HI  as the evolution of 
generations are plotted in Fig.8. With the same 
initialization, all algorithms have similar evolution 
trends but at different convergence rates. The simplified 
version of DTNASGII clearly shows a higher efficiency 
than NSGA-II. Besides, since it is confined to the 
nearest-neighbor coupled network topology to the 
crossover operation, the simplified version of 
DTNASGII falls behind the DTNSGAII with directed 
irregular network topology until the evolution goes to 
the midterm. As demonstrated by the red lines and the 
red circles in Fig.7, it is beneficial to increase the 
possibility for a parent to combines genes with mates 
which show radical difference. The DTNSGAII with 
directed irregular network topology avoids inbreeding 
and increases the possibility of passing down hybrid 
vigor to children in the beginning of the evolution. 
Although at the cost of losing the preemption, this 
diversity-keeping and information-controlling method 

    
Fig. 8.  Evolution curves of the average HI  for the compared 
algorithms from 10 independent runs. 

  
Fig. 7.  Non-dominated solutions obtained by the compared 
algorithms over 10 independent runs. 
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enables DTNSGAII to outperform other alternatives in 
the end, which caters to the operational need of the 
industry that tends to focus more on a superior 
optimization outcome. 

5. Conclusion 

The conventional NSGA-II overlooks the feature of 
individual solutions and the interaction structure among 
them, and therefore encounters challenges in solving 
large-scale complicated real-world problems. To 
address this issue, this paper developed a DTNSGAII 
algorithm, where individuals are connected into a 
directed irregular network. The network degree of 
individual interaction topology varies dynamically 
according to the spread of population in the objective 
space. In the meantime, DTNSGAII conducts crossover 
according to individual relationships and similarities in 
the decision space. The application of dynamic topology 
was demonstrated to balance the needs of diversity 
maintenance and convergence capability of the 
algorithm when solving the NFTP problem. Although 
preliminary results are promising, DTNSGAII was 
tailored to resolve one particular problem. In future 
research, it is also worthwhile to investigate other 
dynamic patterns of the individual interaction topology 
to improve applicability and effectiveness of the 
DTNSGAII.  
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