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Abstract 

Topology plays an important role for Particle Swarm Optimization (PSO) to achieve good optimization 
performance. It is difficult to find one topology structure for the particles to achieve better optimization 
performance than the others since the optimization performance not only depends on the searching abilities of the 
particles, also depends on the type of the optimization problems. Three elitist set based PSO algorithm without 
using explicit topology structure is proposed in this paper. An elitist set, which is based on the individual best 
experience, is used to communicate among the particles. Moreover, to avoid the premature of the particles, different 
statistical methods have been used in these three proposed methods. The performance of the proposed PSOs is 
compared with the results of the standard PSO 2011 and several PSO with different topologies, and the simulation 
results and comparisons demonstrate that the proposed PSO with adaptive probabilistic preference can achieve 
good optimization performance. 

Keywords: Particle swarm optimization; Statistical method; Topology structure; Elitism set. 

1. Introduction 

Many systems need to solve more than one nonlinear 
optimization problems. However, the analytical 
methods may be in difficulty in improving the slow 
convergence and the curse of dimensionality, various 
bio-inspired optimization algorithms can be good 
choices.  There are two of the most famous swarm 
intelligence based optimization algorithms, one is the 
ant colony optimization which was proposed by Dorigo 
[12]. The other one is particle swarm optimization 
(PSO) which was proposed by Kennedy and Eberhart 
[11]. PSO has been widely studied from various 
perspectives such as in artificial life, social psychology, 
engineering, computer science and so forth since there 

are more and more researchers are interested in PSO 
[14].  
The topology of the particle swarm has great effect on 
the optimization performance. The topology structures 
of particles have been studied in two general types of 
neighbourhoods: 1) global best ( bestg ) and 2) local best 
( bestl ) [4, 5]. In the neighborhood, the particles are 
attracted to the best solution found by any member of 
the swarm, and it represents a fully connected network 
in which each particle has access to the information of 
all other members in the community as shown in Fig. 
1(a) [4]. However, in the case of using the local best 
approach, each particle has access to the information 
corresponding to its immediate neighbours, according to 
a certain swarm topology [4]. These two most common 
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‘local best’ topologies are the ring topology, in which 
each particle is connected with two neighbours as 
shown in Fig. 1(b), and the wheel topology (typical for 
highly centralized business organizations), in which the 
individuals are isolated from one another and all the 
information is communicated to a focal individual as 
shown in Fig. 1(c) [4]. 

 
Fig. 1. Swarm topologies. (a) Global best. (b) Ring topology. 
(c) Wheel topology. (d) Pyramid topology. (e) Von Neumann 
topology [4]. 
 
Kennedy [6] suggested that some versions as shown in 
Fig. 1 converge fast but may be easily trapped in a local 
minimum, while others have more chance to find an 
optimal solution although with slower convergence. 
Kennedy and Mendes [4, 7] have evaluated all 
topologies in Fig. 1, as well as the case of random 
neighbours. In their investigations with a total number 
of 20 particles, they found that the best performance 
occurred in a randomly generated neighbourhood with 
an average size of five particles. The authors also 
suggested that the Von Neumann configuration may 
perform better than other topologies including the  
version. Nevertheless, selecting the most efficient 
neighbourhood structure, in general, depends on the 
type of problems. One structure may more effective for 
certain types of problems, yet has a worse performance 
for other problems [4]. Recently some PSOs with 
dynamic topology have been proposed to avoid the 
problems caused by the fixed topology. In [22], the PSO 
with dynamic random population topologies has been 
proposed and the dynamic topologies are determined 
based on the degree of a particle in the swarm or the 
average degree of a population. In [23] a fitness-driven 
edge-changing (FE) topology based PSO was proposed. 
A PSO with dynamic topology and a conservation of 
evaluations strategy was proposed in [24]. The 
performance can be improved if the dynamic topology 

is used properly [22-24]. However, the topology is still 
used in the proposed versions of PSO and there may be 
the similar problems as in the PSO with fixed topology. 
Hence it would be better to apply the topology free 
method to the algorithms than those topology structure 
reliant algorithms. 
 
In this paper, one elitist set based PSO is proposed and 
the proposed method does not depend on the explicit 
topology structure. The rest parts of this paper is 
arranged as follows. Section 2 gives a brief description 
of PSO. Three elitist set based PSO algorithms are 
presented in Section 3. Section 4 presents the simulation 
results and analyses comparing with the standard PSO 
(SPSO) 2011 [8], which is also using the 
dynamic/random topology, and PSOs with different 
topologies. In Section 5, the application of the proposed 
method has been presented. Finally, the conclusions are 
presented in Section 6. 

2. Brief description of PSO  

Generally, the optimisation problems can be abstracted 
as [2]: 

                            (1)                                  

where   denotes the objective function without 
considering constraints;   is the position vector of 
particle   consisting of   variables. Every candidate 
solution is called a particle. 
The originally proposed PSO works by iteratively 
searching in a region and is concerned with the best 
previous success of each particle, the best previous 
success of  the particle swarm, the current position, and 
the velocity of each particle [2]. The particle updates it 
velocity and position according to 

        (2) 

                                             (3) 

where  is the velocity of particle ; 
 represents the position of particle ; 

 represents the best previous position of particle  
(indicating the best discoveries or previous experience 
of particle );  represents the best previous position 
among all particles (indicating the best discovery or 
previous experience of the social swarm);  is the 
inertia weight that controls the impact of the previous 
velocity of the particle on its current velocity and is 
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sometimes adaptive [10]; 1R  and 2R  are two random 
weights whose components 1

jr and 2
jr ( 1,2 , ,)= j n  are 

chosen uniformly within the interval [0,1]  which might 
not guarantee the convergence of the particle trajectory; 

1c  and 2c  are the positive constant parameters. 
Generally, the value of each component in iV  should be 
clamped to the range max max[ , ]−v v  in order to control 
excessive roaming of particles outside the search space. 
In order to compare the performance between the 
proposed methods with the standard PSO 2011 (SPSO 
2011), whose codes are provided by Mahamed Omran 
[8], and PSOs with different topologies including full 
connection topology, ring topology and scale free 
topology. The parameters are set as: 

             1/ 2 log(2),ω = ×                                                 (4) 

           1 2 0.5 log(2)= = +c c                                            (5) 

and the swarm sizes is (10 2 )+floor D   for SPSO 2011. 
Here, log()   is the natural logarithm function, and  

()floor  is the round toward the negative infinity 
function. Moreover, the random topology is used in 
SPSO 2011 to prevent premature. 

3. Elitist set based particle swarm optimization 

Although the topology of the particle swarm has great 
effect on the optimisation performance of PSO, it is 
difficult to determine which topology is dominant in 
different topologies since one structure may perform 
better for certain types of problems, yet worse for other 
problems. Hence it is necessary to have a topology free 
particle swarm optimization, which does not depend on 
specific topology structures, to solve different kinds of 
optimization problems so no attention is needed for 
choosing the topology structure for different 
optimization problems. There are some intelligent 
optimization algorithms which are not dependent on the 
explicit topologies such as ant colony optimization 
algorithm [12], genetic algorithm [16, 17], and so forth. 
The different topologies of particle swarm optimization 
provide different communication channels among 
particles. If the topologies of particles are not used 
explicit, a certain communication media or channels 
must be constructed for the information exchange 
among the particles. In the intelligent optimization 
algorithms, the elitist set has been used in several 
algorithms such as genetic algorithm [16, 17], tabu 
search [18], iterated greedy heuristic [19], and so on, 

and it is a commonly used strategy for information 
exchanging purpose among the agents such as genes. If 
the topology is not be used explicitly for the modified 
particle swarm optimization, the elitist set can be a good 
choice to replace the explicit topology. In all the 
intelligent optimization algorithms, the probabilistic 
techniques play important roles to achieve good 
performance and prevent premature of the optimization 
process. Hence, we can use the elitist set and the proper 
probabilistic technique to take place of the topology 
structure of the particle swarm optimization. 

3.1. Probabilistic preference and Elitist set based 
Particle Swarm Optimization (PEPSO)  

Among the intelligent optimization algorithms, the ant 
colony optimization algorithm (ACO) is using the 
environment as a medium of communication and they 
exchange information indirectly by depositing 
pheromones [12] and there is no explicit topology 
structure in ACO. In this study, we refer to the 
probabilistic technique of ant colony optimization 
algorithm to design a new algorithm which can keep the 
advantages of particle swarm optimization and ant 
colony optimization algorithm while no explicit 
topology is needed. 
To propose an elitist set based PSO algorithm, some 
characteristics of ACO can be used, such as using the 
environment as a medium of communication, the level 
of pheromone trails indicates the desirability of the 
future move. There is no pheromone used in PSO; and it 
is not necessary and proper to directly add pheromone 
in particle swarm optimization. However, the 
characteristic of ACO can be utilized by the particles to 
choose the elitist set instead of the best experience of 
the particle swarm. An external set can be used to store 
elitism experiences and this external set is used as the 
medium of communication among the particles. This set 
can be used to store the elitists and it can be called elitist 
set. Here the individual best history best experience 
makes up the elitist set. The following rules should be 
considered to determine and use the elitist set: 
1) The members of elitist set are determined by the 
particles’ individual best experiences as using different 
topologies of particles to prevent premature and keeping 
a good distribution in the problem space based on the 
individual best experiences.  
2) The global best experience must be the member of 
elitist set and it should have the biggest possibility to be 
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chosen to direct the future move or do contribution to 
the velocity.  
3) The objective fitness value corresponding to different 
members of elitist set can be used to determine the 
desirability of the future move.  
Based on the above three rules, the elitist set can be 
updated at each iteration or every n iterations (n is an 
integer). In general, we can allow the multiple local best 
from the same particle from different iterations in the 
past, but it is difficult to determine the criterions of 
choosing the multiple local best if the elitist set is from 
different iterations including the part results. To 
simplify the choice of the elitist set, we use all particles’ 
best experiences to construct the elitist set which means 
the number of the elitist set members is chosen as N, 
and the elitist set is updated at each iteration. For 
example, the elitist set is shown in Table 1. 

Table 1. Elitist set structure 

Objective  
Fitness 
value 

1ef  2ef    eNf  

 
 
 

Problem 
Variables 

1
1ex  1

2ex    1
eNx  

2
1ex  2

2ex    2
eNx  

        
1

n
ex  2

n
ex    n

eNx  

 
After the members of elitist set are ranked according to 
the objective fitness value, one of them should be 
chosen to replace gp   of equation (2) and the possibility 
of choosing the ‘ gp  ’ obeys exponential distribution. 
The motivation of the exponential distribution is the 
result about the connectivity distribution of small-world 
network including the social network: peaks at an 
average value but decays exponentially [25]. Without 
loss of generality, in this study, the probabilities with 
exponential distribution are calculated based on  

1

1

1

j

j N
i

i

ep
e

−

−

=

=

∑
, 

where i is an integer and jp  is the jth best elitist set 
member. There are other methods to get the exponential 
distributed possibility based on the similar calculation 
formula. 
To realize the proposed method, the procedure are as 
follows: 

1) Initialize the PSO parameters. 
2) Calculate the fitness function and set it as the 
best position of each particle. 
3) Determine the elitist set and re-arrange the 
members of the elitist set by the ascending order. 
4) All the particles positions are updated 
according to (2)-(3). Here, Pg of equation (2) is chosen 
based on Table 1 and the possibility of choosing the 
‘Pg’ obeys exponential distribution. 
5) Constraints check: if the position is out of 
boundary, the position is set to the border value and 
velocity is set to zero. 
6) Calculate the fitness function for each particle. 
7) Repeat steps 3)-6) until a stopping criterion is 
met (here the maximum number is used.). 
 

3.2.  Probabilistic preference and Elitist set based 
Particle Swarm Optimization considering the 
individual two nearest experience neighbours 
(PEPSO II)    

In section 3.1, all the members of the elitist are used to 
determine the effect of the swarm on the individual 
particle. Due to the transmissibility of the information 
based on the elitist set it is not necessary to use all the 
members of the elitist set and we can only use the two 
closest neighbours which are determined based on the 
fitness space. Then two preference probabilities need to 
be chosen: one is the preferring probability to the 
individual richer neighbour whose experienced fitness 
value is just better than the individual; and another is the 
preferring probability to the individual poorer neighbour 
whose history fitness value is just less than the 
individual fitness value. The values of the preferring 
probability can be easily chosen based on the 
experiences of the researcher. For example, we always 
want the preferring probability to the individual richer 
neighbour to be higher than the preferring probability to 
the individual poorer neighbour. For example we can set 
the preferring probability to the individual richer 
neighbour Prob_R = 0.9 and the preferring probability 
to the individual poorer neighbour Prob_P = 0.1. It 
should be noted that  

Prob_R + Prob_P  = 1                                     (6) 

due to the fact there are only two possible states which 
the individual particle will move to. There are two 
specific cases which should be solved carefully: one is 
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that the individual particle has the best history fitness 
value among the swarm; and another case is that the 
individual particle has the worst history fitness value. 
For the first case, we can choose the individual richer 
neighbour as itself; and for the second case the best 
history fitness related the particle is chosen as the ‘poor’ 
neighbour as the best history fitness value related 
particle. 

3.3. Adaptive Probabilistic preference and Elitist 
set based Particle Swarm Optimization 
considering the individual two nearest 
experience neighbours (APEPSO) 

The method proposed in section 3.2 is a simplified 
method. However, there is still a problem that there is 
one variable, which is Prob_R or Prob_P, should be 
determined and the choice of the variable will affect the 
optimization performance a lot. According the meanings 
of Prob_R and Prob_P, the Prob_R can be smaller at the 
beginning stage and it can increase until it reach 1 at the 
last stage so the particle can avoid the premature at the 
beginning stage and converge to the global best position 
at the last stage. When Prob_R  = Prob_P = 0.5, the 
possibilities of the particle move to the ‘rich’ neighbour 
and the ‘poor’ neighbour are same and it can improve 
the exploring ability to the new space and the history 
experience still has effects on the particle movement. At 
the last stage, it would be better that the particle 
converges to the best experience of the swarm and 
Prob_R can be set 1 while Prob_P  = 0. Hence we can 
set the variable be adaptive according to the following 
formula. 

Prob_R  = 0.5 + t*0.5/t_max                                   (7) 

4. Experimental Verification and Analysis  

To validate the proposed method, we chose some 
famous benchmarks and compare the proposed method 
with SPSO 2011 and some PSOs with full connection 
topology, ring topology and scale free topology.  The 
parameters are set as SPSO 2011 except PSO with scale 
free topology (the number of particles is chosen as 50 
which is used in Ref [26]), and all methods were run for 
50 times per function with a maximum number of 
function evaluations of 20000 for each run. Table 2 lists 
the benchmark functions. 

Table 3 shows the statistical simulation results. In 
Table 3, it can be seen that the APEPSO can achieve 
better optimization performance than other PSOs for 
almost all the benchmark functions when the 
dimensions are 10. Moreover, according the Table 3, 
APEPSO can achieve better optimization performance 
than PEPSO and PEPSO II, which is caused by the facts 
that PEPSO is easily premature due to the particles are 
very possible to be attracted to the best experience of 
the swarm or the global best experience, and PEPSO II 
can have good exploring ability but at the end stage it is 
difficult to be converged to the global best experience 
due to the fixed preferring probability. However, 
APEPSO can adaptively change the preferring 
probability which can make the particles have good 
global search ability at the beginning stage and have 
good local search ability around the global best 
experience at the end of the search process. 

However, when the dimension D = 30, the standard 
PSO 2011 can achieve better optimization results for 
some benchmark functions than APEPSO according to 
Table 3. Moreover, since the standard PSO 2011 can 
achieve better optimization performance than PSOs with 
ring/full connection/scale free topologies, and APEPSO 
is derived from PEPSO and PEPSO II and it can achieve 
better optimization results than PEPSO and PEPSO II 
for the most of the benchmark functions and it does not 
need to choose the preferring possibility value or 
parameter, it will be fine to focus on the comparisons 
between APEPSO and standard PSO 2011, and it is 
better to draw the figures of time evolutions of the best 
fitness function values to find whether APEPSO is 
premature earlier than the standard PSO 2011. 
According to the simulations, the time evolutions of the 
best fitness function value are shown in Figures 2-8 
about the benchmark function f1 to f7 when the 
dimension D=10. In Figures 2-8, there are 50 curves 
with the same colour related to the 50 trials for the 
standard PSO 2011 or APEPSO. It should be noted that 
the red lines are the results using the standard PSO 
2011 and the blue lines are the results using APEPSO 
in Figures 2-16. To get a clear vision about the 
optimization process the log coordinate in y axis has 
been used for the time evolution figures except the 
figures with negative fitness values.  
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Table 2. Benchmark functions 

Function Name Formulation Dimension Initial Range 
Rastrigin 
function 

2
1

1
( ) 10cos(2 ) 10

D

i i
i

f X x xπ
=

 = − + ∑  10 500±  

Step  
function 

2
2

1
( ) 0.5

=

= +  ∑
D

i
i

f X x  
10 500±  

Rosenbrock 
function 

2 2 2
3 1

1
( ) 100( ) ( 1)+

=

 = − + − ∑
D

i i i
i

f X x x x  10 500±  

Salomon 
function 2 2

4
1 1

  - cos(2 )  0.1   1π
= =

= + +∑ ∑
D D

i i
i i

f x x  
10 500±  

Quartic function 
4

5
1

( ) ( ) (0,1)
=

= +∑
D

i
i

f X ix rand  
10 500±  

Shifted Griewank 
function 

2

6
1 1

( ) cos( ) 1 180
4000= =

= − + −∑ ∏
DD

i i

i i

z zf X
i

 

where = −i i iz x o  and 1 2 30[ , ,... ]=O o o o  
=[-2.7626840e+002 -1.1911000e+001 -5.7878840e+002 -
2.8764860e+002 -8.4385800e+001 -2.2867530e+002 -
4.5815160e+002 -2.0221450e+002 -1.0586420e+002 -
9.6489800e+001 -3.9574680e+002 -5.7294980e+002 -
2.7036410e+002 -5.6685430e+002 -1.5242040e+002 -
5.8838190e+002 -2.8288920e+002 -4.8888650e+002 -
3.4698170e+002 -4.5304470e+002 -5.0658570e+002 -
4.7599870e+002 -3.6204920e+002 -2.3323670e+002 -
4.9198640e+002 -5.4408980e+002 -7.3445600e+001 -
5.2690110e+002 -5.0225610e+002 -5.3723530e+002];  

10 500±  

Gear Train 2

1 2
7

3 4

1( )
6.931

 
= −  

 

y yf X
y y

 

where =   Y X  and the constraint penalty is 
6

7 ( ) 10+f X  if 60 or 12> <i iy y  ( 1,2,3,4=i ). 

4 500±  

Rastrigin 
function 2

8
1

( ) 10cos(2 ) 10π
=

 = − + ∑
D

i i
i

f X x x  
30 500±  

Step  
function 

2
9

1
( ) 0.5

=

= +  ∑
D

i
i

f X x  
30 500±  

Rosenbrock 
function 2 2 2

10 1
1

( ) 100( ) ( 1)+
=

 = − + − ∑
D

i i i
i

f X x x x  
30 500±  

Salomon 
function 2 2

11
1 1

  - cos(2 )  0.1   1π
= =

= + +∑ ∑
D D

i i
i i

f x x  
30 500±  

Quartic function 
4

12
1

( ) ( ) (0,1)
=

= +∑
D

i
i

f X ix rand  
30 500±  

Shifted Griewank 
function 

2

13
1 1

( ) cos( ) 1 180
4000= =

= − + −∑ ∏
DD

i i

i i

z zf X
i

 

where the variables are same 6 ( )f X . 

30 500±  
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Table 3. Statistical results when the maximum number of function evaluations is 20000 

Problem Method best Mean Worst Std.dev 
Rastrigin function f1 Standard PSO 2011 1.99 7.68 15.19 3.35 

Global PSO 8.95 31.50 85.57 19.90 
Ring PSO 3.97 14.10 33.83 6.62 
Scale free PSO 1.99 8.62 21.89 4.30 
PEPSO 1.98 10.01 54.72 7.87 
PEPSO II 1.99 6.89 15.94 3.52 
APEPSO 0.99 7.17 17.10 3.47 

Step f2 Standard PSO 2011 0 0.02 1 0.14 
Global PSO 0 37.40 1453 205.60 
Ring PSO 0 0 0 0 
Scale free PSO 0 0 0 0 
PEPSO 0 0.46 4 0.78 
PEPSO II 0 0.06 1 0.23 
APEPSO 0 0 0 0 

Rosenbrock function f3 Standard PSO 2011 0.0198 118.6752 1.6093e+003 277.7117 
Global PSO 1.5354 183.3550 2705.6 534.8952 
Ring PSO 0.0956 68.5896 1.2178e+003 197.9942 
Scale free PSO 0.0029 91.5759 887.2938 198.2804 
PEPSO 0.01 119.04 1.4581e+003 313.36 
PEPSO II 0.01 70.04 749.21 159.56 
APEPSO 0.008 14.6994 268.5352 40.71 

Salomon f4 
 

Standard PSO 2011 0.0999 0.1059 0.1999 0.0240 
Global PSO 0.2999 0.7279 1.8999 0.3435 
Ring PSO 0.0999 0.3879 1.2999 0.2027 
Scale free PSO 0.0999 0.1406 0.1999 0.0492 
PEPSO 0.0999 0.2139 0.5999 0.1125 
PEPSO II 0.0999 0.1079 0.1999 0.0274 
APEPSO 0.0999 0.0999 0.0999 6.3693e-008 

Quartic function f5 
 

Standard PSO 2011 4.8605e-004 0.0030 0.0080 0.0018 
Global PSO 0.0045 0.0411 0.1536 0.0338 
Ring PSO 0.0024 0.0150 0.0584 0.0115 
Scale free PSO 6.8133e-004 0.0043 0.0102 0.0023 
PEPSO 4.0183e-004 0.0060 0.0278 0.0057 
PEPSO II 6.3750e-004 0.0030 0.0133 0.0024 
APEPSO 2.8797e-004 0.0022 0.0056 0.0012 

Shifted Griewank f6 
 

Standard PSO 2011 -178.3345 -177.9024 -177.4938 0.3987 
Global PSO -178.3345 -177.4310 -164.9795 1.8316 
Ring PSO -178.3345 -177.9581 -177.4936 0.4010 
Scale free PSO -178.3345 -178.0864 -177.5053 0.3626 
PEPSO -178.3345 -177.8133 -177.4838 0.3808 
PEPSO II -178.3345 -177.9374 -177.5053 0.4126 
APEPSO -178.3345 -178.1117 -177.5126 0.3591 
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Gear Train f7 
 
 

Standard PSO 2011 2.7009e-012 6.0000e+004 1.0000e+006 2.3990e+005 
Global PSO 1.3616e-009 7.8000e+005 3.0000e+006 6.1578e+005 
Ring PSO 2.7009e-012 1.4000e+005 1.0000e+006 3.5051e+005 
Scale free PSO 2.7009e-012 2.8710e-010 2.3576e-009 6.1553e-010 
PEPSO 2.7009e-012 3.6000e+005 1.0000e+006 4.8487e+005 
PEPSO II 2.7009e-012 2.0000e+004 1.0000e+006 1.4142e+005 
APEPSO 2.7009e-012 2.6151e-011 1.1661e-010 3.5087e-011 

Rastrigin function f8 
 

Standard PSO 2011 32.8336 89.8984 298.4771 43.6188 
Global PSO 622.3752 4182.2 17830 3862.6 
Ring PSO 38.5440 156.7057 468.6710 79.3877 
Scale free PSO 40.9874 110.0675 318.3709 46.9874 
PEPSO 93.5257 327.3153 1.0415e+003 215.0473 
PEPSO II 44.8941 112.4166 263.6165 43.3539 
APEPSO 54.2447 129.4380 180.3438 34.4006 

Step function f9 
 

Standard PSO 2011 0 7.1800 85 17.1758 
Global PSO 577 11178 61946 13475 
Ring PSO 0 3.66 49 8.2055 
Scale free PSO 0 7.94 84 14.9713 
PEPSO 9 355.8400 5965 880.1073 
PEPSO II 0 1.200 6 1.3702 
APEPSO 0 0.8000 4 0.9035 

Rosenbrock function f10 Standard PSO 2011 15.4579 1.9012e+003 2.8153e+004 5.0678e+003 
Global PSO 95913 1.5928e+009 1.3550e+008 2.7114e+008 
Ring PSO 6.022 509.0070 1.3291e+004 1.8700e+003 
Scale free PSO 47.7010 4.6389e+003 4.0019e+004 1.0457e+004 
PEPSO 4.4350 328.6860 2.6561e+003 608.8560 
PEPSO II 27.3376 3.0540e+003 4.6219e+004 8.1221e+003 
APEPSO 28.5644 3.7352e+003 4.8893e+004 9.1864e+003 

Salomon function f11 
 

Standard PSO 2011 0.2999 0.4306 0.9999 0.1154 
Global PSO 5.0999 14.0179 30.6999 5.7751 
Ring PSO 1.0999 2.5339 6.7999 1.2133 
Scale free PSO 0.5364 1.0531 2.2999 0.4125 
PEPSO 0.4999 2.8599 7.8999 2.0383 
PEPSO II 0.2999 0.4305 0.7014 0.1169 
APEPSO 0.2999 0.4452 0.6002 0.0674 

Quartic function f12 
 

Standard PSO 2011 0.0287 0.0969 0.7344 0.1019 
Global PSO 2.1656e+004 9.4473e+007 2.1442e+009 3.2115e+008 
Ring PSO 0.1002 0.2785 0.6410 0.1262 
Scale free PSO 0.0689 0.2627 0.8817 0.1533 
PEPSO 0.0523 0.2471 1.3855 0.2542 
PEPSO II 0.0271 0.0964 0.2887 0.0516 
APEPSO 0.0252 0.2159 0.5084 0.1101 

Shifted Griewank function 
f13 
 

Standard PSO 2011 -172.0213 -172.0213 -172.0213 8.6373e-013 
Global PSO -172.0072 -150.5217 -10.4725 35.1150 
Ring PSO -172.0213 -172.0213 -172.0213 1.2489e-011 
Scale free PSO -172.0213 -172.0213 -172.0213 3.3581e-005 
PEPSO -172.0213 -171.5842 -160.2380 2.0375 
PEPSO II -172.0213 -172.0213 -172.0213 3.1368e-009 
APEPSO -172.0213 -172.0213 -172.0213 1.1237e-007 
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Fig. 2.  Time evolutions of the best fitness function value 
about Rastrigin function when D=10 (the red lines are the 
results using the standard PSO 2011 and the blue lines are the 
results using APEPSO for this figure and the following 
figures) 

 

Fig. 3. Time evolutions of the best fitness function value about 
Step function when D=10 

 

Fig. 4. Time evolutions of the best fitness function value about 
Rosenbrock function when D=10 

 

Fig. 5. Time evolutions of the best fitness function value about 
Salomon function when D=10 

 

Fig. 6. Time evolutions of the best fitness function value about 
Quartic function when D=10 

 

Fig. 7. Time evolutions of the best fitness function value about 
Shifted Griewank function when D=10 (To get a clear vision 
about the optimization process partial figure have been 
enlarged as the embedded figure). 
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Fig. 8. Time evolutions of the best fitness function value about 
Gear Train when D=10 

According to Figures 2-8, APEPSO takes more time to 
reach its stable status especially Figures 2, 4 and 6, 
APEPSO is still in the process of achieving better 
results although the standard PSO 2011 has reached its 
mature stations for most of the tries, which means that 
the standard PSO 2011 is easier to be premature than 
APEPSO. The convergence of APEPSO is a little bit 
slower than the standard PSO 2011 because APEPSO 
takes more time to find the global best results without 
being trapped in the local minimums in a short time. 
When the dimension D = 30 the optimization 
performance for some benchmark functions are not 
better than the standard PSO 2011 according to Table 4, 
it is logical to assume this result is caused by the 
maximum number of function evaluations, which is set 
20000 for every trial and may be not enough for 
APEPSO. To investigate whether this guess is correct, 
we set the maximum number of function evaluations as 
40000 for every trial and other parameters are not 
changed; and the simulation results are listed in Table 4. 
According to the statistical results in Table 4, it proves 
our guess that the maximum number of function 
evaluations limited the optimization performance of 
APEPSO since the optimization performance has been 
improved with the increment of the maximum number 
of function evaluations. 

To check whether the APEPSO is ‘mature’ at the 
end of the optimization process, the time evolution 
figures of the best fitness function value have been 
shown in Figures 9-14. According to Figures 9-14, they 
further prove that APEPSO is not easy to be premature 
and can achieve better optimization results than 
standard PSO 2011. 

Table 4. Statistical results of SPSO 2011 and APEPSO when 
the maximum number of function evaluations is 40000 for 
every trial and the function dimension is 30 

Problem Method best Mean 
 

Worst Std.dev 

Rastrigin 
function f8 
 

Standard 
PSO 
2011 

39.7983 90.6006 382.0256 54.2689 

APEPSO 23.9677 77.4392 141.0321 32.6765 

Step 
function f9 
 
 

Standard 
PSO 
2011 

0 18.74 611 87.85 

APEPSO 0 0.62 3 0.7253 
Rosenbrock 
function f10 

Standard 
PSO 
2011 

10.0945 300.3639 2.528e+003 543.1381 

APEPSO 7.4338 120.3019 901.9223 172.2884 
Salomon 
function f11 
 

Standard 
PSO 
2011 

0.1999 0.3019 0.4999 0.0714 

APEPSO 0.1999 0.2323 0.2999 0.0469 
Quartic 
function f12 
 

Standard 
PSO 
2011 

0.0083 0.0272 0.0887 0.0149 

APEPSO 0.0048 0.0177 0.0443 0.0087 
Shifted 
Griewank 
function f13 
 

Standard 
PSO 
2011 

-
172.0213 

-
172.0213 

-172.0213 0 

APEPSO -
172.0213 

-
172.0213 

-172.0213 0 
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Fig. 9. Time evolutions of the best fitness function value about 
Rastrigin when D=30 (APEPSO still has the trend to be 
achieve better optimization performance) 
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Fig. 10. Time evolutions of the best fitness function value 
about Step function when D=30 

 

Fig. 11. Time evolutions of the best fitness function value 
about Rosenbrock function when D=30  

 

Fig. 12. Time evolutions of the best fitness function value 
about Salomon function when D=30  

 

Fig. 13. Time evolutions of the best fitness function value 
about Quartic function when D=30  

 

Fig. 14. Time evolutions of the best fitness function value 
about Shifted Griewank function when D = 30 (To get a clear 
vision about the optimization process partial figure have been 
enlarged as the embedded figure). 

According to Figures 9 and 11, APEPSO may not 
achieve its potential. Hence we set the maximum 
number of function evaluations 100000 for every trial 
and do simulation for f8 and f10 based on APEPSO, and 
the results are shown in Table 5. Comparing Table 3 
and 4, the optimization performance has been further 
improved when the maximum number of function 
evaluations is 100000 for every trial. The relevant time 
evolutions of the best fitness function value for f8 and 
f10 are shown in Figures 15 and 16, which meet the 
results of Table 4. 
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Table 5. Results using APEPSO when the maximum number 
of function evaluations is 100000 for every trial 

Problem Method best Mean 
 

Worst Std.dev 

Rastrigin 
function f8 
 

APEPS
O 

12.9345 32.0719 95.3182 16.6891 

Rosenbroc
k function 
f10 

APEPS
O 

3.8793 74.89.15 564.139
7 

97.2075 
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Fig. 15. Time evolutions of the best fitness function value 
about Rastrigin function f8 with with a maximum number of 
function evaluations of 100000 for every trial (it shows that 
APEPSO is not easy to be premature) 
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Fig. 16. Time evolutions of the best fitness function value 
about Rosenbrock function f10 with a maximum number of 
function evaluations of 100000 for every trial 

According to Figures 15 and 16, APEPSO keeps on 
searching and achieving better results although the 
process is approaching the last stage, especially in 
Figure 15, APEPSO is not mature, which shows that 

APEPSO can achieve better optimization result and 
does not need explicit topology information and no 
extra parameters need to be set. 

5. Transmission network planning  

Transmission network planning begins with the 
establishment of power demand growth scenarios, in 
accordance with forecasts along the time. Given these 
scenarios, one can verify the eventual need to broaden 
and to strengthen the network. In case electric service 
conditions are not satisfied, there should be proposed a 
plan that has coherence among the power supply 
availability, demand, and installation of new equipment 
in the network. Integration of these new equipment in 
the network, aimed at maintaining suitable technical and 
operating conditions, requires planning of the allocation 
of such reinforcement [20]. Main objective of the 
transmission expansion planning is to obtain the optimal 
expansion plan, while fulfilling operating and economic 
requirements. One classical transmission network 
expansion planning (TNEP), which does not consider 
the security constraints, is to determine the set of new 
lines to be constructed such that the cost of expansion 
plan is minimum and no overloads are produced during 
the planning horizon. A DC power flow based model is 
used for TNEP [20, 21]. The TNEP without security 
constraints can be stated as follows [20, 21], 

                                min
∈Ω

= ∑ l l
l

v c n                         (8) 

subject to 

+ =Sf g d  
0( )( ) 0,  for 1,2......,γ θ− + ∆ = ∈l l l l lf n n l  

0( )  for 1,2......,≤ + ∈l l l lf n n f l nl  

0 ≤ ≤l ln n  

lf  and θl  are unbounded 

0≥ln  and is integer for 1,2......,∈l nl  

.∈Ωl  

lc : cost of line added in thl  right-of-way, 

S : branch-node incidence transposed matrix of the 
power system, 

f : vector with elements lf , 
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γ l : susceptance of the circuit that can be added to 
thl  

right-of-way, 

ln : the number of circuits added in thl  right-of-way, 
0
ln : no. of circuits in the base case, 

θ∆ l : phase angle difference in thl  right-of-way, 

lf : total real power flow by the circuit in thl  right-of-
way, 

 lf : maximum allowed real power flow in the circuit in 
thl  right-of-way, 

ln : maximum number of circuits that can be added in 
thl  right-of-way, 

Ω : set of all right-of-ways, 

nl : total number of lines in circuit. 

The transmission lines added in any right-of–way are 
the decision variables. The cost of each solution to the 
TNEP without security constraints can be obtained 
using the following function: 

Minimize:  

1 2( ( ) ) ( )
∈Ω

= + − + −∑ ∑l l l l l l
l ol

f c n Ω abs f f Ω n n             (9) 

where ol  represents the set of overloaded lines. 

 The objective of the TNEP is to find the set of 
transmission lines to be constructed such that the cost of 
expansion plan is minimum and no overloads are 
produced during the planning horizon. Hence, first term 
in the equation (9) indicates the total investment cost of 
a transmission expansion plan. The second term is 
added to the objective function for the real power flow 
constraint violations. The third term is added to the 
objective function if maximum number of circuits that 
can be added in lth right-of-way exceeds the maximum 
limit. W1, W2 are constants. The second and third terms 
are added to the fitness function only in case of 
violations. 

Table 6. Results using the standard PSO 2011 and APEPSO 
for Transmission Network Expansion Planning Problem 

Problem Method best Mean 
 

Worst Std.d
ev 

Transmissio
n Network 
Expansion 
Planning 
Problem 

Standard 
PSO 2011 

220 234.54 323 24.13
58 

APEPSO 220 220 220 0 

 

We set the maximum number of function evaluations as 
100000 for every trial and other parameters are not 
changed; and the simulation results are listed in Table 6. 
As can be seen from the Table 6, APEPSO achieved the 
optimal value and the statistical results, and it is proven 
that APEPSO can achieve better optimization results 
than SPSO in this application. 

6.  Conclusion 

This paper proposed three elitist set based particle 
swarm optimization algorithms, which are called 1) 
Probabilistic preference and Elitist set based Particle 
Swarm Optimization (PEPSO), 2) Probabilistic 
preference and Elitist set based Particle Swarm 
Optimization considering the individual two nearest 
experience neighbours (PEPSO II) and 3) Adaptive 
Probabilistic preference and Elitist set based Particle 
Swarm Optimization considering the individual two 
nearest experience neighbours (APEPSO). These 
methods do not need explicit topology structures, and an 
elitist set is used and based on the individual best 
experiences for the swarm communication. These three 
methods have been applied to several well-known 
benchmarks and achieved good optimization results. 
Among these three proposed algorithms, APEPSO can 
achieve better optimization performance than the 
standard PSO 2011 and some other PSOs with different 
topologies for all the benchmark functions and the 
application, and it does not need to turn the parameters. 
In the future, we will focus on the theoretic analysis of 
the proposed method. 
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