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Abstract

Modeling users’ data traces is of crucial importance for human behavior analysis and context-aware ap-
plications in ambient assisted living (AAL) environments. However, learning the parameters of the un-
derlying model is a challenging task in multi-occupant environments; because, the anonymous users’ data
traces are aggregated temporally. This paper proposes a novel method for modeling users’ data traces
in multi-resident sensor-based AAL environments. A Markov chain was considered as the underlying
model. We aimed at estimating the parameters of the Markov chain directly out of users’ aggregate data.
For this purpose, we hired the idea of conditional least squares (CLS) estimation. However, the CLS
estimations can be inconsistent in the circumstances of AAL environments. To tackle this problem, we
proposed to regularize the CLS estimations using spatial information of sensors. This information was
extracted using an accessibility graph, made out of the deployed sensor network. To evaluate the proposed
method, a well-known and publicly available dataset was used. The proposed method was compared with
the standard CLS, using Kullback-Leibler (KL) divergence, and mean squared error (MSE) criteria. The
results conveyed that the proposed method results in estimations with lower KL divergences from ground
truth, compared to CLS. Also, the proposed method outperformed CLS with a MSE of 2.7 x 1073,

Keywords: Ambient assisted living (AAL); smart environments; conditional least squares (CLS) estima-
tion; aggregate data; Markov chain; multi-resident environments.

in the present work, too.

mental binary sensors.> We considered such sensors

The general goal of AAL is to hire ambient intelli-
gence (Aml) and pervasive computing solutions to
assist individuals with specific needs. To achieve
this goal, the users’ data are captured by various
types of sensors in the environment.! The data is
then analyzed using human behavioral models to
predict or recognize the inhabitants’ upcoming ac-
tions. This, in turn, allows to provide necessary ser-
vices for the residents. In order to preserve non-
invasive and privacy-friendly characteristics of AAL
environments, many researchers opt simple environ-

The analysis of inhabitants’ behaviors is the cor-
nerstone of developing context-aware applications
in an AAL environment.>~® This can be performed
by modeling traces of users’ sensory data. Resi-
dents’ behaviors, and in turn, their traces can be ef-
fectively modeled by Markov models (MMs).>>-9-12
Although learning the parameters of such models is
a straightforward task in single user environments,
it is a challenging issue in multi-occupant envi-
ronments. Because, in a multi-occupant environ-
ment, the traces are interwoven temporally; hence,
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a dataset of separated users’ traces is not avail-
able beforehand for training or designing a model.
In this case, the sensors’ data is called aggregate
data.'>"*Conditional least squares (CLS) '3!* is a
method of estimating the parameters of a Markov
model out of aggregate data. However, its perfor-
mance would degenerate due to being inconsistent
in the circumstances of AAL environments.

The main contribution of this paper is to address
the problem of modeling users’ data traces in multi-
occupant AAL environments. For this purpose, an
ergodic, time-homogeneous, and stationary Markov
chain was considered as the underlying model. We
aimed at the problem of estimating parameters of
the Markov chain directly out of aggregated users’
data. It was assumed that individuals behave inde-
pendently according to the same Markov chain, and
at each time step, an observation, was made out of
the activated sensors’ data. The idea of CLS was
incorporated to estimate the parameters of Markov
chain. However, since CLS can be inconsistent in
AAL environments, we proposed to regularize its
estimations. This task was performed using the rela-
tion between spatial characteristics of sensors and
their transition probabilities. The sensors’ spatial
information was obtained by constructing an acces-
sibility graph out of the deployed sensor network.
This information was plugged into the optimization
problem of CLS as a regularization term. It resulted
in a novel convex optimization problem, whose so-
lution yielded the ultimate estimations.

The remainder of the paper is organized as fol-
lows. In section 2, the related works are reviewed;
network settings, and environmental states are dis-
cussed in section 3; the characteristics of users’ data
traces, and problem statement are addressed in sec-
tion 4; the standard CLS estimation is detailed in
section 5; section 6 elaborates the proposed method;
the experiments and results are taken in section 7;
and finally, section 8 concludes the paper.

2. Related Works

Modeling users’ data traces is of crucial impor-
tance for context-aware applications in AAL envi-
ronments. Some related applications include the ap-
proaches of Refs. 3,6, 15,16. In Ref. 3, a security
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surveillance system is designed to safeguard a build-
ing against intruders. In this system, the security
guards are dispatched to the possible locations of in-
truders by predicting their trajectories. The model-
ing of users’ traces is performed by clustering pos-
sible traces. In Ref. 16, the mobility traces of a res-
ident are modeled by flow graphs in an AAL envi-
ronment. The extracted model is used to recognize
the salient movement patterns which pertain to hu-
man activities that last for a while. In Ref. 15, a
trajectory propagation algorithm is proposed to gen-
erate the possible sensor data traces, starting from
the current state of the resident. For this purpose,
the traces are assumed to be generated according to
a spatial bipartite graph model, which is made ac-
cording to the concurrent activations of sensors. In
Ref. 6, a distributed abnormal activity detection ap-
proach, called DetectingAct, is proposed. In De-
tectingAct, an activity is defined as the combination
of traces of sensor activations and their durations,
and an abnormal activity is defined as the one which
deviates from the normal routines. The abnormality
of an activity is determined by comparing it with the
normal patterns, using a number of similarity mea-
sures. Some other applications of modeling users’
data traces include user localization,* health-care,’
and analyzing the performance of working places.?

Probabilistic graphical models have proven to
be effective in modeling users’ behaviors, and
users’ data traces in AAL environments.!” Thus
far, Markov chains and hidden Markov models
(HMMs),%19:18 conditional random fields (CRFs),!?
Bayesian networks,?® and their several variants have
been adapted for human behavior modeling. These
schemes are based on the Markov assumption that:
the next step of a user’s activity depends on a lim-
ited history of the previous steps and sensors’ ob-
servations. Accordingly, the data traces can also be
modeled based on this assumption. The works of
Refs. 2,5, 11, 12 are instances of such approaches.
In Ref. 2, a framework, named FindingHumo, is pro-
posed to extract the traces of multiple users for the
purpose of multi-subject tracking in an AAL envi-
ronment. In this work, a variable state and variable
order HMM is constructed for fixed length time win-
dows of sensor activations. The set of activated sen-
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sors in a time window together with their neighbor-
ing sensors compose the states of HMM in that win-
dow. The most likely users’ traces are obtained in
each time window by Viterbi decoding algorithm. In
this work, the transition probabilities of HMMs are
obtained using either a training set of previously ex-
tracted trajectories, or some prior knowledge on the
network topology. In Ref. 5, the sensor data traces
of multiple users are extracted using Markov mod-
els for human behavior analysis. In this work, each
sensor event is attributed to a user’s identifier (ID)
by computing the most likely resident’s ID, given
all of the sensor events up to the current time. In this
work, a Markov model is trained for each resident.
The transition probabilities are calculated based on
a training set. In Refs. 11,12, a system is proposed
for data collection in indoor smart environments to
lower the congestion and the communication cost
between the sensors and the base station. These
methods are based on the prediction of sensors’ data
according to the knowledge, mined from users’ data
traces. In this work, the model of the traces is con-
sidered to be a Markov chain.

In many applications of AAL environments, in-
cluding the above-mentioned approaches, the model
of the users’ data traces are obtained by manu-
ally and meticulously analyzing the preexistent data.
This becomes a cumbersome and error-prone pro-
cess, especially when coping with multi-resident
AAL environments, in which the users’ traces are
temporally aggregated, and the volume of data can
drastically increase.

3. Network Settings and Environmental States

We considered a typical network of environmental
binary sensors which is common in smart home en-
vironments. They can be categorized into two types
according to their role: motion sensors, and item
sensors. Motion sensors reveal the movement of
the residents, while item sensors disclose the inter-
actions of users with specific objects.

The value of sensors along time can reflect the
state of the environment. To calculate the envi-
ronmental states, the time-line was discretized into
evenly separated time spans, namely Af. Timespan
At was selected such small that an activated sensor
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in each time span could be assumed to be triggered
by a single user. The state of the environment was
calculated in each time span as described in defini-
tion 1.

Definition 1. (environmental states). Having n sen-
sors, a vector x; € {0, 1}" is calculated for each time
span ¢, whose i’ th element x;; shows the value of
sensor i at this time span. X; is named the environ-
mental state at time ¢.

Figure 1 shows an example of users’ sensory data
and the associated sequence of environmental states.
In this example, there are three sensors and two users
in the AAL environment. The sensory data is also
shown on a timing diagram. As it is shown in the due
table, users’ data are interwoven along time. There-
fore, users’ data is called aggregate data. In fact,
this aggregate data is composed of multiple traces
of users’ data. These traces are shown in Fig. 2 and
discussed in the next section. We aim at modeling
these constituent traces in the following sections.

Fig. 1. Sensory users’ data and the associated environmen-
tal states (aggregate data).

4. Users’ Traces and Problem Statement

A user’s data trace is a sequence of activated sen-
sors in consecutive time slices, triggered by the same
user. An example of data traces is taken in Fig. 2.
It conforms to the aggregate sensory data of Fig. 1.
Each user has generated two data traces. For in-
stance, as it is shown, user 1 has generated traces: 1)
2,2,233,3,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2, and
i) 3,2,2,2. Generating more than a single trace by
the same user is due to the fact that a user can trigger
more than one sensor at the same time. The aggre-
gation of these traces along time makes up the entire
users’ sensory data of Fig. 1. We aimed at modeling
these traces.



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1289-1297

N

st
52
s

o |l |

t

6 s
1 1 1
1 o 1
o 1 o
2 3 2

:

A ainaninan 2

2i1i1i1i1i1i2

Fig. 2. Users’ data traces along time. The users’ traces are
marked by arrows on the timing diagram, and also shown in
the shaded Gant chart along time.

The users’ behaviors, and in turn users’ traces,
can be effectively modeled by Markov models in
AAL environments.>?'® We considered an ergodic,
time-homogeneous, and stationary Markov chain on
the state space S = {1,...,n}, where i € S denotes
the sensor ID, and n is the total number of sensors.
Since this Markov model is stationary, its parame-
ters do not depend on time. It was also considered
that the initial state probabilities equal the stationary
distribution. Therefore, the probability of a trace,
denoted by R =ry,rs,...,rr,1; € S, is calculated as:

T-1

p(R) = m(r1) H P(re,re41)

=1

)

where P is the n X n transition matrix whose entry
P(i,j) denotes the transition probability from sen-
sor i to sensor j, and vector & € R" is the stationary
distribution. Accordingly, we have:

a'P=n’. )

Since the chains are started with the stationary
distribution, the only parameters to estimate, are the
transition probabilities in matrix P. Parameter esti-
mation becomes a straight forward task, if the traces
have been already extracted. In this case, the maxi-
mum likelihood estimation (MLE) is:

N(i —j)

PI) = =5

3)
where N(i — j) is the total number of times where
sensor j has appeared after sensor i, and N (i) is the
total number of times where sensor i has appeared in
all of the traces.
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Although the use of MLE is straightforward, it
needs previously extracted traces for the purpose of
training. This becomes an error-prone and cum-
bersome task in realistic multi-user AAL environ-
ments, since a huge amount of data could have been
aggregated. Therefore, we did not plan to extract
the traces out of sensors’ data beforehand. In other
words, the transition matrix should be estimated di-
rectly out of aggregate data. This problem is defined
as in definition 2.

Definition 2.  (problem statement). Given a se-
quence of environmental states (i.e. aggregate data)
in an AAL environment, estimate the transition ma-
trix of an ergodic, time-homogeneous, and station-
ary Markov chain, i.e. matrix P, that can generate
the constituent traces in the aggregate data.

In continue, the idea of conditional least squares
estimation is discussed as a primitive solution for
this problem.

5. Conditional Least Squares

Conditional least squares (CLS) '* is a traditional
method for estimating the transition matrix of a
Markov chain out of aggregate data. According to
the main idea of CLS, it is expected that for a se-
quence of the environmental states of length 7', envi-
ronmental state x, should be close to its conditional
expectation, given x;_1. This can be termed formally
as:

vee{l,...,T}, x P~x!, “4)

where xtTf | P is the expectation of x,T , conditioned on
X1

With regard to Eq. 4, the transition matrix P can
be estimated by minimizing a least squares system
asin Eq. 5.

T
Pcrs = argming (Z(xtTlP—xtT)(xtTlP —x,T)T> , (5
=2

where Pcys is the CLS estimation of P. Now, let
X = [x1,....,x7 1], and Y = [x2,...,x7]" denote the
sequences of current and next environmental states,
respectively. Then, Eq. 5 can be simplified as:

Pcrs = argming <|| XP-Y H%) ; (6)
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where || . |2 is the Frobenius norm. In the case
of more than one sequence of environmental states,
their matrices of current and next environmental
states are appended to X and Y, respectively.

It is well known that P¢ys is asymptotically con-
sistent when T — oo (i.e. plimr_Pcrs = P)./31*
However, there are two drawbacks in CLS estima-
tion: i) it can be proven that CLS is not consistent
when the aggregate data is noisy (which is the case
in AAL environments),'® and ii) the asymptotic con-
dition of infinite sequence of environmental states,
i.e. T — oo, may not be satisfied in practice. There-
fore, the estimated Pcrs will diverge from ground
truth values, empirically.

6. Proposed Method to Estimate the Markov
Chain Parameters

In this section, we first introduce accessibility
graphs along with an assumption to address the rela-
tion between spatial information of sensors and their
transition probabilities. Then, based on this assump-
tion, a regularization process is explained to mitigate
the inconsistency effects of CLS.

6.1. Accessibility graphs and the proposed
assumption

Given a sensor network with the characteristics men-
tioned in section 3, a graph can be made out of it.
This is called the accessibility graph and is defined
as in definition 3.

Definition 3. (accessibility graph). Let S = {1,,n}
denote the set of installed sensor IDs in a network
of motion and item sensors. The undirected graph
G = (V,E), with the set of vertices V and the set of
edges E, is called the accessibility graph of the sen-
sor network, if:

e V=S, and

o Forsensorsi,j€ S, theedge ¢; j = (i, j) belongs to
E, if sensor j can be directly triggered (accessed)
after sensor { without triggering other sensors.

An example of the accessibility graph is shown
in Fig. 3. This graph can be obtained by considering
the sensing ranges of motion sensors i.e. sensors’ la-
bels started by "M”, and situations of item sensors.
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Intuitively, when a resident walks or interacts
with objects in the AAL environment, it is expected
that the sensors close to each other, should be trig-
gered consecutively. This intuition is also discussed
in Ref. 21. Therefore, it is inspired that: the more
close two sensors are in the accessibility graph, the
higher probability of being consecutive in a trace
they will have.

Let G = (V,E) denote an accessibility graph,
i,j € V denote two vertices, and D(i,j) show the
distance between i and j in the accessibility graph,
such that it equals the minimum number of edges
from i to j in G. Also, let P(i, ) denote the transi-
tion probability from sensor i to sensor j. According
to the above-mentioned discussion, we made an as-
sumption as defined in the following definition.

Definition 4. (proposed assumption). The lower
the spatial distance D(i, j) is, the higher the value of
P(i, j) will be.

It should be noted that the increase or decrease
of P(i, j) can be linear or non-linear in the distance
between sensors i and j. We considered a linear
rate, proportional to the exponent of the distances
between sensors.
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Fig. 3. The accessibility graph for the sensor network of
a smart home (owing to the smart home map, designed in
Ref. 18). The boxes and ovals show the sensors, and the
links between them show the edges of the graph. Sensing
ranges of sensors "M023” and "M022” are shaded.

It is worth mentioning that one can integrate fur-
ther spatial information by changing the definition
of neighborhoods in the accessibility graph. For in-
stance, one may observe that sensors installed in the
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same room are likely to be triggered consecutively.
To include this contextual information, the vertices
pertaining to sensors installed in the same room are
considered as neighbors. In this case, a complete
sub-graph is constructed by adding sufficient edges
between the due vertices in the accessibility graph.

6.2. Regularizing the CLS estimations

As discussed earlier, we planned to regularize CLS
estimations to mitigate the effect of noise and finite
aggregate data. This task was performed according
to the assumption, made in definition 4. This as-
sumption was termed formally, and plugged into the
optimization problem of CLS, i.e. Eq. 6, as a reg-
ularization term. This process resulted in a novel
convex optimization problem as:

Poroposea = argming, (| XP—Y [ +2 || exp(D).P [}

)

(N
where X and Y are the matrices of current and next
environmental states, as described in Eq. 6, n is the
number of sensors, P € R™" is the optimization
variable, Ppoposed € R"" is the resulting estimated
transition matrix, and D € R"*" is the distance ma-
trix of sensors. Also, exp(.) is the exponent func-
tion, and exp(D) denotes the matrix of entry-wise
exponent of D. The operator ”.” (dot) denotes the
inner production for the matrices, and A is the reg-
ularization coefficient. Parameter A can be thought
of as the Lagrange multiplier, and is determined ex-
perimentally using a small portion of the dataset.

In the convex optimization problem of Eq. 7,
the term || XP—Y ||% implies the basic assump-
tion of CLS estimation i.e. Eq. 6. Also, the term
| exp(D).P ||% is the regularization term that en-
forces the assumption of definition 4; because, if
the distance D(i, j) is increased in the inner prod-
uct exp(D).P, then the value of exp(D(i, j)) will in-
crease, and as a result, P(i, j) (i.e. transition prob-
ability from sensor i to j) is decreased in the min-
imization process to moderate the value of the in-
ner product; in a similar way, if the value of D(i, j)
is decreased, then the value of P(i,) is increased.
Therefore, the term || exp(D).P ||% implies a regular-

st Vije (1), o B ) =1
Pproposed(la.]) =0
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ization according to definition 4. It should be noted
that function exp(.) enforces an increase or decrease
in the elements of P, proportional to the exponent of
distances between sensors. The reason of using this
function is to dedicate much more significance to the
event that nearby sensors can be triggered consecu-
tively. Constraints of the optimization problem in
Eq. 7 guarantee that the regularization process will
not violate the properties of the posterior probability
distributions.

The solution of the convex optimization problem
of Eq. 7 yields the final regularized estimated transi-
tion matrix, i.€. Pp,roposed-

Summing it up together, to model traces in a
multi-resident AAL environment, an ergodic, time-
homogeneous, and stationary Markov chain is con-
sidered. With this model, the only parameter to esti-
mate, is the due transition matrix. For this purpose,
firstly the accessibility graph is obtained for the un-
derlying sensor network according to definition 3,
and the distance matrix D is calculated accordingly.
Secondly, having a dataset of sequences of environ-
mental states (i.e. aggregate data), which has been
collected in the environment, matrices of current and
next environmental states, i.e. binary matrices X and
Y, are calculated as described in Eq. 6. At last, the
convex minimization problem of Eq. 7 is solved
to yield the estimated transition matrix. Parameter
lambda in Eq. 7 should be determined empirically
by analyzing a small portion of the dataset.

7. Experiments and Results

In this section, the performance of the proposed
method is compared with that of CLS. Each row of
a transition matrix shows an independent posterior
distribution, given a sensor event. That is, the el-
ements of row i make up the probability distribu-
tion of the next sensor activation, given that sen-
sor i is currently activated. Accordingly, to mea-
sure the efficiency of an estimation method, the row-
wise Kullback-Leibler (KL) divergence of the esti-
mated transition matrix from the ground truth tran-
sition matrix was calculated.

Let P; denote the ground truth transition ma-
trix. Then, the row-wise KL divergence from an
estimated transition matrix, namely P € R™", to
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P € R, for a given row i is obtained by Dgy (.)
as:

Dgr(Ps(i,:) || P(i,

_ i l ] logFPG(laj)) , (8)

(i, ])

where n is the number of sensors, P €
{PCLS,Ppmp@ed}, and P(i,:) and Ps(i,:) denote the
i’th row of P and Pg, respectively. We calculated
Eq. 8 for each row of the estimated transition matri-
ces.

We also calculated the entry-wise mean squared
errors (MSEs) of the estimated matrices. For an es-
timated transition matrix P € {PcLs, Pproposed > the
MSE is calculated as:

MSE(P.Pg) = — | P=Pe It . )
The ground truth transition matrix, i.e. Pg, is con-
sidered as the transition matrix of a Markov chain
which can best generate the data traces of individu-
als in the dataset. Given a dataset of separated users’
traces, one can hire maximum likelihood estimation
(MLE) to calculate this transition matrix. This is ex-
actly the same as training a typical Markov chain on
a dataset of sequences. However, in our research, the
data traces of users are aggregated in the dataset, i.e.
the traces of two or more users are interwoven and
they are not clearly separated beforehand. There-
fore, we first precisely extracted individual traces of
users out of aggregate data manually, and then ap-
plied MLE on the set of extracted traces to learn the
ground truth transition matrix. Extraction of users’
traces was performed using the IDs of users who
triggered the sensors. These labels were available
in the dataset. The ground truth transition matrix
was only used for assessing the performance of the
proposed method.

7.1. The dataset

A well-known and publicly available multi-resident
smart home dataset, named Kyoto,18 from the Cen-
ter for Advanced Studies in Adaptive Systems
(CASAS) smart house project; was used in the sim-
ulations. This dataset represents the sensor events
pertaining to 20 pairs of participants performing

* Available on-line from: http://casas.wsu.edu/datasets.
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their daily activities in an apartment. For each sensor
event, its date, time, sensor ID, sensor value, and the
ID of the resident who triggered it, is available. This
dataset well suits our experiments; because, the gen-
erated sensory data are fully labeled by residents’
IDs in order to extract individual data traces, and in
turn, to compute the ground truth transition matrix
effectively.

7.2. Experimental settings

There are some parameters that should be deter-
mined in the experiments. One parameter is Af, that
was set to half a second, i.e. 50 milliseconds. The
other parameter is the regularization coefficient A in
Eq. 7. A small portion of the dataset was used as the
training set (around 5% of the consecutive sensor
events) to determine this parameter. We extracted
the users’ traces manually out of this small training
set, and estimated a transition matrix using MLE,
named P;,4,. Afterwards, a grid search strategy was
conducted to determine A. That is, Ppoposed Was
calculated via Eq. 7 on the training set with various
values of A. The value that minimized the total row-
wise KL divergence from P posea 10 Pyrain, Was se-
lected for A. The total row-wise KL divergence (TR-
WKLD) was calculated as in Eq. 10. Accordingly,
we set A = 0.05 in our experiments.

TRWKLD(Ppr()p()ved;Ptrain) =

ZDKL Ptram( ) ” Pproposed(' ))

i=

(10)

750

TRWKLD
o
]

50
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
A

Fig. 4. The grid search results to determine parameter A.
A =0.05 yields the minimum TRWKLD.
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7.3. Implementation results

To assess the performance, we first conducted a
paired t-Test and also calculated Pearson correla-
tions to measure the difference between estimated
and ground truth transition matrices. The paired t-
test was performed at a significance level of o =
0.05. The null hypothesis Hy : tiy; = 0 was tested
against H; : Uy # 0, where L, denotes the mean of
element-wise differences between an estimated tran-
sition matrix (i.e. either Pcyc or Pproposea) and the
ground truth transition matrix. The results are de-
picted in Table 1. As it can be seen, the resulting
P-values are higher than o, which means that no
significant difference between estimated and ground
truth transition matrices can be concluded. Also,
the Pearson correlation between the estimated and
ground truth transition probabilities has been more
than 0.7. This testifies a strong linear relationship
between estimated and ground truth values. In addi-
tion, the results showed that the elements of transi-
tion matrix estimated by the proposed method have
a higher correlation (around 79.9%) with the ground
truth values, compared to CLS. In continue, CLS
and the proposed method are compared via KL di-
vergence and MSE too.

Table 1. Paired t-Test results and Pearson correlations.

Parameter CLS PM

a 0.05 0.05

Number of observations 1156 1156
Pearson Correlation 0.743  0.799

Hypothesized Mean Difference 0 0

t-Stat 0.026 0.071
P-value one-tail 0.489 0472
P-value two-tail 0.979 0.944

PM=Proposed Method

As discussed earlier, the i’th row in a transi-
tion matrix shows the posterior distribution of sen-
sor activations, given that sensor i is currently ac-
tivated. We compared the proposed method with
CLS in term of the row-wise KL divergence of their
resulting transition matrices from the ground truth,
according to Eq. 8. The results are depicted in
Fig. 5. In this figure, the KL divergence of estimated
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posterior distributions, given each sensor, from the
ground truth is calculated. As it can be seen, given
an arbitrary sensor, the proposed method has re-
sulted in a lower or comparable KL divergence,
compared to CLS. This testifies that incorporating
the spatial information of sensors has been effective
in estimating the parameters of Markov chain, i.e.
the transition matrix.

For further assessments, we also calculated the
entry-wise MSEs of the transition matrices Pcygs,
and Pproposed Via Eq. 9. The results showed that
P proposed> and Pcrs have MSEs of 2.7 x 1073 and
3.2 x 1073, respectively. Therefore, the proposed
method has outperformed the CLS estimation with
a lower MSE, too.

12 ¢
m CLS Estimation

=)

B Proposed Method

)

KL Divergence
>

o N b
T

o Iopp—

|

i

| f—

Sensor ID

Fig. 5. The KL divergence from the estimated posterior dis-
tributions to the ground truth posterior distributions, given
a currently activated sensor.

8. Conclusion

In this work, the problem of modeling users’ data
traces in multi-occupant sensor-based AAL environ-
ments was studied. An ergodic, time-homogeneous,
and stationary Markov chain was adapted for this
purpose. The parameters of the model were esti-
mated directly out of the users’ aggregate data. The
idea of CLS estimation was customized to achieve
this goal. The effect of inconsistency of CLS in
the circumstances of AAL environments was miti-
gated by regularizing the estimations via spatial in-
formation of sensors. The proposed method was ap-
plied on a well-known and publicly available multi-
resident dataset from CASAS smart home project.
The results showed that the estimated posterior dis-
tributions of sensor activations have lower Kullback-
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Leibler divergences from the ground truth, com-
pared to the standard CLS. Also, the proposed
method outperformed CLS with a lower MSE of
2.7 x 1073, Therefore, the experiments testified
that the application of spatial information, extracted
from the deployed sensor network, has been a
promising paradigm in learning a model for users’
data traces.
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